Hypergeometric Distributions

Size: px
Start display at page:

Download "Hypergeometric Distributions"

Transcription

1 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you deal cards from a stadard deck, there ca be o repetitios. I such situatios, each selectio reduces the umber of items that could be selected i the ext trial. Thus, the probabilities i these trials are depedet. Ofte we eed to calculate the probability of a specific umber of successes i a give umber of depedet trials. INVESTIGATE & INQUIRE: Choosig a Jury I Otario, a citize ca be called for jury duty every three years. Although most juries have 12 members, those for civil trials i Otario usually require oly 6 members. Suppose a civil-court jury is beig selected from a pool of 18 citizes, 8 of whom are me. Develop a simulatio to determie the probability distributio for the umber of wome selected for this jury. 1. Select a radom-umber geerator to simulate the selectio process. 2. Decide how to simplify the selectio process. Decide, also, whether the full situatio eeds to be simulated or whether a proportio of the trials would be sufficiet. 3. Desig each trial so that it simulates the actual situatio. Esure that each trial is depedet by settig the radom-umber geerator so that there are o repetitios withi each series of trials. 4. Set up a method to record the umber of successes i each experimet. Pool your results with those of other studets i your class, if ecessary. 5. Use the results to estimate the probabilities of x successes (wome) i r trials (selectios of a juror). 6. Reflect o the results. Do they accurately represet the probability of x wome beig selected? 7. Compare your simulatio ad its results with those of your classmates. Which are the better simulatios? Explai why. Data i Actio The cost of ruig the crimial, civil, ad family courts i Otario was about $310 millio for These courts have the equivalet of 3300 full-time employees. 7.4 Hypergeometric Distributios MHR 397

2 The simulatio i the ivestigatio models a hypergeometric distributio. Such distributios ivolve a series of depedet trials, each with success or failure as the oly possible outcomes. The probability of success chages as each trial is made. The radom variable is the umber of successful trials i a experimet. Calculatios of probabilities i a hypergeometric distributio geerally require formulas usig combiatios. Example 1 Jury Selectio a) Determie the probability distributio for the umber of wome o a civilcourt jury selected from a pool of 8 me ad 10 wome. b) What is the expected umber of wome o the jury? Solutio 1 Usig Pecil ad Paper a) The selectio process ivolves depedet evets sice each perso who is already chose for the jury caot be selected agai. The total umber of ways the 6 jurors ca be selected from the pool of 18 is (S ) = 18 C 6 = There ca be from 0 to 6 wome o the jury. The umber of ways i which x wome ca be selected is 10 C x. The me ca fill the remaiig 6 x positios o the jury i 8 C 6 x ways. Thus, the umber of ways of selectig a jury with x wome o it is 10 C x 8 C 6 x ad the probability of a jury with x wome is P(x) = (x) (S) = 10C C x 8 6 x P(x) 0.4 This combiatio could also be writte as C(18, 6) or Number of Wome, x Probability, P(x) 0 C C = C C = C C = Probability Number of Wome Jurors, x 3 C C = C C = C C = C C = MHR Probability Distributios

3 b) E(X ) = 6 x i P(x i ) i=0 = (0)( ) + (1)( ) + (2)( ) + (3)( ) + (4)( ) + (5)( ) + (6)( ) = The expected umber of wome o the jury is approximately Solutio 2 Usig a Graphig Calculator a) Eter the possible values for x, 0 to 6, i L1. The, eter the formula for P(x) i L2: (10 Cr L1) (8 Cr (6 L1)) (18 Cr 6) b) Calculate xp(x) i L3 usig the formula L1 L2. QUIT to the home scree. You ca fid the expected umber of wome by usig the sum( fuctio i the LIST MATH meu. The expected umber of wome o the jury is approximately Solutio 3 Usig a Spreadsheet a) Ope a ew spreadsheet. Create titles x, p(x), ad xp(x) i colums A to C. Eter the values of the radom variable x i colum A, ragig from 0 to 6. Next, use the combiatios fuctio to eter the formula for P(x) i cell B3 ad copy it to cells B4 through B Hypergeometric Distributios MHR 399

4 b) Calculate xp(x) i colum C by eterig the formula A3*B3 i cell C3 ad copyig it to cells C4 through C9. The, calculate the expected value usig the SUM fuctio. The expected umber of wome o the jury is approximately Solutio 4 Usig Fathom TM Ope a ew Fathom documet. Drag a ew collectio box to the work area ad ame it Number of Wome Jurors. Create seve ew cases. Drag a ew case table to the work area. Create three ew attributes: x, px, ad xpx. Eter the values from 0 to 6 for the x attribute. Right-click o the px attribute, select Edit Formula, ad eter combiatios(10,x)*combiatios(8,6-x)/combiatios(18,6) Similarly, calculate xp(x) usig the formula x*px. Next, double-click o the collectio box to ope the ispector. Select the Measures tab, ad ame a ew measure Ex. Right-click o Ex ad use the sum fuctio to eter the formula sum(x*px). The expected umber of wome o the jury is approximately MHR Probability Distributios

5 You ca geeralize the methods i Example 1 to show that for a hypergeometric distributio, the probability of x successes i r depedet trials is Probability i a Hypergeometric Distributio P(x) = ac C x a r x C, r where a is the umber of successful outcomes amog a total of possible outcomes. Although the trials are depedet, you would expect the average probability of a a success to be the same as the ratio of successes i the populatio,. Thus, the expectatio for r trials would be Expectatio for a Hypergeometric Distributio E(X ) = r a This formula ca be prove more rigorously by some challegig algebraic maipulatio of the terms whe P(x) = C C a x a r x is substituted ito the equatio for the expectatio of ay probability distributio, E(X ) = x i P(x i ). C r i=1 Example 2 Applyig the Expectatio Formula Calculate the expected umber of wome o the jury i Example 1. Solutio E(X ) = r a = = 3.33 The expected umber of wome jurors is Example 3 Expectatio of a Hypergeometric Distributio A box cotais seve yellow, three gree, five purple, ad six red cadies jumbled together. a) What is the expected umber of red cadies amog five cadies poured from the box? b) Verify that the expectatio formula for a hypergeometric distributio gives the same result as the geeral equatio for the expectatio of ay probability distributio. 7.4 Hypergeometric Distributios MHR 401

6 Solutio a) = r = 5 a = 6 = 21 Usig the expectatio formula for the hypergeometric distributio, E(X ) = r a 5 6 = 21 = Oe would expect to have approximately 1.4 red cadies amog the 5 cadies. b) Usig the geeral formula for expectatio, E(X ) = xp(x) = (0) C C + (1) C C 6 + (2) C C + (3) C C + (4) C C + (5) C C = Agai, the expected umber of red cadies is approximately 1.4. Example 4 Wildlife Maagemet I the sprig, the Miistry of the Eviromet caught ad tagged 500 raccoos i a wilderess area. The raccoos were released after beig vacciated agaist rabies. To estimate the raccoo populatio i the area, the miistry caught 40 raccoos durig the summer. Of these 15 had tags. a) Determie whether this situatio ca be modelled with a hypergeometric distributio. b) Estimate the raccoo populatio i the wilderess area. To lear more about samplig ad wildlife, visit Solutio the above web site ad follow the liks. Write a brief descriptio of some of the samplig a) The 40 raccoos captured durig the summer were all differet from each other. I other words, techiques that are used. there were o repetitios, so the trials were depedet. The raccoos were either tagged (a success) or ot (a failure). Thus, the situatio does have all the characteristics of a hypergeometric distributio. b) Assume that the umber of tagged raccoos caught durig the summer is equal to the expectatio for the hypergeometric distributio. You ca substitute the kow values i the expectatio formula ad the solve for the populatio size,. 402 MHR Probability Distributios

7 Here, the umber of raccoos caught durig the summer is the umber of trials, so r = 40. The umber of tagged raccoos is the umber of successes i the populatio, so a = 500. ra E(X ) =, so 15= = = The raccoo populatio i the wilderess area is approximately Alteratively, you could assume that the proportio of tagged raccoos amog the sample captured durig the summer correspods to that i the whole populatio. The, 1 5 = 50 0, which gives the same estimate for 40 as the calculatio show above. Key Cocepts A hypergeometric distributio has a specified umber of depedet trials havig two possible outcomes, success or failure. The radom variable is the umber of successful outcomes i the specified umber of trials. The idividual outcomes caot be repeated withi these trials. The probability of x successes i r depedet trials is P(x) = C C a x a r x, where is the populatio size ad a is the umber of successes i the populatio. ra The expectatio for a hypergeometric distributio is E(X ) =. To simulate a hypergeometric experimet, esure that the umber of trials is represetative of the situatio ad that each trial is depedet (o replacemet or resettig betwee trials). Record the umber of successes ad summarize the results by calculatig probabilities ad expectatio. C r Commuicate Your Uderstadig 1. Describe how the graph i Example 1 differs from the graphs of the uiform, biomial, ad geometric distributios. 2. Cosider this questio: What is the probability that 5 people out of a group of 20 are left haded if 10% of the populatio is left-haded? Explai why this situatio does ot fit a hypergeometric model. Rewrite the questio so that you ca use a hypergeometric distributio. 7.4 Hypergeometric Distributios MHR 403

8 Practise A 1. Which of these radom variables have a hypergeometric distributio? Explai why. a) the umber of clubs dealt from a deck b) the umber of attempts before rollig a six with a die c) the umber of 3s produced by a radomumber geerator d) the umber of defective screws i a radom sample of 20 take from a productio lie that has a 2% defect rate e) the umber of male ames o a page selected at radom from a telephoe book f) the umber of left-haded people i a group selected from the geeral populatio g) the umber of left-haded people selected from a group comprised equally of left-haded ad right-haded people 2. Prepare a table ad a graph of a hypergeometric distributio with a) = 6, r = 3, a = 3 b) = 8, r = 3, a = 5 Apply, Solve, Commuicate B 3. There are five cats ad seve dogs i a pet shop. Four pets are chose at radom for a visit to a childre s hospital. a) What is the probability that exactly two of the pets will be dogs? b) What is the expected umber of dogs chose? 4. Commuicatio Earlier this year, 520 seals were caught ad tagged. O a recet survey, 30 out of 125 seals had bee tagged. a) Estimate the size of the seal populatio. b) Explai why you caot calculate the exact size of the seal populatio. 5. Of the 60 grade-12 studets at a school, 45 are takig Eglish. Suppose that 8 grade-12 studets are selected at radom for a survey. a) Develop a simulatio to determie the probability that 5 of the selected studets are studyig Eglish. b) Use the formulas developed i this sectio to verify your simulatio results. 6. Iquiry/Problem Solvig I a study of Caada geese, 200 of a kow populatio of 1200 geese were caught ad tagged. Later, aother 50 geese were caught. a) Develop a simulatio to determie the expected umber of tagged geese i the secod sample. b) Use the formulas developed i this sectio to verify your simulatio results. 7. Applicatio I a mathematics class of 20 studets, 5 are biligual. If the class is radomly divided ito 4 project teams, a) what is the probability that a team has fewer tha 2 biligual studets? b) what is the expected umber of biligual studets o a team? 8. I a swim meet, there are 16 competitors, 5 of whom are from the Easter Swim Club. a) What is the probability that 2 of the 5 swimmers i the first heat are from the Easter Swim Club? b) What is the expected umber of Easter Swim Club members i the first heat? 9. The door prizes at a dace are four $10 gift certificates, five $20 gift certificates, ad three $50 gift certificates. The prize evelopes are mixed together i a bag, ad five prizes are draw at radom. a) What is the probability that oe of the prizes is a $10 gift certificate? b) What is the expected umber of $20 gift certificates draw? 404 MHR Probability Distributios

9 10. A 12-member jury for a crimial case will be selected from a pool of 14 me ad 11 wome. a) What is the probability that the jury will have 6 me ad 6 wome? b) What is the probability that at least 3 jurors will be wome? c) What is the expected umber of wome? 11. Seve cards are dealt from a stadard deck. a) What is the probability that three of the seve cards are hearts? b) What is the expected umber of hearts? 12. A bag cotais two red, five black, ad four gree marbles. Four marbles are selected at radom, without replacemet. Calculate a) the probability that all four are black b) the probability that exactly two are gree c) the probability that exactly two are gree ad oe are red d) the expected umbers of red, black, ad gree marbles Kowledge/ Uderstadig ACHIEVEMENT CHECK Thikig/Iquiry/ Problem Solvig Commuicatio Applicatio 13. A calculator maufacturer checks for defective products by testig 3 calculators out of every lot of 12. If a defective calculator is foud, the lot is rejected. a) Suppose 2 calculators i a lot are defective. Outlie two ways of calculatig the probability that the lot will be rejected. Calculate this probability. b) The quality-cotrol departmet wats to have at least a 30% chace of rejectig lots that cotai oly oe defective calculator. Is testig 3 calculators i a lot of 12 sufficiet? If ot, how would you suggest they alter their quality-cotrol techiques to achieve this stadard? Support your aswer with mathematical calculatios. C 14. Suppose you buy a lottery ticket for which you choose six differet umbers betwee 1 ad 40 iclusive. The order of the first five umbers is ot importat. The sixth umber is a bous umber. To wi first prize, all five regular umbers ad the bous umber must match, respectively, the radomly geerated wiig umbers for the lottery. For the secod prize, you must match the bous umber plus four of the regular umbers. a) What is the probability of wiig first prize? b) What is the probability of wiig secod prize? c) What is the probability of ot wiig a prize if your first three regular umbers match wiig umbers? 15. Iquiry/Problem Solvig Uder what coditios would a biomial distributio be a good approximatio for a hypergeometric distributio? 16. Iquiry/Problem Solvig You start at a corer five blocks south ad five blocks west of your fried. You walk orth ad east while your fried walks south ad west at the same speed. What is the probability that the two of you will meet o your travels? 17. A research compay has 50 employees, 20 of whom are over 40 years old. Of the 22 scietists o the staff, 12 are over 40. Compare the expected umbers of older ad youger scietists i a radomly selected focus group of 10 employees. 7.4 Hypergeometric Distributios MHR 405

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Confidence Intervals for One Mean with Tolerance Probability

Confidence Intervals for One Mean with Tolerance Probability Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Case Study. Contingency Tables. Graphing Tabled Counts. Stacked Bar Graph

Case Study. Contingency Tables. Graphing Tabled Counts. Stacked Bar Graph Case Study Cotigecy Tables Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 4 6, 2011 Case Study Example 9.3 begiig o page 213 of the text describes a experimet i which

More information

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, P-value Type I Error, Type II Error, Sigificace Level, Power Sectio 8-1: Overview Cofidece Itervals (Chapter 7) are

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Review 1 of Math 727, Probability c Fall 2013 by Professor Yaozhong Hu

Review 1 of Math 727, Probability c Fall 2013 by Professor Yaozhong Hu Review of Math 727, Probability c Fall 203 by Professor Yaozhog Hu Some Cocepts: Sample space, evet, uio, itersectio, complemet, -algebra of evets, probability, 2 A collectio of subsets of S is called

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

sum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by

sum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by Statistics Module Revisio Sheet The S exam is hour 30 miutes log ad is i two sectios Sectio A 3 marks 5 questios worth o more tha 8 marks each Sectio B 3 marks questios worth about 8 marks each You are

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

TILE PATTERNS & GRAPHING

TILE PATTERNS & GRAPHING TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

Section 7-3 Estimating a Population. Requirements

Section 7-3 Estimating a Population. Requirements Sectio 7-3 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered list of umbers i which the differece betwee each pair of cosecutive terms,

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Hypothesis Tests Applied to Means

Hypothesis Tests Applied to Means The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE:

Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE: Math 355 - Discrete Math 4.1-4.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let

More information

ˆ p 2. ˆ p 1. ˆ p 3. p 4. ˆ p 8

ˆ p 2. ˆ p 1. ˆ p 3. p 4. ˆ p 8 Sectio 8 1C The Techiques of Hypothesis Testig A claim is made that 10% of the populatio is left haded. A alterate claim is made that less tha 10% of the populatio is left haded. We will use the techiques

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size 8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGraw-Hill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 7-1 Cofidece Itervals for the

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Chapter 4. Example: Q: Bob rolls a 6-sided die. What is the sample space of this procedure? A: S = {1, 2, 3, 4, 5, 6}

Chapter 4. Example: Q: Bob rolls a 6-sided die. What is the sample space of this procedure? A: S = {1, 2, 3, 4, 5, 6} Chapter 4 Key Ideas Evets, Simple Evets, Sample Space, Odds, Compoud Evets, Idepedece, Coditioal Probability, 3 Approaches to Probability Additio Rule, Complemet Rule, Multiplicatio Rule, Law of Total

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

ODBC. Getting Started With Sage Timberline Office ODBC

ODBC. Getting Started With Sage Timberline Office ODBC ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.

More information

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004 TIEE Teachig Issues ad Experimets i Ecology - Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

Estimating the Mean and Variance of a Normal Distribution

Estimating the Mean and Variance of a Normal Distribution Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers

More information

9.8: THE POWER OF A TEST

9.8: THE POWER OF A TEST 9.8: The Power of a Test CD9-1 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based

More information

Discrete Random Variables and Probability Distributions. Random Variables. Chapter 3 3.1

Discrete Random Variables and Probability Distributions. Random Variables. Chapter 3 3.1 UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

Unit 20 Hypotheses Testing

Unit 20 Hypotheses Testing Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

represented by 4! different arrangements of boxes, divide by 4! to get ways

represented by 4! different arrangements of boxes, divide by 4! to get ways Problem Set #6 solutios A juggler colors idetical jugglig balls red, white, ad blue (a I how may ways ca this be doe if each color is used at least oce? Let us preemptively color oe ball i each color,

More information

1 The Binomial Theorem: Another Approach

1 The Binomial Theorem: Another Approach The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

More information

Lesson 12. Sequences and Series

Lesson 12. Sequences and Series Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or

More information

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals Statistics 111 - Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio

More information

Measures of Central Tendency

Measures of Central Tendency Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the

More information

23.3 Sampling Distributions

23.3 Sampling Distributions COMMON CORE Locker LESSON Commo Core Math Stadards The studet is expected to: COMMON CORE S-IC.B.4 Use data from a sample survey to estimate a populatio mea or proportio; develop a margi of error through

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

Example Consider the following set of data, showing the number of times a sample of 5 students check their per day:

Example Consider the following set of data, showing the number of times a sample of 5 students check their  per day: Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day

More information

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition 7- stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011 15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

Derivation of the Poisson distribution

Derivation of the Poisson distribution Gle Cowa RHUL Physics 1 December, 29 Derivatio of the Poisso distributio I this ote we derive the fuctioal form of the Poisso distributio ad ivestigate some of its properties. Cosider a time t i which

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

Research Method (I) --Knowledge on Sampling (Simple Random Sampling)

Research Method (I) --Knowledge on Sampling (Simple Random Sampling) Research Method (I) --Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact

More information

G r a d e. 2 M a t h e M a t i c s. statistics and Probability

G r a d e. 2 M a t h e M a t i c s. statistics and Probability G r a d e 2 M a t h e M a t i c s statistics ad Probability Grade 2: Statistics (Data Aalysis) (2.SP.1, 2.SP.2) edurig uderstadigs: data ca be collected ad orgaized i a variety of ways. data ca be used

More information

Chapter 5 Discrete Probability Distributions

Chapter 5 Discrete Probability Distributions Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide Chapter 5 Discrete Probability Distributios Radom Variables Discrete Probability Distributios Epected Value ad Variace Poisso Distributio

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

Engineering Data Management

Engineering Data Management BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package

More information

Chapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing

Chapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

ARITHMETIC AND GEOMETRIC PROGRESSIONS

ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average 5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

More information

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS.

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. Name: Group Members: UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. EACH ACTIVITY HAS A COLOR THAT CORRESPONDS

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Stat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals - the general concept

Stat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals - the general concept Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for

More information

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: We wat to kow the value of a parameter for a populatio. We do t kow the value of this parameter for the etire populatio because

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

ME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision - A measure of agreement between repeated measurements (repeatability).

ME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision - A measure of agreement between repeated measurements (repeatability). INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie

More information

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT - Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

Quadrat Sampling in Population Ecology

Quadrat Sampling in Population Ecology Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

x : X bar Mean (i.e. Average) of a sample

x : X bar Mean (i.e. Average) of a sample A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For

More information

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016 CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

Solving Inequalities

Solving Inequalities Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK-12

More information

Review for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.

Review for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs. Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you

More information

Intro to Sequences / Arithmetic Sequences and Series Levels

Intro to Sequences / Arithmetic Sequences and Series Levels Itro to Sequeces / Arithmetic Sequeces ad Series Levels Level : pg. 569: #7, 0, 33 Pg. 575: #, 7, 8 Pg. 584: #8, 9, 34, 36 Levels, 3, ad 4(Fiboacci Sequece Extesio) See Hadout Check for Uderstadig Level

More information

Confidence Intervals for the Mean of Non-normal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Confidence Intervals for the Mean of Non-normal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Cofidece Itervals for the Mea of No-ormal Data Class 23, 8.05, Sprig 204 Jeremy Orloff ad Joatha Bloom Learig Goals. Be able to derive the formula for coservative ormal cofidece itervals for the proportio

More information

Your grandmother and her financial counselor

Your grandmother and her financial counselor Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information