Hypergeometric Distributions


 Rafe Fitzgerald
 1 years ago
 Views:
Transcription
1 7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you deal cards from a stadard deck, there ca be o repetitios. I such situatios, each selectio reduces the umber of items that could be selected i the ext trial. Thus, the probabilities i these trials are depedet. Ofte we eed to calculate the probability of a specific umber of successes i a give umber of depedet trials. INVESTIGATE & INQUIRE: Choosig a Jury I Otario, a citize ca be called for jury duty every three years. Although most juries have 12 members, those for civil trials i Otario usually require oly 6 members. Suppose a civilcourt jury is beig selected from a pool of 18 citizes, 8 of whom are me. Develop a simulatio to determie the probability distributio for the umber of wome selected for this jury. 1. Select a radomumber geerator to simulate the selectio process. 2. Decide how to simplify the selectio process. Decide, also, whether the full situatio eeds to be simulated or whether a proportio of the trials would be sufficiet. 3. Desig each trial so that it simulates the actual situatio. Esure that each trial is depedet by settig the radomumber geerator so that there are o repetitios withi each series of trials. 4. Set up a method to record the umber of successes i each experimet. Pool your results with those of other studets i your class, if ecessary. 5. Use the results to estimate the probabilities of x successes (wome) i r trials (selectios of a juror). 6. Reflect o the results. Do they accurately represet the probability of x wome beig selected? 7. Compare your simulatio ad its results with those of your classmates. Which are the better simulatios? Explai why. Data i Actio The cost of ruig the crimial, civil, ad family courts i Otario was about $310 millio for These courts have the equivalet of 3300 fulltime employees. 7.4 Hypergeometric Distributios MHR 397
2 The simulatio i the ivestigatio models a hypergeometric distributio. Such distributios ivolve a series of depedet trials, each with success or failure as the oly possible outcomes. The probability of success chages as each trial is made. The radom variable is the umber of successful trials i a experimet. Calculatios of probabilities i a hypergeometric distributio geerally require formulas usig combiatios. Example 1 Jury Selectio a) Determie the probability distributio for the umber of wome o a civilcourt jury selected from a pool of 8 me ad 10 wome. b) What is the expected umber of wome o the jury? Solutio 1 Usig Pecil ad Paper a) The selectio process ivolves depedet evets sice each perso who is already chose for the jury caot be selected agai. The total umber of ways the 6 jurors ca be selected from the pool of 18 is (S ) = 18 C 6 = There ca be from 0 to 6 wome o the jury. The umber of ways i which x wome ca be selected is 10 C x. The me ca fill the remaiig 6 x positios o the jury i 8 C 6 x ways. Thus, the umber of ways of selectig a jury with x wome o it is 10 C x 8 C 6 x ad the probability of a jury with x wome is P(x) = (x) (S) = 10C C x 8 6 x P(x) 0.4 This combiatio could also be writte as C(18, 6) or Number of Wome, x Probability, P(x) 0 C C = C C = C C = Probability Number of Wome Jurors, x 3 C C = C C = C C = C C = MHR Probability Distributios
3 b) E(X ) = 6 x i P(x i ) i=0 = (0)( ) + (1)( ) + (2)( ) + (3)( ) + (4)( ) + (5)( ) + (6)( ) = The expected umber of wome o the jury is approximately Solutio 2 Usig a Graphig Calculator a) Eter the possible values for x, 0 to 6, i L1. The, eter the formula for P(x) i L2: (10 Cr L1) (8 Cr (6 L1)) (18 Cr 6) b) Calculate xp(x) i L3 usig the formula L1 L2. QUIT to the home scree. You ca fid the expected umber of wome by usig the sum( fuctio i the LIST MATH meu. The expected umber of wome o the jury is approximately Solutio 3 Usig a Spreadsheet a) Ope a ew spreadsheet. Create titles x, p(x), ad xp(x) i colums A to C. Eter the values of the radom variable x i colum A, ragig from 0 to 6. Next, use the combiatios fuctio to eter the formula for P(x) i cell B3 ad copy it to cells B4 through B Hypergeometric Distributios MHR 399
4 b) Calculate xp(x) i colum C by eterig the formula A3*B3 i cell C3 ad copyig it to cells C4 through C9. The, calculate the expected value usig the SUM fuctio. The expected umber of wome o the jury is approximately Solutio 4 Usig Fathom TM Ope a ew Fathom documet. Drag a ew collectio box to the work area ad ame it Number of Wome Jurors. Create seve ew cases. Drag a ew case table to the work area. Create three ew attributes: x, px, ad xpx. Eter the values from 0 to 6 for the x attribute. Rightclick o the px attribute, select Edit Formula, ad eter combiatios(10,x)*combiatios(8,6x)/combiatios(18,6) Similarly, calculate xp(x) usig the formula x*px. Next, doubleclick o the collectio box to ope the ispector. Select the Measures tab, ad ame a ew measure Ex. Rightclick o Ex ad use the sum fuctio to eter the formula sum(x*px). The expected umber of wome o the jury is approximately MHR Probability Distributios
5 You ca geeralize the methods i Example 1 to show that for a hypergeometric distributio, the probability of x successes i r depedet trials is Probability i a Hypergeometric Distributio P(x) = ac C x a r x C, r where a is the umber of successful outcomes amog a total of possible outcomes. Although the trials are depedet, you would expect the average probability of a a success to be the same as the ratio of successes i the populatio,. Thus, the expectatio for r trials would be Expectatio for a Hypergeometric Distributio E(X ) = r a This formula ca be prove more rigorously by some challegig algebraic maipulatio of the terms whe P(x) = C C a x a r x is substituted ito the equatio for the expectatio of ay probability distributio, E(X ) = x i P(x i ). C r i=1 Example 2 Applyig the Expectatio Formula Calculate the expected umber of wome o the jury i Example 1. Solutio E(X ) = r a = = 3.33 The expected umber of wome jurors is Example 3 Expectatio of a Hypergeometric Distributio A box cotais seve yellow, three gree, five purple, ad six red cadies jumbled together. a) What is the expected umber of red cadies amog five cadies poured from the box? b) Verify that the expectatio formula for a hypergeometric distributio gives the same result as the geeral equatio for the expectatio of ay probability distributio. 7.4 Hypergeometric Distributios MHR 401
6 Solutio a) = r = 5 a = 6 = 21 Usig the expectatio formula for the hypergeometric distributio, E(X ) = r a 5 6 = 21 = Oe would expect to have approximately 1.4 red cadies amog the 5 cadies. b) Usig the geeral formula for expectatio, E(X ) = xp(x) = (0) C C + (1) C C 6 + (2) C C + (3) C C + (4) C C + (5) C C = Agai, the expected umber of red cadies is approximately 1.4. Example 4 Wildlife Maagemet I the sprig, the Miistry of the Eviromet caught ad tagged 500 raccoos i a wilderess area. The raccoos were released after beig vacciated agaist rabies. To estimate the raccoo populatio i the area, the miistry caught 40 raccoos durig the summer. Of these 15 had tags. a) Determie whether this situatio ca be modelled with a hypergeometric distributio. b) Estimate the raccoo populatio i the wilderess area. To lear more about samplig ad wildlife, visit Solutio the above web site ad follow the liks. Write a brief descriptio of some of the samplig a) The 40 raccoos captured durig the summer were all differet from each other. I other words, techiques that are used. there were o repetitios, so the trials were depedet. The raccoos were either tagged (a success) or ot (a failure). Thus, the situatio does have all the characteristics of a hypergeometric distributio. b) Assume that the umber of tagged raccoos caught durig the summer is equal to the expectatio for the hypergeometric distributio. You ca substitute the kow values i the expectatio formula ad the solve for the populatio size,. 402 MHR Probability Distributios
7 Here, the umber of raccoos caught durig the summer is the umber of trials, so r = 40. The umber of tagged raccoos is the umber of successes i the populatio, so a = 500. ra E(X ) =, so 15= = = The raccoo populatio i the wilderess area is approximately Alteratively, you could assume that the proportio of tagged raccoos amog the sample captured durig the summer correspods to that i the whole populatio. The, 1 5 = 50 0, which gives the same estimate for 40 as the calculatio show above. Key Cocepts A hypergeometric distributio has a specified umber of depedet trials havig two possible outcomes, success or failure. The radom variable is the umber of successful outcomes i the specified umber of trials. The idividual outcomes caot be repeated withi these trials. The probability of x successes i r depedet trials is P(x) = C C a x a r x, where is the populatio size ad a is the umber of successes i the populatio. ra The expectatio for a hypergeometric distributio is E(X ) =. To simulate a hypergeometric experimet, esure that the umber of trials is represetative of the situatio ad that each trial is depedet (o replacemet or resettig betwee trials). Record the umber of successes ad summarize the results by calculatig probabilities ad expectatio. C r Commuicate Your Uderstadig 1. Describe how the graph i Example 1 differs from the graphs of the uiform, biomial, ad geometric distributios. 2. Cosider this questio: What is the probability that 5 people out of a group of 20 are left haded if 10% of the populatio is lefthaded? Explai why this situatio does ot fit a hypergeometric model. Rewrite the questio so that you ca use a hypergeometric distributio. 7.4 Hypergeometric Distributios MHR 403
8 Practise A 1. Which of these radom variables have a hypergeometric distributio? Explai why. a) the umber of clubs dealt from a deck b) the umber of attempts before rollig a six with a die c) the umber of 3s produced by a radomumber geerator d) the umber of defective screws i a radom sample of 20 take from a productio lie that has a 2% defect rate e) the umber of male ames o a page selected at radom from a telephoe book f) the umber of lefthaded people i a group selected from the geeral populatio g) the umber of lefthaded people selected from a group comprised equally of lefthaded ad righthaded people 2. Prepare a table ad a graph of a hypergeometric distributio with a) = 6, r = 3, a = 3 b) = 8, r = 3, a = 5 Apply, Solve, Commuicate B 3. There are five cats ad seve dogs i a pet shop. Four pets are chose at radom for a visit to a childre s hospital. a) What is the probability that exactly two of the pets will be dogs? b) What is the expected umber of dogs chose? 4. Commuicatio Earlier this year, 520 seals were caught ad tagged. O a recet survey, 30 out of 125 seals had bee tagged. a) Estimate the size of the seal populatio. b) Explai why you caot calculate the exact size of the seal populatio. 5. Of the 60 grade12 studets at a school, 45 are takig Eglish. Suppose that 8 grade12 studets are selected at radom for a survey. a) Develop a simulatio to determie the probability that 5 of the selected studets are studyig Eglish. b) Use the formulas developed i this sectio to verify your simulatio results. 6. Iquiry/Problem Solvig I a study of Caada geese, 200 of a kow populatio of 1200 geese were caught ad tagged. Later, aother 50 geese were caught. a) Develop a simulatio to determie the expected umber of tagged geese i the secod sample. b) Use the formulas developed i this sectio to verify your simulatio results. 7. Applicatio I a mathematics class of 20 studets, 5 are biligual. If the class is radomly divided ito 4 project teams, a) what is the probability that a team has fewer tha 2 biligual studets? b) what is the expected umber of biligual studets o a team? 8. I a swim meet, there are 16 competitors, 5 of whom are from the Easter Swim Club. a) What is the probability that 2 of the 5 swimmers i the first heat are from the Easter Swim Club? b) What is the expected umber of Easter Swim Club members i the first heat? 9. The door prizes at a dace are four $10 gift certificates, five $20 gift certificates, ad three $50 gift certificates. The prize evelopes are mixed together i a bag, ad five prizes are draw at radom. a) What is the probability that oe of the prizes is a $10 gift certificate? b) What is the expected umber of $20 gift certificates draw? 404 MHR Probability Distributios
9 10. A 12member jury for a crimial case will be selected from a pool of 14 me ad 11 wome. a) What is the probability that the jury will have 6 me ad 6 wome? b) What is the probability that at least 3 jurors will be wome? c) What is the expected umber of wome? 11. Seve cards are dealt from a stadard deck. a) What is the probability that three of the seve cards are hearts? b) What is the expected umber of hearts? 12. A bag cotais two red, five black, ad four gree marbles. Four marbles are selected at radom, without replacemet. Calculate a) the probability that all four are black b) the probability that exactly two are gree c) the probability that exactly two are gree ad oe are red d) the expected umbers of red, black, ad gree marbles Kowledge/ Uderstadig ACHIEVEMENT CHECK Thikig/Iquiry/ Problem Solvig Commuicatio Applicatio 13. A calculator maufacturer checks for defective products by testig 3 calculators out of every lot of 12. If a defective calculator is foud, the lot is rejected. a) Suppose 2 calculators i a lot are defective. Outlie two ways of calculatig the probability that the lot will be rejected. Calculate this probability. b) The qualitycotrol departmet wats to have at least a 30% chace of rejectig lots that cotai oly oe defective calculator. Is testig 3 calculators i a lot of 12 sufficiet? If ot, how would you suggest they alter their qualitycotrol techiques to achieve this stadard? Support your aswer with mathematical calculatios. C 14. Suppose you buy a lottery ticket for which you choose six differet umbers betwee 1 ad 40 iclusive. The order of the first five umbers is ot importat. The sixth umber is a bous umber. To wi first prize, all five regular umbers ad the bous umber must match, respectively, the radomly geerated wiig umbers for the lottery. For the secod prize, you must match the bous umber plus four of the regular umbers. a) What is the probability of wiig first prize? b) What is the probability of wiig secod prize? c) What is the probability of ot wiig a prize if your first three regular umbers match wiig umbers? 15. Iquiry/Problem Solvig Uder what coditios would a biomial distributio be a good approximatio for a hypergeometric distributio? 16. Iquiry/Problem Solvig You start at a corer five blocks south ad five blocks west of your fried. You walk orth ad east while your fried walks south ad west at the same speed. What is the probability that the two of you will meet o your travels? 17. A research compay has 50 employees, 20 of whom are over 40 years old. Of the 22 scietists o the staff, 12 are over 40. Compare the expected umbers of older ad youger scietists i a radomly selected focus group of 10 employees. 7.4 Hypergeometric Distributios MHR 405
Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationCase Study. Contingency Tables. Graphing Tabled Counts. Stacked Bar Graph
Case Study Cotigecy Tables Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 4 6, 2011 Case Study Example 9.3 begiig o page 213 of the text describes a experimet i which
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationReview 1 of Math 727, Probability c Fall 2013 by Professor Yaozhong Hu
Review of Math 727, Probability c Fall 203 by Professor Yaozhog Hu Some Cocepts: Sample space, evet, uio, itersectio, complemet, algebra of evets, probability, 2 A collectio of subsets of S is called
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationsum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by
Statistics Module Revisio Sheet The S exam is hour 30 miutes log ad is i two sectios Sectio A 3 marks 5 questios worth o more tha 8 marks each Sectio B 3 marks questios worth about 8 marks each You are
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationTILE PATTERNS & GRAPHING
TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More informationArithmetic Sequences
. Arithmetic Sequeces Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered list of umbers i which the differece betwee each pair of cosecutive terms,
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationHypothesis Tests Applied to Means
The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationMath Discrete Math Combinatorics MULTIPLICATION PRINCIPLE:
Math 355  Discrete Math 4.14.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let
More informationˆ p 2. ˆ p 1. ˆ p 3. p 4. ˆ p 8
Sectio 8 1C The Techiques of Hypothesis Testig A claim is made that 10% of the populatio is left haded. A alterate claim is made that less tha 10% of the populatio is left haded. We will use the techiques
More informationConfidence Intervals and Sample Size
8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGrawHill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 71 Cofidece Itervals for the
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationChapter 4. Example: Q: Bob rolls a 6sided die. What is the sample space of this procedure? A: S = {1, 2, 3, 4, 5, 6}
Chapter 4 Key Ideas Evets, Simple Evets, Sample Space, Odds, Compoud Evets, Idepedece, Coditioal Probability, 3 Approaches to Probability Additio Rule, Complemet Rule, Multiplicatio Rule, Law of Total
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationODBC. Getting Started With Sage Timberline Office ODBC
ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.
More informationTIEE Teaching Issues and Experiments in Ecology  Volume 1, January 2004
TIEE Teachig Issues ad Experimets i Ecology  Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More information9.8: THE POWER OF A TEST
9.8: The Power of a Test CD91 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based
More informationDiscrete Random Variables and Probability Distributions. Random Variables. Chapter 3 3.1
UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationwhen n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.
Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have
More informationUnit 20 Hypotheses Testing
Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationrepresented by 4! different arrangements of boxes, divide by 4! to get ways
Problem Set #6 solutios A juggler colors idetical jugglig balls red, white, ad blue (a I how may ways ca this be doe if each color is used at least oce? Let us preemptively color oe ball i each color,
More information1 The Binomial Theorem: Another Approach
The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets
More informationLesson 12. Sequences and Series
Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or
More informationStatistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals
Statistics 111  Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More information23.3 Sampling Distributions
COMMON CORE Locker LESSON Commo Core Math Stadards The studet is expected to: COMMON CORE SIC.B.4 Use data from a sample survey to estimate a populatio mea or proportio; develop a margi of error through
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationExample Consider the following set of data, showing the number of times a sample of 5 students check their per day:
Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationDerivation of the Poisson distribution
Gle Cowa RHUL Physics 1 December, 29 Derivatio of the Poisso distributio I this ote we derive the fuctioal form of the Poisso distributio ad ivestigate some of its properties. Cosider a time t i which
More information5.3. Generalized Permutations and Combinations
53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More informationG r a d e. 2 M a t h e M a t i c s. statistics and Probability
G r a d e 2 M a t h e M a t i c s statistics ad Probability Grade 2: Statistics (Data Aalysis) (2.SP.1, 2.SP.2) edurig uderstadigs: data ca be collected ad orgaized i a variety of ways. data ca be used
More informationChapter 5 Discrete Probability Distributions
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide Chapter 5 Discrete Probability Distributios Radom Variables Discrete Probability Distributios Epected Value ad Variace Poisso Distributio
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationChapter Gaussian Elimination
Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio
More informationEngineering Data Management
BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package
More informationChapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing
Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationARITHMETIC AND GEOMETRIC PROGRESSIONS
Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationUNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS.
Name: Group Members: UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. EACH ACTIVITY HAS A COLOR THAT CORRESPONDS
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationStat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals  the general concept
Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for
More informationCHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions
CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: We wat to kow the value of a parameter for a populatio. We do t kow the value of this parameter for the etire populatio because
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationSimple Annuities Present Value.
Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX9850GB PLUS to efficietly compute values associated with preset value auities.
More informationME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision  A measure of agreement between repeated measurements (repeatability).
INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationQuadrat Sampling in Population Ecology
Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More informationDivide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016
CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito
More informationReview for College Algebra Final Exam
Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 14. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i
More informationSolving Inequalities
Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK12
More informationReview for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.
Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you
More informationIntro to Sequences / Arithmetic Sequences and Series Levels
Itro to Sequeces / Arithmetic Sequeces ad Series Levels Level : pg. 569: #7, 0, 33 Pg. 575: #, 7, 8 Pg. 584: #8, 9, 34, 36 Levels, 3, ad 4(Fiboacci Sequece Extesio) See Hadout Check for Uderstadig Level
More informationConfidence Intervals for the Mean of Nonnormal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Cofidece Itervals for the Mea of Noormal Data Class 23, 8.05, Sprig 204 Jeremy Orloff ad Joatha Bloom Learig Goals. Be able to derive the formula for coservative ormal cofidece itervals for the proportio
More informationYour grandmother and her financial counselor
Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the
More informationRiemann Sums y = f (x)
Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, oegative fuctio o the closed iterval [a, b] Fid
More information