A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design


 Damon Townsend
 3 years ago
 Views:
Transcription
1 A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA Abstract: This paper describes a geetic algorithm (GA) that optimizes chromosomes cotaiig a mix of cotiuous ad biary ecoded variables. Uiform crossover from the biary GA ad a mutatio rate aki to that of the cotiuous GA are fudametal parts of the algorithm. Parameter selectio as well as a applicatio to atea desig are preseted. Keywords: Geetic algorithm, optimizatio, microstrip atea 1. Itroductio Most optimizatio problems work with cotiuous values. If the variables have iteger values, the special algorithms must be used. If cotiuous values ad itegers are part of the same optimizatio problem, the it is kow as mixed iteger optimizatio, ad popular approaches, such as brach ad boud, are used. The geetic algorithm ad particle swarm optimizatio have also bee used for mixed iteger optimizatio. This paper presets a GA formulatio that simultaeously works with cotiuous, iteger, ad biary values i oe chromosome. Operators for his ew algorithm is described i the ext sectio ad applicatios to a circularly polarized patch atea desigs are show i the followig sectio. The beauty of this algorithm is that it ca optimize o ay type of variable value without a chage i the algorithm.. Mixed Iteger/Biary GA The iitial populatio matrix of the GA is give by a a a a1 a P ar1 a C RC (1) 591
2 where 0 a rc 1. Each row is a chromosome ad the values are created by a uiform radom umber geerator. A cost fuctio evaluates each chromosome ad returs a cost. m1 m mc cost f a, a,, a () Iside the cost fuctio, the variables may be coverted to a ew cotiuous rage by or coverted to a iteger by x x x a x (3) max mi m mi x roudup x x a x (4) max mi m mi where roudup rouds to the ext highest iteger ad x values are itegers. I some cases, the value is coverted to biary. Oe possibility is to roud the value. x m roud a (5) Aother possibility is to quatize the value. x m quatize a (6) The cost fuctio does all the scalig, quatizig, ad roudig, so the GA ca operate idepedet of the type of variable. Uiform crossover works well for the biary GA, so it is implemeted here. Two parets are selected ad a radom biary mask is created. If the mask has a oe i the colum, the the offsprig receives the variable value i paret#1. If it has a zero, the the offsprig receives the variable value i paret#. paret #1 a a a a a a a a a m1 m m3 m4 m5 m6 m7 m8 m9 paret # a a a a a a a a a mask offsprig a a a a a a a a a m1 m3 m4 5 m6 7 8 m9 (7) This type of crossover results i a diversity of values if the values are biary, but oly iterchages values betwee chromosomes if the values are iteger or cotiuous. Cosequetly, the mutatio must be resposible for creatig diversity withi the populatio for cotiuous ad iteger values. Oe possible approach to mutatio is to radomly select variables i the populatio ad replace them with uiform radom values. The mutated chromosome ( chrom ) is created from the selected chromosome (chrom ) by chrom a a a a a a a a a (8) r1 r r3 r4 r5 r6 r7 r8 r9 59
3 where the primed values are uiform radom umbers. Aother approach is to add a radom correctio factor. The correctio factor may be created by multiplyig each elemet withi a chromosome by a radom umber ( 1 rm 1) ad multiplyig the etire chromosome by a mutatio factor ( 0 r 1). c chrom r r1ar1 rar r3ar3 r4ar4 r5ar5 r6ar6 r7ar7 r8ar8 r9ar9 Now, the mutated chromosome is give by (9) c (10) chrom rem chrom chrom where rem is the remaider fuctio (digits to the left of the decimal poit are dropped). This algorithm was tested o two cost fuctios to try to determie a appropriate populatio size ad r. I both cases, the GA quit after 400 fuctio evaluatios ad reported the best results. The first test fuctios is f 1 6 x x (11) with a miimum of zero at x 0. The results show i Figure 1 were averaged over 100 rus for populatio sizes betwee 8 ad 96 ad mutatio rates betwee 0.01 ad 0.3. The best results occurred whe the populatio size was 8 ad the mutatio rate was Figure 1. GA results for f 1 averaged over 100 rus for various populatio sizes ad mutatio rates. 593
4 The secod test fuctios is cos f x x x (1) with a miimum of zero at x 0. The results show i Figure were averaged over 500 rus for populatio sizes betwee 8 ad 96 ad mutatio rates betwee ad 0.3. The best results occurred whe the populatio size was 40 ad the mutatio rate was Figure. GA results for f averaged over 500 rus for various populatio sizes ad mutatio rates. 3. Applicatios to Atea Desig The goal is to desig a rectagular patch for circular polarizatio at 10 GHz usig FEKO. Iput variables for the cost fuctio are x, y positio of probe feed L, L patch legth i x ad y directios x y h substrate thickess (either 1.575mm or 3.15mm) relative dielectric costat of the substrate (either. or.33) r The cost fuctio returs the followig value 594
5 E E cost max, E E, s E E 11 (13) The first two quatities i (13) equal zero for circular polarizatio, ad s 11 is zero for a perfect match to 50. Whe the patch is circularly polarized ad perfectly matched, the cost = 0. The optimizatio was performed usig the best populatio size ad mutatio rate for both test fuctios i the previous sectio. Results were averaged over 5 rus ad are summarized i Table 1. Figure 3 shows the best of five idepedet results for a populatio size of 8 ad r 0.10 ad for a populatio size of 40 ad r Sice the optimizatios were termiated after 400 fuctio calls, the umber of geeratios to covergece is differet for differet populatio sizes. Table 1. Cost statistics after 5 idepedet rus. maximum miimum average populatio size = 8 mutatio rate = populatio size = 40 mutatio rate = NelderMead dowhill simplex algorithm Figure 3. Covergece results for the two best rus with a populatio size of 40 ad r 0.01, ad a populatio size of 8 ad r The top two dashed curves are the populatio average ad the bottom two curves are the best populatio cost. The GA was termiated after 400 fuctio evaluatios. 595
6 The best chromosome traslates to the optimum desig values of x, y 1.6 mm,3.451mm Lx, Ly mm,10.138mm h 1.575mm. r The resultig patch is righthad elliptically polarized with a axial ratio of 1.09 ad s Coclusios May atea desigs have variables with iteger values ad with cotiuous values. This paper preseted a versio of a GA that works with values betwee zero ad oe ad uses biary uiform crossover ad cotiuous mutatio. The patch atea desig is a multiobjective optimizatio usig cotiuous ad biary variables. Refereces [1] Y. Li ad M. Ge, "Noliear mixed iteger programmig problems usig geetic algorithm ad pealty fuctio," [] Z. Gaig, "Costraied optimal power flow by mixediteger particle swarm optimizatio," [3] R.L. Haupt ad Sue Elle Haupt, Practical Geetic Algorithms, d editio, New York: Joh Wiley & Sos,
Modified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationChair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics
Chair for Network Architectures ad Services Istitute of Iformatics TU Müche Prof. Carle Network Security Chapter 2 Basics 2.4 Radom Number Geeratio for Cryptographic Protocols Motivatio It is crucial to
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationApplication of the Global Optimization Approaches to Planar NearField Antenna Phaseless Measurements
RADIOENGINEERING, VOL. 8, NO., APRIL 009 9 Applicatio of the Global Optimizatio Approaches to Plaar NearField Atea Phaseless Measuremets Ja PUSKELY, Zdeěk NOVÁČEK Dept. of Radio Electroics, Bro Uiversity
More informationDESIGN OPTIMIZATION OF 3D STEEL FRAME STRUCTURES
I DESIGN OPTIMIZATION OF 3D STEEL FRAME STRUCTURES 9.1 Objectives Two objectives are associated with this chapter. First is to ascertai the advatages, metioed i Chapter 8, of the developed algorithm cosiderig
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationEvaluation of Different Fitness Functions for the Evolutionary Testing of an Autonomous Parking System
Evaluatio of Differet Fitess Fuctios for the Evolutioary Testig of a Autoomous Parkig System Joachim Wegeer 1, Oliver Bühler 2 1 DaimlerChrysler AG, Research ad Techology, AltMoabit 96 a, D1559 Berli,
More informationDomain 1: Designing a SQL Server Instance and a Database Solution
Maual SQL Server 2008 Desig, Optimize ad Maitai (70450) 18004186789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More information(VCP310) 18004186789
Maual VMware Lesso 1: Uderstadig the VMware Product Lie I this lesso, you will first lear what virtualizatio is. Next, you ll explore the products offered by VMware that provide virtualizatio services.
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationTrading the randomness  Designing an optimal trading strategy under a drifted random walk price model
Tradig the radomess  Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationApproximating the Sum of a Convergent Series
Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece
More informationEngineering Data Management
BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package
More informationChapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationOn Formula to Compute Primes. and the n th Prime
Applied Mathematical cieces, Vol., 0, o., 3535 O Formula to Compute Primes ad the th Prime Issam Kaddoura Lebaese Iteratioal Uiversity Faculty of Arts ad cieces, Lebao issam.kaddoura@liu.edu.lb amih AbdulNabi
More informationUniversal coding for classes of sources
Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationThe Impact of Feature Selection on Web Spam Detection
I.J. Itelliget Systems ad Applicatios, 2012, 9, 6167 Published Olie August 2012 i MECS (http://www.mecspress.org/) DOI: 10.5815/ijisa.2012.09.08 The Impact of Feature Selectio o Web Spam Detectio Jaber
More informationPattern Synthesis Using Real Coded Genetic Algorithm and Accelerated Particle Swarm Optimization
Iteratioal Joural of Applied Egieerig Research ISSN 09734562 Volume 11, Number 6 (2016) pp 37533760 Research Idia Publicatios. http://www.ripublicatio.com Patter Sythesis Usig Real Coded Geetic Algorithm
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationDivide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015
CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationChapter 6: CPU Scheduling. Previous Lectures. Basic Concepts. Histogram of CPUburst Times. CPU Scheduler. Alternating Sequence of CPU And I/O Bursts
Multithreadig Memory Layout Kerel vs User threads Represetatio i OS Previous Lectures Differece betwee thread ad process Thread schedulig Mappig betwee user ad kerel threads Multithreadig i Java Thread
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More information*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
More information1 The Gaussian channel
ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.
More informationLecture 2: Karger s Min Cut Algorithm
priceto uiv. F 3 cos 5: Advaced Algorithm Desig Lecture : Karger s Mi Cut Algorithm Lecturer: Sajeev Arora Scribe:Sajeev Today s topic is simple but gorgeous: Karger s mi cut algorithm ad its extesio.
More informationOverview on SBox Design Principles
Overview o SBox Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA 721302 What is a SBox? SBoxes are Boolea
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationCS100: Introduction to Computer Science
Review: History of Computers CS100: Itroductio to Computer Sciece Maiframes Miicomputers Lecture 2: Data Storage  Bits, their storage ad mai memory Persoal Computers & Workstatios Review: The Role of
More informationsum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by
Statistics Module Revisio Sheet The S exam is hour 30 miutes log ad is i two sectios Sectio A 3 marks 5 questios worth o more tha 8 marks each Sectio B 3 marks questios worth about 8 marks each You are
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationhp calculators HP 12C Statistics  average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics  average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationA Faster ClauseShortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 4960 A Faster ClauseShorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More informationUsing a genetic algorithm to optimize the total cost for a locationroutinginventory problem in a supply chain with risk pooling
Joural of Applied Operatioal Research (2012) 4(1), 2 13 2012 Tadbir Operatioal Research Group Ltd. All rights reserved. www.tadbir.ca ISSN 17358523 (Prit), ISSN 19270089 (Olie) Usig a geetic algorithm
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationEscola Federal de Engenharia de Itajubá
Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica PósGraduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationQuadratics  Revenue and Distance
9.10 Quadratics  Reveue ad Distace Objective: Solve reveue ad distace applicatios of quadratic equatios. A commo applicatio of quadratics comes from reveue ad distace problems. Both are set up almost
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More information2.7 Sequences, Sequences of Sets
2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationInteger Factorization Algorithms
Iteger Factorizatio Algorithms Coelly Bares Departmet of Physics, Orego State Uiversity December 7, 004 This documet has bee placed i the public domai. Cotets I. Itroductio 3 1. Termiology 3. Fudametal
More informationThe Power of Free Branching in a General Model of Backtracking and Dynamic Programming Algorithms
The Power of Free Brachig i a Geeral Model of Backtrackig ad Dyamic Programmig Algorithms SASHKA DAVIS IDA/Ceter for Computig Scieces Bowie, MD sashka.davis@gmail.com RUSSELL IMPAGLIAZZO Dept. of Computer
More informationResearch Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More informationStudy on the application of the software phaselocked loop in tracking and filtering of pulse signal
Advaced Sciece ad Techology Letters, pp.3135 http://dx.doi.org/10.14257/astl.2014.78.06 Study o the applicatio of the software phaselocked loop i trackig ad filterig of pulse sigal Sog Wei Xia 1 (College
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationLecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.
18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: CouratFischer formula ad Rayleigh quotiets The
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More informationChapter XIV: Fundamentals of Probability and Statistics *
Objectives Chapter XIV: Fudametals o Probability ad Statistics * Preset udametal cocepts o probability ad statistics Review measures o cetral tedecy ad dispersio Aalyze methods ad applicatios o descriptive
More informationA Guide to the Pricing Conventions of SFE Interest Rate Products
A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationDAME  Microsoft Excel addin for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2
Itroductio DAME  Microsoft Excel addi for solvig multicriteria decisio problems with scearios Radomir Perzia, Jaroslav Ramik 2 Abstract. The mai goal of every ecoomic aget is to make a good decisio,
More informationLocating Performance Monitoring Mobile Agents in Scalable Active Networks
Locatig Performace Moitorig Mobile Agets i Scalable Active Networks Amir Hossei Hadad, Mehdi Dehgha, ad Hossei Pedram Amirkabir Uiversity, Computer Sciece Faculty, Tehra, Ira a_haddad@itrc.ac.ir, {dehgha,
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More informationTHE CARDINALITY CONSTRAINED MULTIPLE KNAPSACK PROBLEM
THE CARDINALITY CONSTRAINED MULTIPLE KNAPSACK PROBLEM A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MURAT ASLAN IN PARTIAL FULFILLMENT
More informationRoutine for 8Bit Binary to BCD Conversion
Algorithm  Fast ad Compact Usiged Biary to BCD Coversio Applicatio Note Abstract AN2338 Author: Eugee Miyushkovich, Ryshtu Adrij Associated Project: Yes Associated Part Family: CY8C24x23A, CY8C24x94,
More informationIran. J. Chem. Chem. Eng. Vol. 26, No.1, 2007. Sensitivity Analysis of Water Flooding Optimization by Dynamic Optimization
Ira. J. Chem. Chem. Eg. Vol. 6, No., 007 Sesitivity Aalysis of Water Floodig Optimizatio by Dyamic Optimizatio Gharesheiklou, Ali Asghar* + ; MousaviDehghai, Sayed Ali Research Istitute of Petroleum Idustry
More informationReliable Job Scheduler using RFOH in Grid Computing
VOL, NO, JULY 200 ISSN 20798407 2009200 CIS Joural All rights reserved http://wwwcisjouralorg Reliable Job Scheduler usig RFOH i Grid Computig Leyli Mohammad Khali Dept of Computer Sciece, Tabriz Uiversity
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationSystems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 6985295 Email: bcm1@cec.wustl.edu Supervised
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationMultiplexers and Demultiplexers
I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see
More informationIrreducible polynomials with consecutive zero coefficients
Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem
More information