Vector Spaces 4.4 Spanning and Independence


 Carmella Fisher
 1 years ago
 Views:
Transcription
1 Vector Spaces 4.4 and Independence October 18
2 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set of vectors.
3 Set theory and set theoretic Notations Borrow (reintroduce) some Set theoretic lingo and notations. A collection S of objects is called a set. Objects in S are called elements of S. We write x S to mean x is in S or x is an element of S. Given two sets, T,S we say T is a subset of S, if each element of T is in S. We write T S to mean T is a subset of S. Read the notation = as implies.
4 Linear Combination Preview Definition. Let V be a vector space and v be a vector in V. Then, v is said to be a linear combination of vectors u 1,u 2,...,u k in V, if v = c 1 u 1 +c 2 u 2 + +c k u k for some scalars c 1,c 2,...,c k R. Reading Assignment: 4.4 Example 1, 2, 3
5 Finding Linear Combination Exercise 2a. Let S = {(1,2, 2),(2, 1,1)} be a set of two vectors in R 3. (a) Write u = (1, 5,5) as a linear combination of the vectors in S, if possible. Solution: Write (1, 5,5) = a(1,2, 2)+b(2, 1,1). So, (1, 5,5) = (a+2b,2a b, 2a+b). So, a +2b = 1 2a b = 5 2a +b = 5
6 The augmented matrix Its reduced row echelon form (use TI84 rref ) so a = 9 5,b = 7 5. So, (1, 5,5) = 9 5 (1,2, 2)+ 7 5 (2, 1,1).
7 Exercise 2b Exercise2b. Write v = ( 2, 6,6) as a linear combination of the vectors in S, if possible. Solution: Write ( 2, 6,6) = a(1,2, 2)+b(2, 1,1). So, ( 2, 6,6) = (a+2b,2a b, 2a+b). So, a +2b = 2 2a b = 6 2a +b = 6
8 The augmented matrix Its reduced row echelon form (use TI84 rref ) so a = ,b = So, v = ( 2, 6,6) = 14 5 (1,2, 2)+ 2 5 (2, 1,1).
9 Exercise 2c Exercise2c. Write w = ( 1, 22,22) as a linear combination of the vectors in S, if possible. Solution: Write ( 1, 22,22) = a(1,2, 2)+b(2, 1,1). So, ( 1, 22,22) = (a+2b,2a b, 2a+b). So, a +2b = 1 2a b = 22 2a +b = 22
10 The augmented matrix Its reduced row echelon form (use TI84 rref ) so a = 9, b = 4. So, w = ( 1, 22,22) = 9(1,2, 2)+4(2, 1,1).
11 Exercise 2d Exercise 2d. Write z = ( 4, 3,3) as a linear combination of the v ectors in S, if possible. Solution: Write ( 4, 3,3) = a(1,2, 2)+b(2, 1,1). So, ( 4, 3,3) = (a+2b,2a b, 2a+b). So, a +2b = 4 2a b = 3 2a +b = 3
12 The augmented matrix Its reduced row echelon form (use TI84 rref ) so a = 2b = So, z = ( 4, 3,3) = 2(1,2, 2) (2, 1,1).
13 Span of a Sets Definition. Let S = {v 1,v 2,...,v k } be a subset of a vector space V. The span of S is the set of all linear combinations of vectors in S, span(s) = {c 1 v 1 +c 2 v 2 +c k v k : c 1,c 2,,c k are scalars} The span(s) is also denoted by span(v 1,v 2,...,v k ). If V = span(s), we say V is spanned by S. We also say that S is a spanning set of V.
14 Span(S) is a subspace ofv Theorem 4.7 Let S = {v 1,v 2,...,v k } be a subset of a vector space V. Then, span(s) is a subspace of V. In fact, Span(S) is the smallest subspace of V that contains S. That means, if W is a subspace of V then, S W = span(s) W.
15 Proof. First we show that span(s) is a subspace of V. By theorem 4.5 we need to show that span(s) is closed under addition and scalar multiplication. Let u,v Span(S) and c be a scalar. Then u = c 1 v 1 +c 2 v 2 + +c k v k, v = d 1 v 1 +d 2 v 2 + +d k v k where c 1,c 2,...,c k,d 1,d 2,...,d k are scalars. Then u+v = (c 1 +d 1 )v 1 +(c 2 +d 2 )v 2 + +(c k +d k )v k cu = (cc 1 )v 1 +(cc 2 )v 2 + +(cc k )v k So, both u+v,cu are linear combination of elments in S. So u+v,cu span(s). So span(s) is a subspace of V.
16 Now, we prove that span(s) is the smallest subspace W, of V, that contains S. Suppose W is a subspace of V and S W. Let u span(s). we will have to show u W. Then, u = c 1 v 1 +c 2 v 2 + +c k v k, where c 1,c 2,...,c k are scalars. Now, v 1,v 2,...,v k W. Since W is closed under scalar multiplication c i v i W. Since W is closed under addition u W. The proof is complete.
17 More Problems on spanning sets of Sets Reading Assignment: 4.4 Example 46. Example (4a): Most obvious and natural spanning set of the 3 space R 3 is S = {(1,0,0),(0,1,0),(0,0,1)} Because for any vector u = (a,b,c) R 3 w e have u = (a,b,c) = a(1,0,0)+b(0,1,0)+c(0,0,1) Similarly, Most obvious and natural spanning set of the real plane R 2 is S = {(1,0),(0,1)}. Remark. If S is spanning set of V and T is a bigger set (i.e. S T) than T is also a spanning set of V.
18 4.4 Exercise 6. Preview More Problems on spanning sets Let S = {(1, 1),(2,1)}. Is S a spanning set of R 2? Solution. Yes, it is a spanning set of R 2. We need to show that any vector (x,y) R 2 is a linear combination of elements is S. { a +2b = x So, a(1, 1)+b(2,1) = (x,y) OR a +b = y must have at least one solution, for any (x,y). In the matrix form [ ][ ] [ ] 1 2 a x = 1 1 b y
19 More Problems on spanning sets Use TI84 [ ] a = b [ ] 1 [ x y ] [ 1 2 = ][ x y ] Since the systems have solution for all (x,y) S is a spanning set R 2.
20 4.4 Exercise 10. Preview More Problems on spanning sets Let S = {(1,1)}. Is S a spanning set of R 2? Solution. No. Because span(s) = {c(1,1) : c R} = {(c,c) : c R}. is only the line through the origin and (1,1). It is strictly smaller that R 2. For example, (1,2) / span(s).
21 4.4 Exercise 20. Preview More Problems on spanning sets Let S = {(1,0,1),(1,1,0),(0,1,1)}. Is S a spanning set of R 3? Solution. Yes, it is a spanning set of R 3. We need to show that any vector (x,y,z) R 3 is a linear combination of elements is S. So, a(1,0,1)+b(1,1,0)+c(0,1,1) = (x,y,z) a +b = x OR b +c = y a +c = z must have at least one solution, for any (x,y,z).
22 More Problems on spanning sets In the matrix form a Use TI84 b = c x y = z a b c = x y z x y z Showing that these systems have solutions of all (x,y,z).
23 on Linearly Independent sets Liniear Independence Definition. Let S = {v 1,v 2,...,v k } be a subset of a vector space V. The set S is said to be linearly independent, if c 1 v 1 +c 2 v 2, +c k v k = 0 = c 1 = c 2 = = c k = 0. That means, the equation on the left has only the trivial solution. If S is not linearly independent, we say that S is linearly dependent.
24 on Linearly Independent sets Comments (1) Let S = {v 1,v 2,...,v k } be a subset of a vector space V. If 0 S then, S is linearly dependent. Proof.For simplicity, assume v 1 = 0. Then, 1v 1 +0v v k = 0 So, S is not linearly indpendent. (2)Methods to test Independence: We will mostly be working with vector in R 2,R 3, or n spaces R n. GaussJordan elimination (with TI84) will be used to check if a set is independent.
25 on Linearly Independent sets A Property of Linearly Dependent Sets Theorem 4.8 Let S = {v 1,v 2,...,v k } be a subset of a vector space V. Assume S has at least 2 elements (k 2). Then, S is linearly dependent if and only if one of the vectors v j can be written as a linear combination of rest of the vectors in S. Proof. Again, we have to prove two statments.
26 on Linearly Independent sets First, we prove if part. We assume that one of the vectors v j can be written as a linear combination of rest of the vectors in S. For simplicity, we assume that v 1 is a linear combination of rest of the vectors in S. So, v 1 = c 2 v 2 +c 3 v 3 + +c k v k So, ( 1)v 1 +c 2 v 2 +c 3 v 3 + +c k v k = 0 This has at least one coefficient 1 that is nonzero. This establishes that S is a linearly dependent set.
27 on Linearly Independent sets Now, we prove the only if part. We assume that S is linearly dependent. So, there are scalars c 1,,c k, at least one nonzero, such that c 1 v 1 +c 2 v 2 +c 3 v 3 + +c k v k = 0 Without loss of generality (i.e. for simplicity) assume c 1 0. ( So, v 1 = c ) ( 2 v 2 + c ) ( ) 3 ck v v k c 1 c 1 c 1 Therefore, v 1 is a linear combination of the rest. The proof is complete.
28 on Linearly Independent sets of Linearly Independent sets 1. Reading Assignment: 4.4 Example 7, 8, 9, 10, Again, most obvious and natural example of linearly independent set in 3 space R 3 is S = {(1,0,0),(0,1,0),(0,0,1)} Because a(1,0,0)+b(0,1,0)+c(0,0,1) = (0,0,0) = a = b = c = Similarly, most obvious and natural example of linearly independent set in the real plane R 2 is S = {(1,0),(0,1)}. 4. Remark. If S is a linearly independent set set in V and R is a smaller set (i.e. R S) then R is also a linearly independent set of V.
29 Exercise 24. Preview on Linearly Independent sets Let S = {( 2,4),(1, 2)}. Is it linearly independent or dependent? Solution. We can see a nontrivial linear combination 1 ( 2,4)+2 (1, 2) = (0,0). So, S is not linearly independent. Alternately, if we want to prove it formally, suppose a( 2,4)+b(1, 2) = (0,0). { 2a +b = 0 Then, 4a 2b = 0
30 on Linearly Independent sets Add 2 times the first equation to the second: { 2a +b = 0 0 = 0 { a = t So, solution to this system is b = 2t So, there are lots of nonzero a,b. where t R.
31 on Linearly Independent sets Exercise 31. Let S = {( 4, 3,4),(1, 2,3),(6,0,0)}. Is it linearly independent or dependent? Solution. Let a( 4, 3,4)+b(1, 2,3)+c(6,0,0) = (0,0,0) We will have to see, there are nonzero solutions or not. So, 4a +b +6c = 0 3a 2b = 0 4a +3b = 0
32 on Linearly Independent sets The augmented matrix Its reduced row echelon form (use TI84 rref ): So, the only solution is the the zerosolution: a = 0,b = 0,c = 0. We conclude S is linearly independent.
33 on Linearly Independent sets Exercise 44. Let S = {x 2 1,2x +5} be a set of polynomials. Is it linearly independent or dependent? Solution. Write a(x 2 1)+b(2x +5) = 0. So, ax 2 +2bx +( a+5b) = 0, Equating coefficients of x 2,x and the constant terms: a = 0,2b = 0, a+5b = 0 or a = b = 0. We conclude, S is linearly independent.
34 Preview : 4.4 Exercise 2a, 2b, 14, 15, 16, 32, 33, 34, 35, 41, 43, 51, 59 Need NOT do geometric interpretation.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationChapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded stepbystep through lowdimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
More informationVector Spaces. Chapter 2. 2.1 R 2 through R n
Chapter 2 Vector Spaces One of my favorite dictionaries (the one from Oxford) defines a vector as A quantity having direction as well as magnitude, denoted by a line drawn from its original to its final
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationx + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3
Math 24 FINAL EXAM (2/9/9  SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r
More informationSubspaces of R n LECTURE 7. 1. Subspaces
LECTURE 7 Subspaces of R n Subspaces Definition 7 A subset W of R n is said to be closed under vector addition if for all u, v W, u + v is also in W If rv is in W for all vectors v W and all scalars r
More informationChapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7 In this section, we discuss linear transformations 89 9 CHAPTER
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationLinear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More informationAdding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
More informationSystems of Linear Equations
Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11]. Main points in this section: 1. Definition of Linear
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationArithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
More informationProblem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationLecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
More informationMATH1231 Algebra, 2015 Chapter 7: Linear maps
MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter
More information9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
More information( ) FACTORING. x In this polynomial the only variable in common to all is x.
FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More informationMAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationDot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
More informationOrthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationChapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6
Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
More informationSection 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
More informationCONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
More informationTheory of Matrices. Chapter 5
Chapter 5 Theory of Matrices As before, F is a field We use F[x] to represent the set of all polynomials of x with coefficients in F We use M m,n (F) and M m,n (F[x]) to denoted the set of m by n matrices
More informationis in plane V. However, it may be more convenient to introduce a plane coordinate system in V.
.4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a twodimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5
More informationLecture 2: August 29. Linear Programming (part I)
10725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.
More informationKevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm
MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following
More informationdiscuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationLecture L3  Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3  Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
More informationMath 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
More informationJUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More information8. Linear leastsquares
8. Linear leastsquares EE13 (Fall 21112) definition examples and applications solution of a leastsquares problem, normal equations 81 Definition overdetermined linear equations if b range(a), cannot
More informationMatrices and Linear Algebra
Chapter 2 Matrices and Linear Algebra 2. Basics Definition 2... A matrix is an m n array of scalars from a given field F. The individual values in the matrix are called entries. Examples. 2 3 A = 2 4 2
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
More informationFactoring Cubic Polynomials
Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than
More informationMathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More informationGENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
More information3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.
Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R
More informationMathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationApplications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
More informationQuantum Physics II (8.05) Fall 2013 Assignment 4
Quantum Physics II (8.05) Fall 2013 Assignment 4 Massachusetts Institute of Technology Physics Department Due October 4, 2013 September 27, 2013 3:00 pm Problem Set 4 1. Identitites for commutators (Based
More informationx1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
More informationLinear Codes. Chapter 3. 3.1 Basics
Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length
More informationE3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
More informationk, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
More informationSection 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.
. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and
More informationIRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible
More informationThe last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving NonConditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
More informationLines in higgledypiggledy position
Lines in higgledypiggledy position arxiv:1402.4028v1 [math.co] 17 Feb 2014 Szabolcs L. Fancsali MTAELTE Geometric and Algebraic Combinatorics Research Group Péter Sziklai MTAELTE Geometric and Algebraic
More informationCITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
More informationNotes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationLecture notes on linear algebra
Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra
More informationLinear Algebra: Vectors
A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector
More informationRESULTANT AND DISCRIMINANT OF POLYNOMIALS
RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More information3 1. Note that all cubes solve it; therefore, there are no more
Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if
More informationLinear Algebra: Determinants, Inverses, Rank
D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of
More informationFactorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
More information12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
More informationRINGS WITH A POLYNOMIAL IDENTITY
RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in
More information1 Symmetries of regular polyhedra
1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an
More informationOrthogonal Projections and Orthonormal Bases
CS 3, HANDOUT A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More information4: SINGLEPERIOD MARKET MODELS
4: SINGLEPERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: SinglePeriod Market
More informationRecall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the ndimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
More informationMinimally Infeasible Set Partitioning Problems with Balanced Constraints
Minimally Infeasible Set Partitioning Problems with alanced Constraints Michele Conforti, Marco Di Summa, Giacomo Zambelli January, 2005 Revised February, 2006 Abstract We study properties of systems of
More informationBX in ( u, v) basis in two ways. On the one hand, AN = u+
1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More information4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
More informationDEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
More informationBILINEAR FORMS KEITH CONRAD
BILINEAR FORMS KEITH CONRAD The geometry of R n is controlled algebraically by the dot product. We will abstract the dot product on R n to a bilinear form on a vector space and study algebraic and geometric
More information0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup
456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),
More informationIntroduction to Algebraic Coding Theory
Introduction to Algebraic Coding Theory Supplementary material for Math 336 Cornell University Sarah A. Spence Contents 1 Introduction 1 2 Basics 2 2.1 Important code parameters..................... 4
More informationNotes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
More informationTHE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING
THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The BlackScholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More informationNonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
More informationChapter 2: Systems of Linear Equations and Matrices:
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
More information