Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Size: px
Start display at page:

Download "Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors"

Transcription

1 Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col j (A) =. Rn. The ij entry a ij is the number in row i, column j. If [a ij ] is n m and B = [b ij ] is m k, then the product matrix AB is defined by the formula ij entry of AB = m a il b lj = a i b j +a i b j + +a im b mj = row i (A), col j (B). l= Note that the number m of columns of A must equal the number of rows of B, otherwise, the product AB is not defined. The inner dimensions must match. The product then has the outer dimensions. Mnemonic : (n m)(m k) = n k. For example, we can multiply our n m matrix A times an m matrix (which is a vector in R m ), and we get an n matrix (which is a vector in R n ). In other words, A is a function A : R m R n which has the linearity property: A(su + tv) = sau + tav, for all u, v in R m and s, t in R. Any linear function from R m to R n is multiplication by some matrix A.

2 If u j = col j (A), and x = (x,..., x m ), then Ax = x u + + x m u m R n. In particular, if e j is the vector with in the j th spot and zeros in all the other spots, then we have the familiar fact that the columns of A are given by Ae j = col j (A). () As before, the kernel of A is ker {x R m : Ax = 0} R m. If n =, then [ a a a m ] and ker A is the hyperplane a x + a x + + a m x m = 0. The kernel of a general n m matrix A is the intersection of the row hyperplanes The image of A is a i x + a i x + + a im x m = 0, i =,,..., n. im {Ax R n : x R m } R n. That is, im A consists of the vectors in R n that come from R m via A. From equation (), it follows that im A is the span of the columns of A. The kernel and image are related to each other by the Kernel-Image Theorem: For any n m matrix A, we have dim ker A + dim im m. For small n, m we have an ad hoc understanding of dimension. The general definition of dimension will be given in the next chapter. Intuitively, you can think of A as a messenger, carrying information. In this imaginary viewpoint, the kernel of A is the information lost by A and im A is the information retained by A. The starting-place R m is the total information. Then the Kernel-Image Theorem says: Information lost + information retained = total information.

3 Example : Here A : R R 3, sending e u = (, 3, 5), e v = (, 4, 6), and A sends a general vector (x, y) R to the linear combination (x, y) x u + x v. Thus, A is an embedding of a plane in R 3, namely the plane spanned by u, v. Recall that we can find the equation of this plane, take the cross product u v = (, 4, ), which we can scale to (,, ). Thus the equation of the plane is x y + z = 0. This plane is called the image of A. In general, the image of a matrix A : R m R n is the set of all vectors in R n of the form Au, for some u R m. Example : Here we don t get a plane because the columns are proportional. Instead, every vector of the form Au is a scalar multiple of u = (,, 3), so the image is the line Ru. In this case, A is squashing R into a line in R 3. Example 3: [ 0 ] sends e e, e e, e 3 0. An arbitrary vector u = (x, y, z) R 3 is sent by A to Au = (x, y). Every vector in R 3 is squashed vertically onto the floor, which is R. The image of A is the whole R. In particular, the cube whose vertices are the vectors with entries 0, is squashed straight down into the square in R whose vertices have entries 0,. 3

4 Example 4: [ 0 ] x 0 y For some choice of (x, y). This sends the 0, cube to an image of the cube in R that can be seen by Miserable -Dimensional Creatures. For example, A sends (, 0, ) to the vector (, 0) + (x, y), and the edge from (, 0, 0) to (, 0, ) to the line segment from (, 0) to (, 0) + (x, y). As the MDC varies (x, y), it gets different views of the cube, but with the angles deformed. The same thing happens when we try to draw a cube on paper. The price of cramming a 3d object into d is loss of information, in this case the angles and relative lengths of the sides. But we can at least see the relation between the vertices and edges and faces. Exercise 9. Compute the product, if can be computed 0 [ ] 0 (a) 3 0 (b) [ ] (c) Exercise 9. Let [a ij ] be an arbitrary n n matrix, and let D be a diagonal matrix d d 0 D = d n a) What are the ij entries of DA and AD? b) Suppose the d i s are distinct, and that AD = DA. What can you say about A? Exercise 9.3 MDCs, hence M3DCs like us, can see images of the hypercube in R 4, by using a matrix A : R 4 R. First of all, the hypercube has 6 corners (x, x, x 3, x 4 ), x i = 0 or. Two corners have an edge between them if they differ in only one component. For example, there is an edge between (0) and (00), but no edge between (0) and (0). a) Choose two random vectors u = (u, u ) and v = (v, v ) in R, and let [ ] 0 u v. 0 u v 4

5 (To get a good view, make sure no u i or v i is 0 or.) b) Plot the image under A of the 6 corners of the hypercube. You will plot 6 points in the plane R, but label them by the coordinates of the corresponding points in R 4, to keep track of them. For example, the corner (00) goes via A to (0, ) + (v, v ) = (v, + v ). Label this point by (00). c) Connect pairs of your 6 points in R by line segments if their 4-tuple labels differ in only one component. d) Behold the hypercube! 5

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

More Linear Algebra Study Problems

More Linear Algebra Study Problems More Linear Algebra Study Problems The final exam will cover chapters -3 except chapter. About half of the exam will cover the material up to chapter 8 and half will cover the material in chapters 9-3.

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

SOLUTIONS TO PROBLEM SET 6

SOLUTIONS TO PROBLEM SET 6 SOLUTIONS TO PROBLEM SET 6 18.6 SPRING 16 Note the difference of conventions: these solutions adopt that the characteristic polynomial of a matrix A is det A xi while the lectures adopt the convention

More information

Rank. Rank. Definition. The set of all linear combination of the row vectors of a matrix A is called the row space of A and is denoted by Row A

Rank. Rank. Definition. The set of all linear combination of the row vectors of a matrix A is called the row space of A and is denoted by Row A Rank Rank he rank of a matrix is the maximum number of independent rows (or the maximum number of independent columns) Definition he set of all linear combination of the row vectors of a matrix A is called

More information

Orthogonal Transformations Math 217 Professor Karen Smith

Orthogonal Transformations Math 217 Professor Karen Smith Definition: A linear transformation R n Theorem: If R n Orthogonal Transformations Math 217 Professor Karen Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

More information

Vectors. Arrows that have the same direction and length represent the same vector.

Vectors. Arrows that have the same direction and length represent the same vector. Part 1. 1 Part 1. Vectors A vector in the plane is a quantity that has both a magnitude and a direction. We can represent it by an arrow. Arrows that have the same direction and length represent the same

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 3 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 3 1 / 12 Vector product and volumes Theorem. For three 3D vectors u, v, and w,

More information

YORK UNIVERSITY Faculty of Science and Engineering MATH M Test #2 Solutions

YORK UNIVERSITY Faculty of Science and Engineering MATH M Test #2 Solutions YORK UNIVERSITY Faculty of Science and Engineering MATH 2022 3.00 M Test #2 Solutions 1. (10 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this question each

More information

1 Linear Transformations

1 Linear Transformations 1 Linear Transformations We will study mainly finite-dimensional vector spaces over an arbitrary field F ie vector spaces with a basis (Recall that the dimension of a vector space V (dim V ) is the number

More information

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

More information

RANK AND NULLITY. x 1. x m

RANK AND NULLITY. x 1. x m RANK AND NULLITY. The row and column spaces Let A be an m n matrix. Then A has n columns, each of which is a vector in R m. The linear span of the columns is a subspace of R n. It s called the column space

More information

Vector and Matrix Introduction

Vector and Matrix Introduction Vector and Matrix Introduction June 13, 2011 1 Vectors A scalar is a magnitude, or just a number An element of R is a scalar Until this point, most variables you have used denoted scalars Quantities measured

More information

Linear Algebra and Matrices

Linear Algebra and Matrices LECTURE Linear Algebra and Matrices Before embarking on a study of systems of differential equations we will first review, very quickly, some fundamental objects and operations in linear algebra.. Matrices

More information

Math 215 HW #6 Solutions

Math 215 HW #6 Solutions Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Lecture # 2 - Matrix Algebra

Lecture # 2 - Matrix Algebra Lecture # - Matrix Algebra Consider our simple macro model Y = C + I + G C = a + by Y C = I + G by + C = a This is an example of system of linear equations and variables In general, a system of x: a 11

More information

Matrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: x n.

Matrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: x n. X. LINEAR ALGEBRA: THE BASICS OF MATRICES Matrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: y = a 1 + a 2 + a 3

More information

Review: Vector space

Review: Vector space Math 2F Linear Algebra Lecture 13 1 Basis and dimensions Slide 1 Review: Subspace of a vector space. (Sec. 4.1) Linear combinations, l.d., l.i. vectors. (Sec. 4.3) Dimension and Base of a vector space.

More information

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 11 Examples of matrices Definition: A matrix is a rectangular array of numbers and/or variables For instance 4 2 0 3 1 A 5 12 07 x 3 π 3 4 6 27 is a matrix with 3 rows and

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Introduction to the Cartesian Plane

Introduction to the Cartesian Plane Worksheet.9 Introduction to the Cartesian Plane Section 1 The Cartesian Plane In worksheet.4 we discussed inequalities on the number line. This is a tpe of graph in one dimension. For man maths problems,

More information

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

More information

Vector Spaces and Linear Transformations

Vector Spaces and Linear Transformations Vector Spaces and Linear Transformations Beifang Chen Fall 6 Vector spaces A vector space is a nonempty set V whose objects are called vectors equipped with two operations called addition and scalar multiplication:

More information

Outline. Points in space

Outline. Points in space Outline Matrix Calculations: Vector Spaces and Linear Maps B Jacobs Institute for Computing and Information Sciences Digital Security Version: spring 03 B Jacobs Version: spring 03 Matrix Calculations

More information

We thus get the natural generalization of the distance formula to three dimensions: 1

We thus get the natural generalization of the distance formula to three dimensions: 1 Three Dimensional Euclidean Space We set up a coordinate system in space (three dimensional Euclidean space) by adding third axis perpendicular to the two axes in the plane (two dimensional Euclidean space).

More information

MATH 304 Linear Algebra Lecture 11: Basis and dimension.

MATH 304 Linear Algebra Lecture 11: Basis and dimension. MATH 304 Linear Algebra Lecture 11: Basis and dimension. Linear independence Definition. Let V be a vector space. Vectors v 1,v 2,...,v k V are called linearly dependent if they satisfy a relation r 1

More information

Linear Combinations and Span

Linear Combinations and Span Linear Combinations and Span For example, a linear combination of three vectors u, and w would have the form au + bv + cw, where a, b, and c are scalars Given two vectors v and w, a linear combination

More information

(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible.

(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. 1. or : (a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. (c) A linear transformation from R n to R n is one-to-one

More information

Vector algebra Christian Miller CS Fall 2011

Vector algebra Christian Miller CS Fall 2011 Vector algebra Christian Miller CS 354 - Fall 2011 Vector algebra A system commonly used to describe space Vectors, linear operators, tensors, etc. Used to build classical physics and the vast majority

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

SUBSPACES. Chapter Introduction. 3.2 Subspaces of F n

SUBSPACES. Chapter Introduction. 3.2 Subspaces of F n Chapter 3 SUBSPACES 3. Introduction Throughout this chapter, we will be studying F n, the set of all n dimensional column vectors with components from a field F. We continue our study of matrices by considering

More information

9 Matrices, determinants, inverse matrix, Cramer s Rule

9 Matrices, determinants, inverse matrix, Cramer s Rule AAC - Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:

More information

1.3. DOT PRODUCT If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 29 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra Math 4377/6308 Advanced Linear Algebra 2.2 Properties of Linear Transformations, Matrices. Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377 Jiwen

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Linear Algebra A Summary

Linear Algebra A Summary Linear Algebra A Summary Definition: A real vector space is a set V that is provided with an addition and a multiplication such that (a) u V and v V u + v V, (1) u + v = v + u for all u V en v V, (2) u

More information

Linear algebra vectors, matrices, determinants

Linear algebra vectors, matrices, determinants Linear algebra vectors, matrices, determinants Mathematics FRDIS MENDELU Simona Fišnarová Brno 2012 Vectors in R n Definition (Vectors in R n ) By R n we denote the set of all ordered n-tuples of real

More information

10.1 Systems of Linear Equations: Substitution and Elimination

10.1 Systems of Linear Equations: Substitution and Elimination 10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations? - It is the set of all ordered pairs (x, y) that satisfy the two equations. You

More information

1.3 Matrices and Matrix Operations

1.3 Matrices and Matrix Operations 0 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Matrices and Matrix Operations.. De nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.8 INTRODUCTION TO LINEAR TRANSFORMATIONS LINEAR TRANSFORMATIONS A transformation (or function or mapping) T from R n to R m is a rule that assigns to each vector

More information

Honors Math A Notes. Robert Friedman

Honors Math A Notes. Robert Friedman Honors Math A Notes Robert Friedman December 10, 2010 Contents 1 Vectors 1 2 Vectors II 14 2.1 Vectors in n-dimensional space................. 14 2.2 Abstract vector spaces...................... 15 2.3

More information

Linear Algebra and Geometry

Linear Algebra and Geometry Linear Algebra and Geometry We construct a dictionary between some geometrical notions and some notions from linear algebra Adding, Scalar Multiplication An element of (x, y R2 corresponds to an arrow

More information

A Linear Algebra Primer James Baugh

A Linear Algebra Primer James Baugh Introduction to Vectors and Matrices Vectors and Vector Spaces Vectors are elements of a vector space which is a set of mathematical objects which can be added and multiplied by numbers (scalars) subject

More information

MATH 304 Linear Algebra Lecture 9: Properties of determinants.

MATH 304 Linear Algebra Lecture 9: Properties of determinants. MATH 304 Linear Algebra Lecture 9: Properties of determinants. Determinants Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij ) 1 i,j n is denoted

More information

γ ), which is equal to rank([t ]γ β β ) by definition. Let T (x) R(T ), for some x V. Let f : R(T ) R(L [T ]

γ ), which is equal to rank([t ]γ β β ) by definition. Let T (x) R(T ), for some x V. Let f : R(T ) R(L [T ] Chapter 3 Defn. (p. 52) If A M m n (F ), we define the rank of A, denoted rank(a), to be the rank of the linear transformation L A : F n F m. Fact 0. Let V be a vector space of dimension n over F with

More information

Math 215 Exam #1 Solutions

Math 215 Exam #1 Solutions Math 25 Exam # Solutions. (8 points) For each of the following statements, say whether it is true or false. Please write True or False and not just T or F (since these letters are easily mistaken for each

More information

4 Determinant. Properties

4 Determinant. Properties 4 Determinant. Properties Let me start with a system of two linear equation: a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2. I multiply the first equation by a 22 second by a 12 and subtract the second

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.4 The Matrix Equation Ax = b Math 2331 Linear Algebra 1.4 The Matrix Equation Ax = b Simon Stolarczyk Department of Mathematics, University of Houston spstolar@math.uh.edu math.uh.edu/~spstolar/math2331

More information

To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors.

To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors. Review Matrices and Vectors Objective To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors. Some Definitions An m n (read "m by n")

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Matrix Inverses. Since the linear system. can be written as. where. ,, and,

Matrix Inverses. Since the linear system. can be written as. where. ,, and, Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Linear transformations and determinants. Matrix multiplication as a linear transformation

Linear transformations and determinants. Matrix multiplication as a linear transformation Linear transformations and determinants Math 4, Introduction to Linear Algebra Monday, February 3, 22 Matrix multiplication as a linear transformation Primary example of a linear transformation = matrix

More information

MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants.

MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. Transpose of a matrix Definition. Given a matrix A, the transpose of A, denoted A T, is the matrix whose rows are columns of A (and

More information

2.1: MATRIX OPERATIONS

2.1: MATRIX OPERATIONS .: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

MA 52 May 9, Final Review

MA 52 May 9, Final Review MA 5 May 9, 6 Final Review This packet contains review problems for the whole course, including all the problems from the previous reviews. We also suggest below problems from the textbook for chapters

More information

Math 215 HW #7 Solutions

Math 215 HW #7 Solutions Math 5 HW #7 Solutions Problem 8 If P is the projection matrix onto a k-dimensional subspace S of the whole space R n, what is the column space of P and what is its rank? Answer: The column space of P

More information

Chapter 4. Systems of Linear Equations; Matrices. Identity Matrix for Multiplication. Section 5 Inverse of a Square Matrix

Chapter 4. Systems of Linear Equations; Matrices. Identity Matrix for Multiplication. Section 5 Inverse of a Square Matrix Chapter 4 Systems of Linear Equations; Matrices Section 5 Inverse of a Square Matrix Identity Matrix for Multiplication 1 is called the multiplicative identity for real numbers since a(1) = (1)a = a For

More information

LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS

LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS CHARLES REZK Real inner product. Let V be a vector space over R. A (real) inner product is a function, : V V R such that x, y = y, x for all

More information

Matrix Groups. Matrix Groups over Fields

Matrix Groups. Matrix Groups over Fields Matrix Groups Among the most important examples of groups are groups of matrices The textbook briefly discusses groups of matrices in Chapter 2 and then largely forgets about them These notes remedy this

More information

CHUNG-ANG UNIVERSITY Linear Algebra Spring Solutions to Problem Set #4

CHUNG-ANG UNIVERSITY Linear Algebra Spring Solutions to Problem Set #4 CHUNG-ANG UNIVERSITY Linear Algebra Spring 2014 s to Problem Set #4 Practice Problems Problem 4.1 For what values of α, if any, is the vector v T = [8α, 2] parallel to the vector u T = [4, 1]? α = 1 Problem

More information

2 - Solving Linear Equations

2 - Solving Linear Equations 2 - Solving Linear Equations Linear algebra developed from studying methods for solving systems of linear equations. We say an equation in the variables x 1, x 2, x 3,..., x n is linear if it consists

More information

Introduction to Financial Econometrics Appendix Matrix Algebra Review

Introduction to Financial Econometrics Appendix Matrix Algebra Review Introduction to Financial Econometrics Appendix Matrix Algebra Review Eric Zivot Department of Economics University of Washington January, 2000 This version: February 6, 200 Matrix Algebra Review A matrix

More information

Math 22 Final Exam 1

Math 22 Final Exam 1 Math 22 Final Exam. (36 points) Determine if the following statements are true or false. In each case give either a short justification or example (as appropriate) to justify your conclusion. T F (a) If

More information

c 1 v 1 + c 2 v c k v k

c 1 v 1 + c 2 v c k v k Definition: A vector space V is a non-empty set of objects, called vectors, on which the operations addition and scalar multiplication have been defined. The operations are subject to ten axioms: For any

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

1. THE REAL PROJECTIVE PLANE

1. THE REAL PROJECTIVE PLANE 1. THE REAL PROJECTIVE PLANE 1.1 The Real Affine Plane The Euclidean Plane involves a lot of things that can be measured, such as distances, angles and areas. This is referred to as the metric structure

More information

Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:

Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible

More information

2.5 Spaces of a Matrix and Dimension

2.5 Spaces of a Matrix and Dimension 38 CHAPTER. MORE LINEAR ALGEBRA.5 Spaces of a Matrix and Dimension MATH 94 SPRING 98 PRELIM # 3.5. a) Let C[, ] denote the space of continuous function defined on the interval [, ] (i.e. f(x) is a member

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

More information

We know a formula for and some properties of the determinant. Now we see how the determinant can be used.

We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

1 Review of two equations in two unknowns

1 Review of two equations in two unknowns Contents 1 Review of two equations in two unknowns 1.1 The "standard" method for finding the solution 1.2 The geometric method of finding the solution 2 Some equations for which the "standard" method doesn't

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations 01 Definitions Recall that if A R m n and B R m p, then the augmented matrix [A B] R m n+p is the matrix [A B], that is the matrix whose first n columns are the columns of A,

More information

Properties of real symmetric matrices

Properties of real symmetric matrices Symmetric matrices Properties of real symmetric matrices Recall that a matrix A R n n is symmetric if A T = A. For real symmetric matrices we have the following two crucial properties: All eigenvalues

More information

Orthogonal matrices. Definition: A square matrix E such that E t = E 1 is called an orthogonal matrix. Example:

Orthogonal matrices. Definition: A square matrix E such that E t = E 1 is called an orthogonal matrix. Example: Orthogonal matrices Suppose we take an orthonormal (on) basis {e, e,, e n } of R n and form the n n matrix E = (e e n ) Then E t E = e t e t (e e n ) = I n, e t n because (E t E) ij = e t ie j = e i e

More information

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

Coordinates and Change of Basis

Coordinates and Change of Basis Coordinates and Change of Basis K. Behrend February 9, 008 Abstract We discuss linear changes of coordinates. Contents Introduction Vectors 4. How to convert between [ a] S and [ a] B.................

More information

MATH 2030: ASSIGNMENT 2

MATH 2030: ASSIGNMENT 2 MATH 2030: ASSIGNMENT 2 Intro to Linear Systems Q1: pg 69, q 2,4,6 Determine which equations are linear equations in the variables x, y and z, if not, explain why A1 (1) x 2 + y 2 + z 2 = 1 (2) 2x xy 5z

More information

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc. 2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true

More information

Vector Models and Vector Spaces

Vector Models and Vector Spaces Vector Models and Vector Spaces Fixed Vector Model The Mailbox Analogy Free Vector Model Free Vector Addition Free Vector Scalar Multiplication Physics Vector Model Advantages of the Physics Vector Model

More information

We have the following important fact whose proof we leave as an exercise for the reader.

We have the following important fact whose proof we leave as an exercise for the reader. LP Geometry We now briefly turn to a discussion of LP geometry extending the geometric ideas developed in Section for dimensional LPs to n dimensions. In this regard, the key geometric idea is the notion

More information

Notes on Matrix Multiplication and the Transitive Closure

Notes on Matrix Multiplication and the Transitive Closure ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Things You Should Know (from Linear Algebra)

Things You Should Know (from Linear Algebra) Things You Should Know (from Linear Algebra) Jonathan Harel April 11, 2009 Contents 1 Spaces 1 2 Eigenvalues and Eigenvectors 1 2.1 Diagonalization............................ 2 3 Singular Value Decomposition

More information

Mathematics IMA ( 1) ( 2)

Mathematics IMA ( 1) ( 2) Maths Learning Service: Revision Matrices Mathematics IA Mathematics IMA A matrix is an array of numbers, written within a set of pattern of rows and columns. For example: 4 5 6, 0 0 0, brackets, and arranged

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.4 The Matrix Equation Ax = b Math 2331 Linear Algebra 1.4 The Matrix Equation Ax = b Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen

More information

(a) Compute the dimension of the kernel of T and a basis for the kernel. The kernel of T is the nullspace of A, so we row reduce A to find

(a) Compute the dimension of the kernel of T and a basis for the kernel. The kernel of T is the nullspace of A, so we row reduce A to find Scores Name, Section # #2 #3 #4 #5 #6 #7 #8 Midterm 2 Math 27-W, Linear Algebra Directions. You have 0 minutes to complete the following 8 problems. A complete answer will always include some kind of work

More information

Linear Algebra II. Notes 1 September a(b + c) = ab + ac

Linear Algebra II. Notes 1 September a(b + c) = ab + ac MTH6140 Linear Algebra II Notes 1 September 2010 1 Vector spaces This course is about linear maps and bilinear forms on vector spaces, how we represent them by matrices, how we manipulate them, and what

More information

Linear Algebra PRACTICE EXAMINATION SOLUTIONS

Linear Algebra PRACTICE EXAMINATION SOLUTIONS Linear Algebra 2S2 PRACTICE EXAMINATION SOLUTIONS 1. Find a basis for the row space, the column space, and the nullspace of the following matrix A. Find rank A and nullity A. Verify that every vector in

More information

In this appendix we list some of the important facts about matrix operations and solutions to systems of linear equations.

In this appendix we list some of the important facts about matrix operations and solutions to systems of linear equations. Appendix A Matrix Operations In this appendix we list some of the important facts about matrix operations and solutions to systems of linear equations. A.1. Matrix Multiplication The product of a row a

More information

Math 24 Winter 2010 Wednesday, February 24

Math 24 Winter 2010 Wednesday, February 24 (.) TRUE or FALSE? Math 4 Winter Wednesday, February 4 (a.) Every linear operator on an n-dimensional vector space has n distinct eigenvalues. FALSE. There are linear operators with no eigenvalues, and

More information

18.03 LA.2: Matrix multiplication, rank, solving linear systems

18.03 LA.2: Matrix multiplication, rank, solving linear systems 8.03 LA.2: Matrix multiplication, rank, solving linear systems [] Matrix Vector Multiplication Ax [2] When is Ax = b Solvable? [3] Reduced Row Echelon Form and Rank [4] Matrix Multiplication [5] Key Connection

More information