MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =


 Linette Lester
 1 years ago
 Views:
Transcription
1 MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix A = Answer: det A = 3. The most efficient way is to develop the determinant along the first column, since there are two zeros in it. b. (3 points) What is the dimension of the nullspace of A? Explain. Answer: Since det A 0 the matrix is invertible, therefore Ax = 0 has only one solution: x = A 0 = 0. This means null(a) = {0}, so its dimension is 0. Alternatively, you could have argued that since det A 0 the rank is 4, therefore by the fundamental theorem, dim null(a) = #columns rank = 4 4 = 0 c. (2 points) Find a basis for the row space of A. Answer: Since det A 0 the rank is 4 (=number of rows,columns). Therefore in RREF, each row of A contains a pivot, and it is the identity matrix; so you could choose the standard basis e!... e 4 of R 4. Alternatively any other basis on R 4 would be acceptable as well. 2. (0 points total) a. (5 points) For which values of k does the following system have zero / one / infinitely many solutions? x + 2y z = kx + (2k )y + z = 2 x + (k 3)y + z = Answer: The row echelon form of the augmented matrix is 2 0 k k (k + )(k ) k
2 The first two columns contain pivots no matter what the value of k is. The third column will contain a pivot if (k )(k + ) 0, that is, if k,, and in this case there is a unique solution. In the cases k =, the last row contains only zeros, so there are are solutions and also free variables, hence infinitely many solutions. If k = the last row is ( ), corresponding to the equation 0 =, so there are no solutions. b. (2 points) Let A be the coefficient matrix of this system. What is the dimension of the column space in each of the cases you found in (a)? Answer: If k, the column space has dimension 3. If k =, there are two pivots in the RREF of the coefficient matrix, so the columns space has dimension 2. c. (3 points) For k =, describe the row space of A using a system of (one or more) linear equations. Answer: The RREF of A in this case is So n = (a, b, c) = ( 3, 2, ) is a solution to the equation An = 0. This is a normal vector to the space spanned by the rows, so the space is the solution space of the equation 3x + 2y + z = 0.
3 3. (0 points total) a. (5 points) Compute the inverse of A = Answer: A = b. (3 points) Let B be the matrix obtained from A by swapping the second and third rows. Write B using A and an elementary matrix, and use this to compute the inverse of B. Answer: so 0 0 B = A B = A 0 0 = A = (the inverse of the elementary matrix is in this case the matrix itself). Those of you who solved this in the same way as A got partial credit. c. (2 points ) If C is another 3 3 matrix and AC = CA, is it necessarily true that CA = A C? Answer: yes, because we can multiply AC = CA by A from the left and get C = IC = A AC = A CA now multiply the equality C = A CA which we got by A from the right, and get CA = A CAA = A CI = A C 4. (0 points total)
4 a. (4 points) Let u = 3 v = 2 w = z = Find a basis for the subspace L(u, v, w, z) spanned by these vectors, and determine its dimension. Answer: Placing these vectors columns as the columns of a matrix we find that the matrix has rank 3 and in its RREF form the pivots are in the first three columns, therefore u, v, w are a basis for the column space, which is the same as the space in questions. b. (4 points) Does b = 5 2 belong to L(u, v, w, z)? Answer: No, the equation su + tv + rw = b (in variables s, t) has no solution. c. (2 points) What is the rank of the 4 6 matrix whose columns are u, v, b, v, w, z? Explain your answer. Answer: The rank is 4. We know that the rank is the dimension of the column space. We also know that the vectors v, w depend on u, v, w, so the column space is spanned by u, v, w, b. We also know that b is not a LC of the other two, so these vectors are LI and form a basis for the column space; the space they span has dimension 3, so the column space has dimension 3, and this is the rank.
5 5. (0 points total) a. (5 points) Find a parametric description of the plane through the origin which is orthogonal to n = (2,, ). Answer: This is the same as the null space of the matrix (2 ), which is s t 2 0 : s, t R b. (3 points) Does (2, 2, 3) belong to the plane which is orthogonal to n and passes through p = (, 2, 3)? Answer: No, because n (p (2, 2, 3)) = (2,, ) (, 0, 6) = c. (2 points) Suppose that u, v are vectors, that u = 3 2 v, and that v u = 2 u. Is the angle between u and v acute, right or obtuse? (Hint: express u v 2 using u, v and u v). Answer: Using the fact that w 2 = w w, have we u v 2 = (u v) (u v) = u u 2u v + v v = u 2 2u v + v 2 using the information we have about the relation of u, v, u v we get u v = 2 ( 4 u 2 + u u 2 ) = ( ) u 2 < 0 so the angle is obtuse (assuming u 0).
6 6. (0 points total) For each of the following statements, indicate whether it is TRUE or FALSE by circling the correct answer. You do NOT have to justify your answer. a. (2 points) Any three vectors in the plane with acute, nonzero angles between each pair, constitute a basis for R 2. FALSE: A basis of R 2 always contains 2 vectors, not 3. b. (2 points) If A is a 3 3 matrix ( and ) A 2 = I then A = I or A = I. 0 FALSE: For example, A =. 0 c. (2 points) If a 4 3 matrix A has rank 3, then for any vector b the equation Ax = b has infinitely many solutions. FALSE: The RREF of the augmented matrix of the equation could have a row of the form (0 0 0 ). d. (2 points) For a square matrix A, the column space of A has the same dimension as the column space of A T. TRUE: The column space of A T is precisely the row space of A, which has dimension equal to rank of A, which is also the dimension of the column space of A. e. (2 points) If u, v, w R 3 is a basis for R 3 and A is a 4 3 matrix such that Au = Av = Aw = 0, then all entries of A are 0. TRUE: This means the null space of A has dimension 3, so by the fundamental theorem the row space has dimension 0. This can happen only when all the rows are the 0vector, so all entries of A are 0.
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
More informationUsing the three elementary row operations we may rewrite A in an echelon form as
Rank, RowReduced Form, and Solutions to Example 1 Consider the matrix A given by Using the three elementary row operations we may rewrite A in an echelon form as or, continuing with additional row operations,
More informationMath 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns
Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in
More informationThis MUST hold matrix multiplication satisfies the distributive property.
The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients
More informationRow, Column and Null Spaces 1
Row, Column and Null Spaces We are now in a position to prove the claim made in the Solving Linear Systems handout that two systems of linear equations have the same solutions sets if and only if the associated
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationMA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam
MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am  :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.
More informationUnit 17 The Theory of Linear Systems
Unit 17 The Theory of Linear Systems In this section, we look at characteristics of systems of linear equations and also of their solution sets. Theorem 17.1. For any system of linear equations A x = b,
More informationRank. Rank. Definition. The set of all linear combination of the row vectors of a matrix A is called the row space of A and is denoted by Row A
Rank Rank he rank of a matrix is the maximum number of independent rows (or the maximum number of independent columns) Definition he set of all linear combination of the row vectors of a matrix A is called
More information4.2. Linear Combinations and Linear Independence that a subspace contains the vectors
4.2. Linear Combinations and Linear Independence If we know that a subspace contains the vectors v 1 = 2 3 and v 2 = 1 1, it must contain other 1 2 vectors as well. For instance, the subspace also contains
More informationSection 3.1. Solution: C(A) is a line (the xaxis), C(B) is a plane (the xyplane), C(C) is a line (through 0 and (1, 2, 0)). Section 3.
Section. 2. Suppose the multiplication cx is defined to produce (cx, ) instead of (cx, cx 2 ), which of the eight conditions are not satisfied?, 4, 5. Which of the following subsets of R are actually subspaces?
More informationUnit 20 Linear Dependence and Independence
Unit 20 Linear Dependence and Independence The idea of dimension is fairly intuitive. Consider any vector in R m, (a 1, a 2, a 3,..., a m ). Each of the m components is independent of the others. That
More informationMAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
More informationfind the following.
MATHS Linear Algebra, March 6, 6 Time Alloted: minutes Aids permitted: Casio FX99 or Sharp EL5 calculator Solutions to test: Given that the reduced echelon form of 4 4 A = 3 6 3 9 is R = 4 9 3 find the
More informationMath 215 Exam #1 Practice Problem Solutions
Math 5 Exam # Practice Problem Solutions For each of the following statements, say whether it is true or false If the statement is true, prove it If false, give a counterexample (a) If A is a matrix such
More informationFat, Square and Thin Matrices  Number of Solutions to Systems of Linear Equations
Fat, Square and Thin Matrices  Number of Solutions to Systems of Linear Equations (With Answers to True/False Questions posted by Dr. Webb) March 30, 2016 Introduction The goal of this short article is
More informationMath 4153 Exam 2 Review with solutions
The syllabus for Exam is the Gaussian Elimination supplement (found on the class website), Chapter 5 and Chapter 6 through page in Axler.. You should be sure to know precise definition of the terms we
More informationMATH 310, REVIEW SHEET 1
MATH 310, REVIEW SHEET 1 These notes are a very short summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive,
More informationSolutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the
Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free
More informationMath 215 HW #4 Solutions
Math 5 HW #4 Solutions. Problem..6. Let P be the plane in 3space with equation x + y + z = 6. What is the equation of the plane P through the origin parallel to P? Are P and P subspaces of R 3? Answer:
More informationReduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
More informationSection 1.2: Row Reduction and Echelon Forms
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
More informationMATH 304 Linear Algebra Lecture 11: Basis and dimension.
MATH 304 Linear Algebra Lecture 11: Basis and dimension. Linear independence Definition. Let V be a vector space. Vectors v 1,v 2,...,v k V are called linearly dependent if they satisfy a relation r 1
More informationMath 2331 Linear Algebra
1.4 The Matrix Equation Ax = b Math 2331 Linear Algebra 1.4 The Matrix Equation Ax = b Simon Stolarczyk Department of Mathematics, University of Houston spstolar@math.uh.edu math.uh.edu/~spstolar/math2331
More informationMAT 1341C Test 2, 2011
MAT 1341C Test 2, 2011 17March, 2011. Instructor: Barry Jessup Family Name: First Name: Student number: DGD (please circle yours): #1 8:3010, MCD 146 #2 2:304, MRT 250 #3 2:304, CBY B012 { 1 Multiple
More informationMAT188H1F  Linear Algebra  Fall Solutions to Term Test 2  November 17, 2015
MAT88HF  Linear Algebra  Fall 25 Solutions to Term Test 2  November 7, 25 Time allotted: minutes. Aids permitted: Casio FX99 or Sharp EL52 calculator. General Comments:. The results on this test were
More informationMath 54 Midterm 2, Fall 2015
Math 54 Midterm 2, Fall 2015 Name (Last, First): Student ID: GSI/Section: This is a closed book exam, no notes or calculators allowed. It consists of 7 problems, each worth 10 points. The lowest problem
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More information(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible.
1. or : (a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. (c) A linear transformation from R n to R n is onetoone
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More informationMATH 51 MIDTERM 1 SOLUTIONS
MATH 5 MIDTERM SOLUTIONS. Compute the following: (a). 2 [ 3 4 7 = ] 9 25 3 4 (b). [ ] 2 7 0 4 = 0 4 2 4 [ ] 5 7 4 7 (c). 3 2 + 2 = 8 3 2 5 (d). 2 = 5 3 2 (e). [ ] [ ] 2 [ ] 2 6 3 = 7 7 2 2. Find the inverse
More information2.5 Spaces of a Matrix and Dimension
38 CHAPTER. MORE LINEAR ALGEBRA.5 Spaces of a Matrix and Dimension MATH 94 SPRING 98 PRELIM # 3.5. a) Let C[, ] denote the space of continuous function defined on the interval [, ] (i.e. f(x) is a member
More informationUniversity of Ottawa
University of Ottawa Department of Mathematics and Statistics MAT 1302A: Mathematical Methods II Instructor: Alistair Savage Final Exam April 2013 Surname First Name Student # Seat # Instructions: (a)
More informationReading [SB] Ch. 11, p , Ch. 27, p
Reading [SB] Ch., p. 23725, Ch. 27, p. 7577. Basis. Linear Combinations A linear combination of vectors v, v 2,, v m R n with scalar coefficients α, α 2,, α m R is the vector α v + α 2 v 2 + + α m v
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationLinear Algebra Test File Spring Test #1
Linear Algebra Test File Spring 2015 Test #1 For problems 13, consider the following system of equations. Do not use your calculator. x + y  2z = 0 3x + 2y + 4z = 10 2x + y + 6z = 10 1.) Solve the system
More informationName: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
More informationMath 54. Selected Solutions for Week 3
Math 54. Selected Solutions for Week 3 Section 2. (Page 2) 8. How many rows does B have if BC is a 5 4 matrix? The matrix C has to be a 4 p matrix, and then BC will be a 5 p matrix, so it will have 5 rows.
More informationVector Spaces and Matrices Kurt Bryan
Matrices as Functions Vector Spaces and Matrices Kurt Bryan Up to now matrices have been pretty static objects. We ve used them mainly as a bookkeeping tool for doing Gaussian elimination on systems of
More informationMath Final Review Dec 10, 2010
Math 301001 Final Review Dec 10, 2010 General Points: Date and time: Monday, December 13, 10:30pm 12:30pm Exam topics: Chapters 1 4, 5.1, 5.2, 6.1, 6.2, 6.4 There is just one fundamental way to prepare
More information18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2106. Total: 175 points.
806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 206 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are righthandsides b for which A x = b has no solution (a) What
More informationPartial Solution Set, Leon 3.6 Monday 15 th October, 2012 at time 12:03
Partial Solution Set, Leon 3.6 Monday 15 th October, 2012 at time 12:03 3.6.1 (a) Solution: We want bases for the row space, the column space, and the nullspace of 1 3 2 1 3 2 A = 2 1 4. Elimination transforms
More informationSubspaces, Basis, Dimension, and Rank
MATH10212 Linear Algebra Brief lecture notes 30 Subspaces, Basis, Dimension, and Rank Definition. A subspace of R n is any collection S of vectors in R n such that 1. The zero vector 0 is in S. 2. If u
More informationVector Spaces and Linear Transformations
Vector Spaces and Linear Transformations Beifang Chen Fall 6 Vector spaces A vector space is a nonempty set V whose objects are called vectors equipped with two operations called addition and scalar multiplication:
More informationMath 215 Exam #1 Solutions
Math 25 Exam # Solutions. (8 points) For each of the following statements, say whether it is true or false. Please write True or False and not just T or F (since these letters are easily mistaken for each
More informationA basis for Row A is given by the nonzero rows of the matrix B:
Math 3, Lesieutre Problem set #9 October 8, 5 Problems for M /9: 46 Row reduction on the matrix A below yields the matrix B Without calculations, list rank A and dim Nul A Find bases for Col A, Row A,
More informationReview: Vector space
Math 2F Linear Algebra Lecture 13 1 Basis and dimensions Slide 1 Review: Subspace of a vector space. (Sec. 4.1) Linear combinations, l.d., l.i. vectors. (Sec. 4.3) Dimension and Base of a vector space.
More informationSolving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
More informationIf we apply Gaussian elimination then we get to a matrix U in echelon form
5. Gauss Jordan Elimination Gauss Jordan elimination is very similar to Gaussian elimination, except that one keeps going. To apply Gauss Jordan elimination, first apply Gaussian elimination until A is
More informationLinear Algebra A Summary
Linear Algebra A Summary Definition: A real vector space is a set V that is provided with an addition and a multiplication such that (a) u V and v V u + v V, (1) u + v = v + u for all u V en v V, (2) u
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationOrthogonal Transformations Math 217 Professor Karen Smith
Definition: A linear transformation R n Theorem: If R n Orthogonal Transformations Math 217 Professor Karen Smith (c)2015 UM Math Dept licensed under a Creative Commons ByNCSA 4.0 International License.
More informationx + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3
Math 24 FINAL EXAM (2/9/9  SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r
More informationMath 215 HW #4 Solutions
Math 5 HW #4 Solutions. Problem.3.6. Choose three independent columns of U. Then make two other choice. Do the same for A. You have found bases for which spaces? U = 3 4 6 7 9 and A = 3 4 6 7 9 4 6 8 Solution:
More informationCoordinates. Definition Let B = { v 1, v 2,..., v n } be a basis for a vector space V. Let v be a vector in V, and write
MATH10212 Linear Algebra Brief lecture notes 64 Coordinates Theorem 6.5 Let V be a vector space and let B be a basis for V. For every vector v in V, there is exactly one way to write v as a linear combination
More informationMathQuest: Linear Algebra. 1. Which of the following matrices does not have an inverse?
MathQuest: Linear Algebra Matrix Inverses 1. Which of the following matrices does not have an inverse? 1 2 (a) 3 4 2 2 (b) 4 4 1 (c) 3 4 (d) 2 (e) More than one of the above do not have inverses. (f) All
More informationMath 2331 Linear Algebra
1.4 The Matrix Equation Ax = b Math 2331 Linear Algebra 1.4 The Matrix Equation Ax = b Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen
More informationDe nitions of Linear Algebra Terms
De nitions of Linear Algebra Terms In order to learn and understand mathematics, it is necessary to understand the meanings of the terms (vocabulary words) that are used This document contains de nitions
More informationMA 52 May 9, Final Review
MA 5 May 9, 6 Final Review This packet contains review problems for the whole course, including all the problems from the previous reviews. We also suggest below problems from the textbook for chapters
More informationMATH10212 Linear Algebra B Homework Week 3. Be prepared to answer the following oral questions if asked in the supervision class
MATH10212 Linear Algebra B Homework Week 3 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra its Applications. Pearson, 2006. ISBN 0521287134. Normally, homework
More informationRANK AND NULLITY. x 1. x m
RANK AND NULLITY. The row and column spaces Let A be an m n matrix. Then A has n columns, each of which is a vector in R m. The linear span of the columns is a subspace of R n. It s called the column space
More informationLecture 6. Inverse of Matrix
Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that
More informationIn this appendix we list some of the important facts about matrix operations and solutions to systems of linear equations.
Appendix A Matrix Operations In this appendix we list some of the important facts about matrix operations and solutions to systems of linear equations. A.1. Matrix Multiplication The product of a row a
More informationMath 215 HW #7 Solutions
Math 5 HW #7 Solutions Problem 8 If P is the projection matrix onto a kdimensional subspace S of the whole space R n, what is the column space of P and what is its rank? Answer: The column space of P
More informationMore Linear Algebra Study Problems
More Linear Algebra Study Problems The final exam will cover chapters 3 except chapter. About half of the exam will cover the material up to chapter 8 and half will cover the material in chapters 93.
More informationMATH 2030: ASSIGNMENT 2
MATH 2030: ASSIGNMENT 2 Intro to Linear Systems Q1: pg 69, q 2,4,6 Determine which equations are linear equations in the variables x, y and z, if not, explain why A1 (1) x 2 + y 2 + z 2 = 1 (2) 2x xy 5z
More informationLecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
More informationMath Practice Problems for Test 1
Math 290  Practice Problems for Test 1 UNSUBSTANTIATED ANSWERS MAY NOT RECEIVE CREDIT. 3 4 5 1. Let c 1 and c 2 be the columns of A 5 2 and b 1. Show that b Span{c 1, c 2 } by 6 6 6 writing b as a linear
More information2.6 The Inverse of a Square Matrix
200/2/6 page 62 62 CHAPTER 2 Matrices and Systems of Linear Equations 0 0 2 + i i 2i 5 A = 0 9 0 54 A = i i 4 + i 2 0 60 i + i + 5i 26 The Inverse of a Square Matrix In this section we investigate the
More information2.5 Gaussian Elimination
page 150 150 CHAPTER 2 Matrices and Systems of Linear Equations 37 10 the linear algebra package of Maple, the three elementary 20 23 1 row operations are 12 1 swaprow(a,i,j): permute rows i and j 3 3
More informationMATH 2030: EIGENVALUES AND EIGENVECTORS
MATH 200: EIGENVALUES AND EIGENVECTORS Eigenvalues and Eigenvectors of n n matrices With the formula for the determinant of a n n matrix, we can extend our discussion on the eigenvalues and eigenvectors
More informationSystems of Linear Equations
Systems of Linear Equations Systems of Linear Equations. We consider the problem of solving linear systems of equations, such as x 1 2x 2 = 8 3x 1 + x 2 = 3 In general, we write a system of m equations
More informationROW REDUCTION AND ITS MANY USES
ROW REDUCTION AND ITS MANY USES CHRIS KOTTKE These notes will cover the use of row reduction on matrices and its many applications, including solving linear systems, inverting linear operators, and computing
More information1.5 Elementary Matrices and a Method for Finding the Inverse
.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:
More informationLecture 2 The rank of a matrix
Lecture 2 Eivind Eriksen BI Norwegian School of Management Department of Economics September 3, 200 Eivind Eriksen (BI Dept of Economics) Lecture 2 September 3, 200 / 24 Linear dependence Linear dependence
More informationDirect Sums of Subspaces and Fundamental Subspaces
Direct Sums of Subspaces and Fundamental Subspaces S. F. Ellermeyer July, 008 Direct Sums Suppose that V is a vector space and that H and K are subspaces of V such that H \ K = f0g. The direct sum of H
More informationSystems of Linear Equations
Systems of Linear Equations Math 108A: August 5, 2008 John Douglas Moore 1 Orthogonal complements and null spaces of linear maps Linear algebra is the theory behind solving systems of linear equations,
More informationLinear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero
More information18.06 Final Exam May 18, 2010 Professor Strang
18.06 Final Exam May 18, 2010 Professor Strang Your PRINTED name is: 1. Your recitation number is 2. 3. 4. 5. 6. 7. 8. 9. 1. (12 points) This question is about the matrix 1 2 0 1 A = 2 4 1 4. 3 6 3 9 (a)
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationM341 (56140), Sample Final Exam Solutions
M4 (5640), Sample Final Exam Solutions Let V be an ndimensional vector space and W be an mdimensional vector space a) Suppose n < m Show that there is no linear transformation L: V W such that L is onto
More informationIntroduction to Linear Algebra III
Introduction to Linear Algebra III Jack Xin (Lecture) and J. Ernie Esser (Lab) Abstract Linear system, matrix and matrix operations, row echelon form, rank. 1 Linear System and Matrix A linear system:
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationReview Session There will be a review session on Sunday March 14 (Pi day!!) from 3:305:20 in Center 119.
Announcements Review Session There will be a review session on Sunday March 14 (Pi day!!) from 3:305:20 in Center 119. Additional Office Hours I will have office hours Monday from 23 (normal time) and
More information4 Solving Systems of Equations by Reducing Matrices
Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example
More informationLinearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for inclass presentation
More informationMENU LINEAR ALGEBRA DAVID M. MCCLENDON
MENU LINEAR ALGEBRA DAVID M. MCCLENDON Abstract. A summary of the material from Math 2911, an honors course in linear algebra for freshmen. 1. Complex numbers Definition 1.1. A field F is a set of objects
More informationMath 308 Midterm July 24, Part A. Short answer questions
Math 38 Midterm July 24, 29 Part A. Short answer questions a a (1) Choose values for a and b so that 1 b 2 is singular. 1 1 1 You must choose a and b so that the rows, or columns, are linearly dependent.
More informationMatrix Inverses. Since the linear system. can be written as. where. ,, and,
Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationMath 220 Sections 1, 9 and 11. Review Sheet v.2
Math 220 Sections 1, 9 and 11. Review Sheet v.2 Tyrone Crisp Fall 2006 1.1 Systems of Linear Equations Key terms and ideas  you need to know what they mean, and how they fit together: Linear equation
More information1 Orthogonal projections and the approximation
Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit
More informationVector Spaces and Subspaces
Chapter 5 Vector Spaces and Subspaces 5. The Column Space of a Matrix To a newcomer, matrix calculations involve a lot of numbers. To you, they involve vectors. The columns of Av and AB are linear combinations
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationMethods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Rowreduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More information1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
More information1.5 SOLUTION SETS OF LINEAR SYSTEMS
12 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as
More informationReinserting the variables in the last row of this augmented matrix gives
Math 313 Lecture #2 1.2: Row Echelon Form Not Reaching Strict Triangular Form. The algorithm that reduces the augmented matrix of an n n system to that of an equivalent strictly triangular system fails
More information3.6 Dimensions of the Four Subspaces
84 Chapter. Vector Spaces and Subspaces.6 Dimensions of the Four Subspaces The main theorem in this chapter connects rank and dimension. The rank of a matrix is the number of pivots. The dimension of a
More information