THE ABRACADABRA PROBLEM


 Bernadette Mathews
 2 years ago
 Views:
Transcription
1 THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected time for the first appearace of the word ABRACADABRA is We adopt the covetios N := {, 2, 3,...} ad N 0 := N {0}.. Formulatio of the problem Let U i ) i N deote radom letters draw idepedetly ad uiformly from the Eglish alphabet. More precisely, we assume that U i ) i N are idepedet ad idetically distributed radom variables, uiformly distributed i the set E := {A, B, C, D,..., X, Y, Z}, defied o some probability space Ω, A, P). For m, N with m, we use U [m,] as a shortcut for the vector U m, U m+,..., U ). Defie τ as the radom time i which the word ABRACADABRA first appears: τ := mi{ N, : U [ 0,] = ABRACADABRA},.) with the covetio mi := +. Our goal is to prove the followig result. Theorem. E[τ] = Strategy The proof is based o martigales. Let F ) N0 be the atural filtratio of U i ) i N, i.e., F 0 := {, Ω} ad F := σu,..., U ). We are goig to prove the followig results. Propositio 2. τ is a stoppig time with E[τ] <. Propositio 3. There exists a martigale M = M ) N0 ) M 0 = 0 ad M τ = τ; such that: 2) M has bouded icremets: C 0, ) such that M + M C, for all N 0. Let us recall a special case of) Doob s optioal samplig theorem, cf. [Wil9, 0.0]. Theorem 4. If M = M ) N0 is a martigale with bouded icremets ad τ is a stoppig time with fiite mea, the E[M τ ] = E[M 0 ]. Combiig this with Propositios 2 ad 3, oe obtais immediately the proof of Theorem. Date: April 0, 205.
2 2 FRANCESCO CARAVENNA 3. Proof of Propositio 2 Recall that τ is a stoppig time if ad oly if {τ } F for every N 0. Note that {τ } = if 0, while for {τ } = {U [i 0,i] = ABRACADABRA}, i= which shows that the evet {τ } is i F it is expressed as a fuctio of U, U 2,..., U ). To prove that E[τ] <, we argue as i [Wil9, 0.; Exercise E0.5]. Lemma 5. For a positive radom variable τ, i order to have E[τ] < it is sufficiet that N N, ε > 0 : Pτ + N τ > ) ε N 0. 3.) This result is proved i Appedix A below. I order to apply it, let A be the evet that the word ABRACADABRA appears ot ecessarily for the first time!) at time + : A := {U [+,+] = ABRACADABRA}. By assumptio U i are idepedet ad uiformly chose letters, hece PA ) = p > 0, where p := E = 26. Sice A {τ + }, we have Pτ + τ > ) PA τ > ) for every N. However the evets A ad {τ > } are idepedet A is a fuctio of U [+,+], while {τ > } = {τ } c F is a fuctio of U [,] ), hece PA τ > ) = PA ). Thus Pτ + τ > ) PA ) = p, i.e. relatio 3.) holds with N = ad ε = p. It follows by Lemma 5 that E[τ] <. 4. Proof of Propositio 3 The required martigale M = M ) N0 will be costructed as the total et gai of a suitable family of gamblers, built as follows. At time 0 a first gambler eters the game, with a iitial capital of e. She bets o the evet that the first letter U is A the first letter of the word ABRACADABRA ). If she loses, her capital at time drops to 0e ad she stops playig i.e. her capital will stay 0e at all later times). O the other had, if she wis, her capital at time becomes 26e ad she goes o playig, bettig o the evet that the secod letter U 2 is B the secod letter of ABRACADABRA ). If she loses, her capital at time 2 is 0e ad she stops playig, while if she wis, her capital at time 2 equals 26) 2 e ad she goes o, bettig o the evet that the third letter U 3 is R the third letter of ABRACADABRA ), ad so o, util time. The gambler s capital at time is either 26) e, if the letters U [,] have formed exactly the word ABRACADABRA, or 0e otherwise. I ay case, the gambler stops playig after time, hece her capital will stay costat at all later times. Let us deote by x i be the ith letter of the word ABRACADABRA, for i so that x = A, x 2 = B, x 3 = R,..., x = A). The capital i e) of this first gambler at time is the give by the process K ) N0 defied as follows: if = 0 K := K 26 {U=x} if. K if 2
3 THE ABRACADABRA PROBLEM 3 Note that if K = 0, the K = 0 irrespectively of U, as described above.) Now a secod gambler arrives, playig the same game, but with oe time uit of delay. Her iitial capital stays e at time 0 ad at time, the she bets o the evet that U 2 = x = A: if she loses, her capital at time 2 is 0e ad she stops playig, while if she wis, her capital at time 2 is 26e ad she goes o playig, bettig o the evet that U 3 = x 2 = B, etc. At time 2, the secod gambler s capital will be either 26) e or 0e, accordig to whether the letters U [2,2] have formed precisely the word ABRACADABRA or ot. At this poit she stops playig ad her capital stays costat at all later times. Geeralizig the picture, imagie that for each j N there is a jth gambler with a iitial capital of e, who starts playig just before time j, bettig o the evet that U j = x, the if she wis) o U j+ = x 2,..., ad fially if she has wo all the previous bets) o U j+0 = x. After time j + 0 the gambler stops playig ad her capital stays costat. Deotig by K j) the capital i e) of the jth gambler at time, for N 0, we have if < j K j) := 26 {U =x j)+ } if j j ) j+0 if > j + 0 We ca fially defie the process we are lookig for, that will be show to be a martigale: ) M 0 := 0, M := K j) 0 ) = K j). 4.2) Thus M is the sum of the et gais equality i 4.2), recall that 0 = for all j N. 0 of the first gamblers at time. For the Lemma 6. For τ defied as i.), oe has M τ = 26) + 26) τ. Proof. We eed to evaluate M τ = τ Recall that K τ j) is the capital at time τ of the gambler who starts bettig just before time j. It suffices to show that K τ j) = 0 except for j {τ 0, τ 3, τ}, for which τ ) τ. K τ 0) τ = 26), K τ 3) τ = 26) 4, K τ) τ = 26. Sice the complete word ABRACADABRA appears at time τ, the gambler who started playig just before time τ 0 has a capital of 26), i.e. K τ τ 0) = 26). The gambler who started playig just before time τ 3 has a capital K τ τ 3) = 26) 4, because the last four letters of ABRACADABRA are ABRA ad coicide with the first four letters of that word. Aalogously, sice the last letter A is the same as the first letter, the gambler who started playig just before time τ has wo his first bet ad his capital is K τ τ) = 26. Fially, for all j {τ 0, τ 3, τ} all gamblers have lost at least oe bet ad their capital is K τ j) = 0, because τ is the first time the word ABRACADABRA appears. We could have equivaletly summed the et gais of all gamblers, defiig M := Kj) because = 0 for j >. 0 ),
4 4 FRANCESCO CARAVENNA To complete the proof of Propositio 3, it remais to show that M = M ) N0 is a martigale with bouded icremets. We start lookig at the capital processes. Lemma 7. For every fixed j N, the capital process ) N0 is a martigale. Proof. We argue for fixed j N. Plaily, 0 = is F 0 measurable. By 4.), K j) is a measurable fuctio of ad U, assumig iductively that is F measurable, it follows that Sice is F measurable. This shows that K j) ) N0 is a adapted process. by 4.), it follows iductively that Kj) 26 for all N, 26 are bouded ad, i particular, itegrable). Fially, the relatio E[K j) F ] = is trivially satisfied if < j or if > j + 0, while for {j,..., j + 0}, agai by 4.), hece the radom variables E[K j) F ] = E[ 26 {U =x j)+ } F ] = 26 PU = x j)+ ) =, because U is idepedet of F ad PU = a) = 26 for every a E. Lemma 8. The capital processes ) N0 have uiformly bouded icremets: 25, j, N. 4.3) Proof. Oe has K j) = 0 if < j or > j+0, by 4.), while for {j,..., j+0} Sice j =, relatio 4.3) follows. 26 {U =x j)+ } 25 Kj). We ca fially show that M is a martigale. Note that M is F measurable ad i L, for every N, because by 4.2) M is a fiite sum of K j), each of which is F measurable ad i L by Lemma 7. Furthermore, agai by 4.2), for all N we ca write E[M F ] = E[K j) F ] =. However for j = we have = K) = by defiitio, cf. 4.), hece E[M F ] = + = ) = M. This shows that M is a martigale. Fially, for all N M M = ) ) = K j) ), agai because for j = we have = K) =. Now observe that, agai by 4.), for j + oe has K j) = = Kj) j+0, hece M M = j= 0 K j) ) j= 0 25, havig applied 4.3). This shows that M has bouded icremets, completig the proof.
5 THE ABRACADABRA PROBLEM 5 The assumptios imply that Appedix A. Proof of Lemma 5 as we show below. We are goig to use the formula Pτ > ln) ε) l l N 0, A.) E[τ] = 0 Pτ > t) dt, A.2) valid for every radom variable τ takig values i [0, ]. Breakig up the itegral i the subitervals [ln, l + )N], with l N 0, sice Pτ > t) Pτ > ln) for t ln, we get E[τ] = l+)n Pτ > t) dt Pτ > ln) l N 0 l N 0 = ln N ε) = N ε <, l+)n ln dt l N 0 ε) l N havig applied the geometric series N 0 q = q. This shows that E[τ] <, as required. It remais to prove A.), which we do by iductio. For l = 0 there is othig to prove. For every l N 0, sice {τ > l + )N} {τ > ln}, we ca write Pτ > l + )N) = Pτ > l + )N, τ > ln) = Pτ > ln) Pτ > l + )N τ > ln). The iductio step yields Pτ > ln) ε)l, while assumptio 3.) gives Pτ > + N τ > ) ε), N. A.3) Choosig = ln yields Pτ > l + )N τ > ln) ε), which plugged ito A.3) yields Pτ > l + )N) ε) l+, as required. Refereces [Wil9] D. Williams 99), Probability with martigales, Cambridge Uiversity Press Dipartimeto di Matematica e Applicazioi, Uiversità degli Studi di MilaoBicocca, via Cozzi 55, 2025 Milao, Italy address: For every T [0, ] oe has T = T dt = 0 0 {T t} dt, hece τω) = 0 {τω)>t} dt for every radom variable τ takig values i [0, ]. Takig expectatios of both sides ad exchagig the expectatio with the itegral which is justified by FubiiToelli, thaks to positivity) oe obtais A.2).
MARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationx(x 1)(x 2)... (x k + 1) = [x] k n+m 1
1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationLecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationDistributions of Order Statistics
Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationAn example of nonquenched convergence in the conditional central limit theorem for partial sums of a linear process
A example of oqueched covergece i the coditioal cetral limit theorem for partial sums of a liear process Dalibor Volý ad Michael Woodroofe Abstract A causal liear processes X,X 0,X is costructed for which
More informationSequences II. Chapter 3. 3.1 Convergent Sequences
Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,
More informationTHIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK
THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More information. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible
More informationSection 1.6: Proof by Mathematical Induction
Sectio.6 Proof by Iductio Sectio.6: Proof by Mathematical Iductio Purpose of Sectio: To itroduce the Priciple of Mathematical Iductio, both weak ad the strog versios, ad show how certai types of theorems
More information1 Introduction to reducing variance in Monte Carlo simulations
Copyright c 007 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a uow mea µ = E(X) of a distributio by
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationTAYLOR SERIES, POWER SERIES
TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More information2. Degree Sequences. 2.1 Degree Sequences
2. Degree Sequeces The cocept of degrees i graphs has provided a framewor for the study of various structural properties of graphs ad has therefore attracted the attetio of may graph theorists. Here we
More informationThe Field Q of Rational Numbers
Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees
More informationTrading the randomness  Designing an optimal trading strategy under a drifted random walk price model
Tradig the radomess  Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationA RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY
J. Appl. Prob. 45, 060 070 2008 Prited i Eglad Applied Probability Trust 2008 A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY MARK BROWN, The City College of New York EROL A. PEKÖZ, Bosto Uiversity SHELDON
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More information2.7 Sequences, Sequences of Sets
2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For
More informationA sharp TrudingerMoser type inequality for unbounded domains in R n
A sharp TrudigerMoser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The TrudigerMoser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationOptimal Strategies from Random Walks
Optimal Strategies from Radom Walks Jacob Aberethy Divisio of Computer Sciece UC Berkeley jake@csberkeleyedu Mafred K Warmuth Departmet of Computer Sciece UC Sata Cruz mafred@cseucscedu Joel Yelli Divisio
More informationUniversal coding for classes of sources
Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationMath 113 HW #11 Solutions
Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate
More informationA ConstantFactor Approximation Algorithm for the Link Building Problem
A CostatFactor Approximatio Algorithm for the Lik Buildig Problem Marti Olse 1, Aastasios Viglas 2, ad Ilia Zvedeiouk 2 1 Ceter for Iovatio ad Busiess Developmet, Istitute of Busiess ad Techology, Aarhus
More informationA PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING
A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING MATTHEW ACTIPES Abstract. This paper begis by defiig a probability space ad establishig probability fuctios i this space over discrete radom variables.
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationNUMBERS COMMON TO TWO POLYGONAL SEQUENCES
NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC
TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationTHE UNLIKELY UNION OF PARTITIONS AND DIVISORS
THE UNLIKELY UNION OF PARTITIONS AND DIVISORS Abdulkadir Hasse, Thomas J. Osler, Mathematics Departmet ad Tirupathi R. Chadrupatla, Mechaical Egieerig Rowa Uiversity Glassboro, NJ 828 I the multiplicative
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationSolving DivideandConquer Recurrences
Solvig DivideadCoquer Recurreces Victor Adamchik A divideadcoquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationSequences and Series Using the TI89 Calculator
RIT Calculator Site Sequeces ad Series Usig the TI89 Calculator Norecursively Defied Sequeces A orecursively defied sequece is oe i which the formula for the terms of the sequece is give explicitly. For
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationAnalysis Notes (only a draft, and the first one!)
Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More informationDEFINITION OF INVERSE MATRIX
Lecture. Iverse matrix. To be read to the music of Back To You by Brya dams DEFINITION OF INVERSE TRIX Defiitio. Let is a square matrix. Some matrix B if it exists) is said to be iverse to if B B I where
More informationDiscrete Random Variables and Probability Distributions. Random Variables. Chapter 3 3.1
UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More informationDivide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015
CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a
More informationIrreducible polynomials with consecutive zero coefficients
Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationApproximating the Sum of a Convergent Series
Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece
More informationEntropy of bicapacities
Etropy of bicapacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uivates.fr JeaLuc Marichal Applied Mathematics
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationHeavy Traffic Analysis of a Simple Closed Loop Supply Chain
Heavy Traffic Aalysis of a Simple Closed Loop Supply Chai Arka Ghosh, Sarah M. Rya, Lizhi Wag, ad Aada Weerasighe April 8, 2 Abstract We cosider a closed loop supply chai where ew products are produced
More informationPlugin martingales for testing exchangeability online
Plugi martigales for testig exchageability olie Valetia Fedorova, Alex Gammerma, Ilia Nouretdiov, ad Vladimir Vovk Computer Learig Research Cetre Royal Holloway, Uiversity of Lodo, UK {valetia,ilia,alex,vovk}@cs.rhul.ac.uk
More informationOn the L p conjecture for locally compact groups
Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/0302376, ublished olie 2007080 DOI 0.007/s0003007993x Archiv der Mathematik O the L cojecture for locally comact
More informationNOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016
NOTES ON PROBBILITY Greg Lawler Last Updated: March 21, 2016 Overview This is a itroductio to the mathematical foudatios of probability theory. It is iteded as a supplemet or followup to a graduate course
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationTHE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE
THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe
More informationSUMS OF nth POWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION. N.A. Draim, Ventura, Calif., and Marjorie Bicknell Wilcox High School, Santa Clara, Calif.
SUMS OF th OWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION N.A. Draim, Vetura, Calif., ad Marjorie Bickell Wilcox High School, Sata Clara, Calif. The quadratic equatio whose roots a r e the sum or differece
More informationQuaderni di Dipartimento. Rate of Convergence of Predictive Distributions for Dependent Data. Patrizia Berti (Università di Modena e Reggio Emilia)
Quaderi di Dipartimeto Rate of Covergece of Predictive Distributios for Depedet Data Patrizia Berti Uiversità di Modea e Reggio Emilia Iree Crimaldi Uiversità di Bologa Luca Pratelli Accademia Navale di
More informationDesigning Incentives for Online Question and Answer Forums
Desigig Icetives for Olie Questio ad Aswer Forums Shaili Jai School of Egieerig ad Applied Scieces Harvard Uiversity Cambridge, MA 0238 USA shailij@eecs.harvard.edu Yilig Che School of Egieerig ad Applied
More information