Math 113 HW #11 Solutions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Math 113 HW #11 Solutions"

Transcription

1 Math 3 HW # Solutios (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate or a overestimate? Aswer: Sice [, 4] has legth 4, each of the four rectagles will have width 4/4 =, so the right edpoits are,, 3 ad 4. Thus, the heights of the four rectagles are f() = = f() =.44 f(3) = 3.73 f(4) = 4 = Sice each rectagle has width, the area of the first rectagle is =, the area of the secod is =, etc. Thus, we ca estimate the area uder the curve as Sice f(x) is a icreasig fuctio, this is a over-estimate of the actual area. (b) Repeat part (a) usig left edpoits.

2 Aswer: The edpoits of the four sub-itervals are the same, though ow we re iterested i the left edpoits, which are,,, ad 3. Thus, the heights of the four rectagles are f() = = f() = = f() =.44 f(3) = Thus, the area cotaied i these rectagles is , which is a uderestimate of the actual area. 8. Use Defiitio to fid a expressio for the area uder the graph of f(x) = l x x, 3 x as a it. Do ot evaluate the it. Aswer: Sice [3, ] has legth 3 = 7, if we break this iterval up ito subitervals of equal width, each will have width x = 7/. The the area uder the graph will be give by i= f(x i ) x i= l x i x i 7

3 for ay choice of sample poits x i, where x i is i the ith subiterval. Choosig, say, the right edpoit of each as the sample poit, we ca see that x i = 3 + i 7, so the above it becomes l ( 3 + i 7 ) i 7. i= Express the it as a defiite itegral o [, ]. i= cos x i x x i Aswer: This is simply the defiitio of the defiite itegral cos x x dx.. Use the form of the defiitio of the itegral give i Theorem 4 to evaluate the itegral 4 (x + x 5) dx. Aswer: Breakig the iterval [, 4] ito subitervals of equal width, each will be of width x = 4 = 3. Moreover, the right edpoit of the ith subiterval will be x i = + i 3. Therefore, the height of the ith rectagle will be (sice we re usig right edpoits), f(x i ) = x i + x i 5 ( = + i ) 3 ( + + i 3 ) 5 = + i + i i 5 = i 9 + i. 3

4 Therefore, 4 (x + x 5) dx f(x i ) x i= i= ( i 9 ) 3 + i i= [ i i 3 ] [ i i= i= [ 7 3 i + 3 i= i 3 i= i i= ] ] i= Therefore, sice = i= i = i= i = i= ( + ) ( + )( + ), we see that the above it is equal to [ 7 ( + )( + ) ( + ) ] [ = = Therefore, 4 =. (x + x 5) dx =. ] The graph of g cosists of two straight lies ad a semicircle. Use it to evaluate each itegral (a) g(x)dx Aswer: Sice o [, ] the graph of g(x) is just a straight lie of slope comig dow from y = 4 to y =, the area is just the area of the triagle 4 = 4. Sice this area is above the x-axis, defiite itegral equals the area, so g(x)dx = 4. 4

5 (b) g(x)dx Aswer: O [, ] the graph of g(x) is a semi-circle of radius lyig below the x-axis. Its area is () =. Sice it lies below the axis, the itegral is egative, so (c) g(x)dx Aswer: Sice g(x)dx = g(x)dx + g(x)dx =. g(x)dx + g(x)dx = 4 + g(x)dx, we just eed to determie g(x)dx. Sice this is a straight lie of slope goig up from the x-axis (at x = ) to y = (at x = 7), it describes a triagle of area =. Sice this area lies above the axis, g(x)dx = /, so g(x)dx = Use the result of Example 3 to compute g(x)dx = 4 + = (e x )dx. Aswer: Example 3 says that ex dx = e 3 e, we eed to use the properties of the defiite itegral to express the give itegral i terms of ex dx. Now, by Property 4, I tur, by Property, By Property 3, Puttig these together, the, (e x )dx = e x dx = (3 ) =. e x dx = (e x )dx = e x dx. Pluggig i the value we kow for ex dx, we see that dx. e x dx. (e x )dx = (e 3 e) = (e 3 e )

6 Use Part of the Fudametal Theorem of Calculus to fid the derivative of the fuctio h(x) = x + r 3 dr. Aswer: Make the chage of variables u = x. The ( ) h (x) = d x + r dx 3 dr = d dx By the Chai Rule, this is equal to d du ( u ( u + r 3 dr) du dx. ) + r 3 dr. Usig the Fudametal Theorem ad the fact that du dx = x, we see that. Evaluate the itegral h (x) = + u 3 (x) = + (x ) 3 (x) = x + x. cos θ dθ. Aswer: Sice si θ is a atiderivative of cos θ, the secod part of the Fudametal Theorem says that [ ] cos θ dθ = si θ = si si = =. 3. Evaluate the itegral Aswer: Sice we see that is a atiderivative of x. Therefore, [ x x dx = l x dx. d dx (x ) = x l, ] x l = l l = 9 l.

7 4. Evaluate the itegral Aswer: Re-write the itegral as ( ) 4 u 3 + u u 3 du = 4 + u du. u 3 4u 3 du + u du. The, sice u = is a atiderivative for u 3 ad sice l u is a atiderivative for u u, we see that the above is equal to [ 4 ] [ ] ( u + l u = 4 + ) + (l l ) = 3 + l. 7

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE. Richard A. Weida Lycoming College Williamsport, PA 17701 weida@lycoming.

COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE. Richard A. Weida Lycoming College Williamsport, PA 17701 weida@lycoming. COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE Richard A. Weida Lycomig College Williamsport, PA 17701 weida@lycomig.edu Abstract: Lycomig College is a small, private, liberal

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 007 MARKS: 50 TIME: 3 hours This questio paper cosists of 9 pages, diagram sheet ad a -page formula sheet. Please tur over Mathematics/P DoE/November

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x 0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information

Time Value of Money, NPV and IRR equation solving with the TI-86

Time Value of Money, NPV and IRR equation solving with the TI-86 Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

MATH 083 Final Exam Review

MATH 083 Final Exam Review MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period

More information

REVIEW OF INTEGRATION

REVIEW OF INTEGRATION REVIEW OF INTEGRATION Trig Fuctios ad Itegratio by Parts Oeriew I this ote we will reiew how to ealuate the sorts of itegrals we ecouter i ealuatig Fourier series. These will iclude itegratio of trig fuctios

More information

Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t

Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t Homework Solutios. Chater, Sectio 7, Problem 56. Fid the iverse Lalace trasform of the fuctio F () (7.6). À Chater, Sectio 7, Problem 6. Fid the iverse Lalace trasform of the fuctio F () usig (7.6). Solutio:

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 007 MARKS: 50 TIME: 3 hours This questio paper cosists of pages, 4 diagram sheets ad a -page formula sheet. Please tur over Mathematics/P DoE/Exemplar

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

More information

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixed-icome security that typically pays periodic coupo paymets, ad a pricipal

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12 Mathematics/P1 1 Jue 014 Commo Test MATHEMATICS P1 COMMON TEST JUNE 014 NATIONAL SENIOR CERTIFICATE GRADE 1 Marks: 15 Time: ½ hours N.B: This questio paper cosists of 7 pages ad 1 iformatio sheet. Please

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

3. If x and y are real numbers, what is the simplified radical form

3. If x and y are real numbers, what is the simplified radical form lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Fast Fourier Transform

Fast Fourier Transform 18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k. 18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

One-sample test of proportions

One-sample test of proportions Oe-sample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES MATH 57A. Itroductio Our geometric ituitio is derived from three-dimesioal space. Three coordiates suffice. May objects of iterest i aalysis, however, require far

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Application: Volume. 6.1 Overture. Cylinders

Application: Volume. 6.1 Overture. Cylinders Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information