Your organization has a Class B IP address of Before you implement subnetting, the Network ID and Host ID are divided as follows:


 Herbert Randall
 4 years ago
 Views:
Transcription
1 Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of Before you implemet subettig, the Network ID ad Host ID are divided as follows: octet 1 octet 2 octet 3 octet 4 Network ID Host ID To orgaize your etwork ad allow for growth, you decide to use the 3 rd octet to subdivide your etwork ito subets. Now the Network ID ad Host ID are divided as follows: octet 1 octet 2 octet 3 octet 4 Network ID Subet ID Host ID Exteded Network Prefix Kevi Lillis,
2 Subet Mask I order to distiguish betwee the exteded etwork prefix ad the Host ID you use a subet mask. A subet mask fills each bit of the exteded etwork prefix with a 1 ad each bit of the Host ID with a 0. I the above example the etwork mask would be: Which i dotted decimal otatio is: A router combies the destiatio IP address with the subet mask, usig a logical AND operatio, to determie the etwork address. Cotiuig with the same example, a destiatio address of is combied with the subet mask of as follows: ( ) AND ( ) ( ) After combiig the destiatio address with the subet mask, the result is the exteded etwork prefix. I effect, the host potio of the address has bee stripped off. Default Subet Masks There is a default subet mask for each of the three Classes of IP address: Class A: Class B: Class C: Kevi Lillis,
3 Aother Example Your compay has a Class C etwork of ad you wat to use subettig. You caot simply use the ext available octet followig the Network ID as i the previous example. If you did, there would be o portio of the IP address left for the Host ID. Therefore, you eed to use oe portio of the last octet as the Subet ID ad aother portio of the last octet as the Host ID. To do this you must follow these geeral steps: Step 1 Determie the umber of subets required by your istallatio Step 2 Determie the umber of bits,, eeded for the Subet ID field Step 3 Determie the umber of bits, m, eeded for the Host ID field Step 4 Determie the subet mask for your etwork Step 5 Determie the total umber of subets available Step 6 Determie the maximum umber of hosts per subet Step 7 For each subet determie: a) The etwork address b) The rage of host addresses c) The broadcast address Step 1 Determie the umber of subets required by your istallatio This will deped o your curret istallatio ad is used as the startig poit for this discussio. I this example we will assume that we require 17 subets Kevi Lillis,
4 Step 2 Determie the umber of bits,, eeded for the Subet ID field This ca be doe i two ways. The first way is ituitive ad ivolves simply lookig at the decimal values of various biary umbers ad decidig the miimum umber of bits required to represet the umber of subets. The secod way is more aalytic. The umber of bits required is defied by the followig equatio: umber of subets = 2 2 Oce you kow the umber of subets required, you ca solve the equatio for to determie the umber of bits to use for your Subet ID. I this example the umber of subets eeded is 17. Therefore, 17 = 2 2 Solvig for 17 = = 2 19 = 2 l(19) = l(2 l(19) = l(2) l(19) l(2) = ) Sice it makes o sese to talk about 4.2 bits, we will say that the umber of bits required to represet our 17 subets is 5. Step 3 Determie the umber of bits, m, eeded for the Host ID field This is defied as m = 32 umber of bits i the Network Address I this example we have a Class C address which uses the first three octets (24 bits) for the Network ID. I the previous step we determied that = 5. So m = m = Kevi Lillis,
5 Step 4 Determie the subet mask for your etwork. As stated above, a subet mask fills each bit of the exteded etwork prefix with a 1 ad each bit of the Host ID with a 0. So first the exteded etwork prefix eeds to be idetified. Oe way to do this is to write the etwork IP address i its biary form ad draw a vertical lie just to the right of the Network ID field. Network IP etwork address = i biary this is Next, cout bits from the vertical lie ad draw a secod vertical lie These two vertical lies divide the 32 bit IP address ito three sectios, correspodig to the Network ID, Subet ID, ad Host ID fields respectively. The exteded etwork prefix cosists of the Network ID ad Subet ID fields. Fillig each bit i these fields with a 1 ad fillig the bits of the Host ID field with 0 will give us the etwork mask I dotted decimal otatio this is subet mask = Step 5 Determie the total umber of subets available This ca be determied by umber of subets = 2 2 where = the umber of bits used for the Subet ID field. i this example = 5, so umber of subets = = Kevi Lillis,
6 Step 6 Determie the maximum umber of hosts per subet This is defied as umber of hosts per subet = 2 m 2 where m = the umber of bits used i the Host ID field I this example m = 3, so umber of hosts per subet = = 8 2 = 6 Step 7 For each subet determie: a) The etwork address b) The rage of host addresses c) The broadcast address I this example there are 30 possible subets. We will cosider oly oe. a) Determie the etwork address We will select the first subet, which is I dotted decimal otatio this is b) Determie the rage of the host addresses I ay IP address, the Host ID field ca cotai ay combiatio of 1s ad 0s, except the combiatio of all 1s ad the combiatio of all 0s. Therefore the first host address is I dotted decimal otatio this is Kevi Lillis,
7 The last host address would likewise be I dotted decimal otatio this is So the rage if host addresses is to c) Determie the broadcast address I broadcast address for a IP etwork simply fills the Host ID field with all 1s. So the broadcast address would be I dotted decimal otatio this would be Kevi Lillis,
Multiplexers and Demultiplexers
I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationhp calculators HP 12C Statistics  average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics  average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
More informationDomain 1: Designing a SQL Server Instance and a Database Solution
Maual SQL Server 2008 Desig, Optimize ad Maitai (70450) 18004186789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationBaan Service Master Data Management
Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationTime Value of Money, NPV and IRR equation solving with the TI86
Time Value of Moey NPV ad IRR Equatio Solvig with the TI86 (may work with TI85) (similar process works with TI83, TI83 Plus ad may work with TI82) Time Value of Moey, NPV ad IRR equatio solvig with
More informationA Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 168040030 haupt@ieee.org Abstract:
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More informationCME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationPredictive Modeling Data. in the ACT Electronic Student Record
Predictive Modelig Data i the ACT Electroic Studet Record overview Predictive Modelig Data Added to the ACT Electroic Studet Record With the release of studet records i September 2012, predictive modelig
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationDomain 1: Configuring Domain Name System (DNS) for Active Directory
Maual Widows Domai 1: Cofigurig Domai Name System (DNS) for Active Directory Cofigure zoes I Domai Name System (DNS), a DNS amespace ca be divided ito zoes. The zoes store ame iformatio about oe or more
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More information(VCP310) 18004186789
Maual VMware Lesso 1: Uderstadig the VMware Product Lie I this lesso, you will first lear what virtualizatio is. Next, you ll explore the products offered by VMware that provide virtualizatio services.
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationCS100: Introduction to Computer Science
Review: History of Computers CS100: Itroductio to Computer Sciece Maiframes Miicomputers Lecture 2: Data Storage  Bits, their storage ad mai memory Persoal Computers & Workstatios Review: The Role of
More informationPERMUTATIONS AND COMBINATIONS
Chapter 7 PERMUTATIONS AND COMBINATIONS Every body of discovery is mathematical i form because there is o other guidace we ca have DARWIN 7.1 Itroductio Suppose you have a suitcase with a umber lock. The
More informationAPPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID.
APPENDIX B IP Subnetting IP Addressing Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. IP Classes An IP address is
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationSecurity Functions and Purposes of Network Devices and Technologies (SY0301) 18004186789. Firewalls. Audiobooks
Maual Security+ Domai 1 Network Security Every etwork is uique, ad architecturally defied physically by its equipmet ad coectios, ad logically through the applicatios, services, ad idustries it serves.
More informationEngineering Data Management
BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package
More informationFinding the circle that best fits a set of points
Fidig the circle that best fits a set of poits L. MAISONOBE October 5 th 007 Cotets 1 Itroductio Solvig the problem.1 Priciples............................... Iitializatio.............................
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationChapter 10 Computer Design Basics
Logic ad Computer Desig Fudametals Chapter 10 Computer Desig Basics Part 1 Datapaths Charles Kime & Thomas Kamiski 2004 Pearso Educatio, Ic. Terms of Use (Hyperliks are active i View Show mode) Overview
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationODBC. Getting Started With Sage Timberline Office ODBC
ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.
More informationMATH 083 Final Exam Review
MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period
More informationEscola Federal de Engenharia de Itajubá
Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica PósGraduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationLecture 2: Karger s Min Cut Algorithm
priceto uiv. F 3 cos 5: Advaced Algorithm Desig Lecture : Karger s Mi Cut Algorithm Lecturer: Sajeev Arora Scribe:Sajeev Today s topic is simple but gorgeous: Karger s mi cut algorithm ad its extesio.
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationUnderstanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions
Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isketu tadeoff ad time value of
More informationDomain 1  Describe Cisco VoIP Implementations
Maual ONT (6428) 18004186789 Domai 1  Describe Cisco VoIP Implemetatios Advatages of VoIP Over Traditioal Switches Voice over IP etworks have may advatages over traditioal circuit switched voice etworks.
More informationBENEFITCOST ANALYSIS Financial and Economic Appraisal using Spreadsheets
BENEITCST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal  Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts
More informationForecasting techniques
2 Forecastig techiques this chapter covers... I this chapter we will examie some useful forecastig techiques that ca be applied whe budgetig. We start by lookig at the way that samplig ca be used to collect
More informationQuestion 3.1.1. Question 3.2.1. Question 3.3.1. EdTech 552: Lab 3 Answer Sheet
Question 3.1.1 Question Answers a. 123 01111011 b. 202 11001010 c. 67 01000011 d. 7 00000111 e. 252 11111100 f. 91 01011011 g. 116.127.71.3 01110100.01111111.01010001.00000011 h. 255.255.255.0 11111111.11111111.11111111.00000000
More informationSolving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More information5.3. Generalized Permutations and Combinations
53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationBaanERP 5.0c. EDI User Guide
BaaERP 5.0c A publicatio of: Baa Developmet B.V. P.O.Box 143 3770 AC Bareveld The Netherlads Prited i the Netherlads Baa Developmet B.V. 1999. All rights reserved. The iformatio i this documet is subject
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationiprox sensors iprox inductive sensors iprox programming tools ProxView programming software iprox the world s most versatile proximity sensor
iprox sesors iprox iductive sesors iprox programmig tools ProxView programmig software iprox the world s most versatile proximity sesor The world s most versatile proximity sesor Eato s iproxe is syoymous
More informationModule 10 Subnetting Class A, B and C addresses. Solutions to the Lab Exercises 10.3.5a, 10.3.5b, 10.3.5c and 10.3.5d
Module 10 Subnetting Class A, B and C addresses Solutions to the Lab Exercises 10.3.5a, 10.3.5b, 10.3.5c and 10.3.5d 10.3.5a Basic Subnetting Use the following information and answer the following subnet
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More information5 Interconnection Networks
5 Itercoectio Networks 5. INTRODUCTION Networkig strategy was origially employed i the 950's by the telephoe idustry as a meas of reducig the time required for a call to go through. Similarly, the computer
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More information7.1 Finding Rational Solutions of Polynomial Equations
4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?
More informationFast Fourier Transform
18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More informationListing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2
74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is
More informationLecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.
18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: CouratFischer formula ad Rayleigh quotiets The
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam FM/CAS Exam 2
TO: Users of the ACTEX Review Semiar o DVD for SOA Exam FM/CAS Exam FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Exam FM (CAS
More information! encor e networks TM
! ecor e etworks TM Copyright 2003 Ecore Networks, Ic. All rights reserved. SigalPath 201 (SP201 ) Istallatio Guide Versio C, July 2004 Part Number 15469.1000 SigalPath Software Versio 1100 This Istallatio
More informationThe Binomial Multi Section Transformer
4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi Sectio Trasforer Recall that a ultisectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω
More informationCapacity of Wireless Networks with Heterogeneous Traffic
Capacity of Wireless Networks with Heterogeeous Traffic Migyue Ji, Zheg Wag, Hamid R. Sadjadpour, J.J. GarciaLuaAceves Departmet of Electrical Egieerig ad Computer Egieerig Uiversity of Califoria, Sata
More informationSEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationLearning objectives. Duc K. Nguyen  Corporate Finance 21/10/2014
1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the timevalue
More informationNEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,
NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationOn the Capacity of Hybrid Wireless Networks
O the Capacity of Hybrid ireless Networks Beyua Liu,ZheLiu +,DoTowsley Departmet of Computer Sciece Uiversity of Massachusetts Amherst, MA 0002 + IBM T.J. atso Research Ceter P.O. Box 704 Yorktow Heights,
More informationMatrix Model of Trust Management in P2P Networks
Matrix Model of Trust Maagemet i P2P Networks Miroslav Novotý, Filip Zavoral Faculty of Mathematics ad Physics Charles Uiversity Prague, Czech Republic miroslav.ovoty@mff.cui.cz Abstract The trust maagemet
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationHow to use what you OWN to reduce what you OWE
How to use what you OWN to reduce what you OWE Maulife Oe A Overview Most Caadias maage their fiaces by doig two thigs: 1. Depositig their icome ad other shortterm assets ito chequig ad savigs accouts.
More information