

 Jeffrey Gold
 2 years ago
 Views:
Transcription
1 Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity of Utah I this paper we preset some prelimiary results o a cojecture by Paul Erdíos ë1,2,5ë cocerig coverig sets of cogrueces A coverig set cosists of a æite system of cogrueces with distict moduli, such thatevery iteger satisæes as a miimum oe of the cogrueces A iterestig cosequece of this cojecture is the depedece of the solutio o abudat umbers; a abudat umber is a iteger whose sum of its proper divisors exceeds the iteger Complemetary Sets Deæitio 1 If a ad b are itegers, the a mod b = fa; a æ b; a æ 2b;:::g : Deæitio 2 If a 1,a 2,:::,a,b 2 Z, the ëa 1 ;a 2 ;:::;a ëmodb = fa 1 mod bgëfa 2 mod bgëæææëfa mod bg = ë i=1 fa i mod bg : 1
2 CHAPTER 5 ON A CONJECTURE OF ERD í OS 2 The Remodulizatio Theorem ë3ë states that if a; b; c 2 Z ad cé0, the a mod b =ëa; a + b;:::;a+ bèc, 1èë mod cb : If we use Deæitio 2, the complemetary set of fa mod bg is give by fa mod bg c = Z fa mod bg =ë0; 1; 2;:::;a, 1;a+1;:::;b, 1ë mod b: I this case, the complemetary set cosists of b, 1 cogrueces modulo b We will always refer to the size of a set ad its complemet with respect to a speciæc modulus The followig theorem ad its proof is foud i ë4ë S i=1 ëa i;1;:::;a i;æbi ëmodb i o, where Theorem 1 The complemetary set of a i;j 6= a i;k for j 6= k, ad æ bi é b i, ad the b i are pairwise relatively prime, cotais exactly Q i=1 èb i, æ bi è cogrueces modulo Q i=1 b i Coverig Sets of Cogrueces I Daveport ë1ë, a problem has bee proposed to costruct a set of cogrueces with distict moduli, such thatevery iteger is cotaied i at least oe of the cogrueces of the system All moduli are ç 2, sice modulo 1 costitutes its ow complete residue system A extesio has bee proposed by Erdíos ë5ë: If give ay iteger N ç 1, does there exist aæitecoverig set of cogrueces usig oly distict moduli greater tha N? The followig system represets a set of coverig cogrueces for N = 1: 8 é x ç 0mod2 x ç 0mod3 x ç 1mod4 x ç 1mod6 x ç 11 mod 12 Note that the moduli are all divisors of 12 Usig the remodulizatio method to remodulize each cogruece to the modulus 12, wehave x ç ë0; 2; 4; 6; 8; 10ë mod 12 8é x ç ë0; 3; 6; 9ë mod 12 x ç ë1; 5; 9ë mod 12 è51è x ç ë1; 7ë mod 12 x ç ë11ë mod 12 By ispectio, this system costitutes a coverig system, because it is equivalet to the complete residue system modulo 12, that is, ë0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11ë
3 CHAPTER 5 ON A CONJECTURE OF ERD í OS 3 mod12 ç Z The questio aturally arises as to the possibility of costructig a set of coverig cogrueces whose moduli are pairwise relatively prime The aswer is o, as we will ow show The proof depeds o results of Theorem 1 S Theorem 2 Ay æite system of cogrueces ëa i=1 i;1;a i;2 ;:::;a ëmodb i;æbi i where the b i are pairwise relatively prime, ad a i;k 6= a i;m for k 6= m, ad æ bi éb i,caot form a coverig set of cogrueces Proof We use Theorem S 1, for the case æ bi =1for 1 ç i ç Forasystem of cogrueces f a i=1 i mod b i g with pairwise relatively prime moduli b i to be a coverig set, it is ecessary that the system of cogrueces forms a complete residue Q Q system, that is, a uio of b i=1 i distict èicogruetè residues modulo b i=1 i However, Q Q sice the complemetary set cosists of èb i=1 i,1è cogrueces modulo Q Q b i=1 i, the system cosists Q of Q Q b i=1 i, èb i=1 i, 1è cogrueces modulo b i=1 i This meas that b Q Q i=1 i, èb i=1 i, 1è must equal b i=1 i,or èb i=1 i,1è = 0; this is a cotradictio, sice 2 ç b 1 éb 2 ::éb That is to say,ittakes iæitely may cogrueces with pairwise relatively prime moduli to costruct a coverig set The situatio is actually muchworse; if we costruct a system of cogrueces è ë è ëa i;1 ;a i;2 ;:::;a i;æbi ëmodb i ; i=1 a system of cogrueces with æ bi residues for each modulus b i, where æ bi éb i, ad a i;k 6= a i;m for k 6= Q m, the the complemetary Q Q set cosists of èb i=1 i,æ bi è cogrueces modulo b i=1 i Here, èb i=1 i, æ bi è must equal zero, which is a cotradictio because b i, æ bi ç 1 Agai, it takes iæitely may such cogrueces to costruct a coverig set I the extreme case, whe æ bi = b i, 1, we have the system 8é o, x ç ëa 1;1 ;a 1;2 ;:::;a 1;b1,1ë modb 1 x ç ëa 2;1 ;a 2;2 ;:::;a 2;b2,1ë modb 2 x ç ëa ;1 ;a ;2 ;:::;a ;b,1ë modb è52è where the b i are pairwise relatively prime, ad each set of cogrueces modulo b i cotais b i,1 cogrueces, ie, oe cogruece shy of a complete residue system for each modulus b i Q Q The complemet of the system cosists Q of èb i=1 i,èb i,1èè cogruece modulo b i=1 i, or 1 cogruece modulo b i=1 i Hece the system è52è cotais a complete residue system oly if we cap it oæ with the last
4 CHAPTER 5 ON A CONJECTURE OF ERD í OS 4 remaiig residue modulo Q i=1 b i However, by addig to the system the remaiig cogruece, we have relaxed our requiremet that all the moduli are pairwise relatively prime Upshot If a æite system of distict cogrueces è52è with pairwise relatively prime moduli forms a coverig set, it must cotai a cogruece class which itself forms a complete residue system, or coverig set Suppose p 1 is a prime such that p 1 é N, ad M = p ç1 1 pç2 2 æææpç, where p 1 Q é p 2 é ::: é p The total umber of divisors of M which are ç M is èç i=1 i + 1è; however, to form a coverig set we may oly use Q all factors greater tha 1, the total umber of useable factors is ç =,1+ èç i=1 i +1è We ow costruct a system of ç cogrueces 8 é x ç c 1 mod d 1 x ç c 2 mod d 2 x ç c ç mod d ç è53è where the d i are the various factors of M = p ç1 1 pç2 2 æææpç,add 1 éd 2 ::é d ç Note that d 1 = p 1 ad d ç = M Observatio 1 The umber of cogrueces is give by çx i=1 M d i = M d 1 + M d 2 + æææ+ M d ç =1+d 1 + d 2 + æææ+ d ç,1 = ç 0 èmè ; after remodulizig all cogrueces of system è53è to the modulus M = p ç1 1 pç2 2 æææpç Here, ç 0 deotes the sum of all proper divisors, ie, all positive divisors less tha M Up to this poitwehave ot made ay claims about these residues modulo M, that is, we have ot yet determied how may repetitios exist, ad equivaletly, if the total umber of distict residues is suæciet to create a complete residue system modulo M We ca see, however, that the total umberofresiduesmust be at least M to form a complete residue system modulo M Therefore, M must be a abudat or perfect umber, that is, the sum of all proper divisors çx i=1 M d i =1+d 1 + d 2 + æææ+ d ç,1 = ç 0 èmè ç M i order for this system to cotai a complete residue system modulo M We have proved the followig theorem
5 CHAPTER 5 ON A CONJECTURE OF ERD í OS 5 Theorem 3 I order for the proper divisors of a umber M to costitute the moduli of a coverig set it is ecessary that M be perfect or abudat, ie, ç 0 èmè ç M We will prove i Theorem 5 that if M is a perfect umber, ie, ç 0 èmè =M, the a system è53è caot comprise a coverig set Observatio 2 It may ot be ecessary to use all divisors of a abudat umber M to form a coverig set; however, accordig to our eumeratio of the residues modulo M of system è53è, we must remove all residues associated with the divisors that are removed For example, suppose we do't use the divisor d k, the we must remove a total of M=d k residues from the set of ç 0 èmè residues couted i Observatio 1 However, the divisor d k caot cotai the greatest multiple of ay oe prime appearig i the prime decompositio M = p ç1 1 pç2 2 æææpç, for i that case, lcmèd 1 ;d 2 ;:::;d k,1;d k+1 ;:::;d ç è 6= M, that is to say, we would ot have remodulized the system to the modulus M, but istead to some modulus ém I the origial set 8 é x ç ë0; 2; 4; 6; 8; 10ë mod 12 x ç ë0; 3; 6; 9ë mod 12 x ç ë1; 5; 9ë mod 12 x ç ë1; 7ë mod 12 x ç ë11ë mod 12 we æd that the itegers 0,1,6, ad 9 represet 4 repetitios, sice ç 0 è12è,12 = 4 The total umber of repetitios that occur i a system è53è which forms a coverig set is ç 0 èmè,m The followig theorem eumerates the total umber of repetitios that occur i two cogrueces Theorem 4 If two cogrueces a 1 mod b 1 ad a 2 mod b 2, where gcdèb 1 ;b 2 è= 1, are remodulized to the modulus pb 1 b 2, where p 2 Z, the the solutio set èitersectioè cosists of p residues modulo pb 1 b 2 Proof If we obtai a pair of cogrueces ç x ç a1 mod b 1 x ç a 2 mod b 2 è54è where b 1 ad b 2 are relatively prime, the remodulizig each tomodulo b 1 b 2, the itersectio by the Chiese Remaider Theorem ë3ë is determied to be the uique cogruece x ç a 0 mod b 1 b 2, where a 1 ç a 0 ç a 1 + b 1 èb 2, 1è ad a 2 ç a 0 ç a 2 +b 2 èb 1,1è If the pair is remodulized, ot to the smallest modulus,
6 CHAPTER 5 ON A CONJECTURE OF ERD í OS 6 b 1 b 2, but istead to some multiple of it, say pb 1 b 2, where p is a positive iteger, the ç x ç ëa1 ;a 1 + b 1 ;:::;a 1 + b 1 èpb 2, 1èë mod pb 1 b 2 x ç ëa 2 ;a 2 + b 2 ;:::;a 2 + b 2 èpb 1, 1èë mod pb 1 b 2 è55è We show that the itersectio of è55è is ëa 0 ;a 0 + b 1 b 2 ;:::;a 0 + b 1 b 2 èp, 1èë mod pb 1 b 2 ; which is equivalet to the solutio a 0 mod b 1 b 2 of the origial pair after a 0 mod b 1 b 2 has bee remodulized by the factor p By writig the ærst cogruece of è55è as a 1 mod b 1 =ë a 1 ; a 1 + b 1 ; ::: a 1 + b 1 èb 2, 1è; a 1 + b 1 b 2 ; a 1 + b 1 + b 1 b 2 ; ::: a 1 + b 1 è2b 2, 1è; a 1 +èp, 1èb 1 b 2 ; a 1 + b 1 +èp, 1èb 1 b 2 ; ::: a 1 + b 1 èpb 2, 1èë mod pb 1 b 2 we ote that the ærst row cotais the solutio, a 0 mod pb 1 b 2 Moreover, by addig multiples of b 1 b 2 to the residue a 0, we æd the subsequet solutios withi the same colum; hece there are p solutios èmodulo pb 1 b 2 è Costructig the secod cogruece of è55è i the same maer, we extract the same p solutios Therefore, if a pair of cogrueces è54è is remodulized to the modulus pb 1 b 2, the they share exactly p simultaeous residues As a example, if we have the pair of cogrueces ç x ç a1 mod p 1 x ç a 2 mod p 2 which are remodulized to the modulus M = p ç1 1 pç2 2 æææpç, the they share residues modulo M M=p 1 p 2 = p èç1,1è 1 p èç2,1è 2 p ç3 3 æææpç Theorem 5 If M is a perfect umber, the a system of cogrueces whose moduli cosist of all divisors é 1 of M caot form a coverig set Proof Suppose M is a eve perfect umber ë6ë; the it is of the form 2 k p, where p is a odd prime of the form 2 k+1, 1 Suppose we form a system of cogrueces è53è where the d i are all divisors of M greater tha 1, ad remodulize all cogrueces modulo d i to the modulus M By Observatio 1, ç 0 èmè = M; a complete residue system modulo M must cotai M distict residues modulo M Sice p is prime, the cogrueces modulo 2 ad modulo p
7 CHAPTER 5 ON A CONJECTURE OF ERD í OS 7 share 1 residue modulo 2p, or2 k,1 residues modulo 2 k p by Theorem 4 These represet 2 k,1 repetitios, ad M, 2 k,1 ém= ç 0 èmè; hece the total umber of distict residues is ot suæciet to form a coverig set If M is a odd perfect umber èif ay existè, the it must cotai more tha 8 distict prime factors ë7ë Sice p 1 ad p 2 are two distict prime factors, their itersectio cotais 1 cogruece modulo p 1 p 2, or M=p 1 p 2 cogrueces modulo M I that case, M, M=p 1 p 2 ém= ç 0 èmè, meaig that the total umber of distict residues modulo M is too small for a system of cogrueces è53è to form a coverig set Remark 1 Theorems 3 ad 5 combied suggest that if for each N ç 2 there exists a coverig set whose distict moduli all exceed N, the there would exist abudat umbers whose least prime factor exceeds N This is true I fact, eve more is true Deæitio 3 A umber M is said to be abudat of order k ç 1 if ad oly if ç 0 èmè=m ék Theorem 6 If K ad N are ay itegers, the there exists a iteger M, abudat of order K, whoseleast prime factor exceeds N Proof Sice the primes are such P P that 1=p i = +1, we may Q select N é p 1 é p 2 é æææ é p such that 1=p i=1 i = K Set M = p i=1 i, the ç 0 èmè = 1+p 1 + p 2 + æææ + p 1 p 2 æææp,1 ad ç 0 èmè=m = 1=èp 1 æææp è+ 1=èp 2 æææp è+æææ+1=p 1 + æææ+1=p ék Remark 2 Theorem 6 shows that there are umbers M whose divisors caot yet be excluded from formig a coverig set whose moduli all exceed N However, a settlig of this cojecture may well require ædig methods that ca accurately accout for the total umber of repetitios that occur i such systems Refereces ë1ë Harold Daveport, The Higher Arithmetic, Dover Publicatios, Ic, New York, 1983 p 57 ë2ë Erdíos, Paul, O Itegers of the Form 2 k + p ad some Related Problems, Summa Brasiliesis Mathematicae, Istituto de Mathematica Pura e Aplicada, 1950, Vol 2, p 120 ë3ë Gold, Jeærey F ad Do H Tucker, Remodulizatio of Cogrueces, Proceedigs Natioal Coferece o Udergraduate Research, èuiversity of
8 CHAPTER 5 ON A CONJECTURE OF ERD í OS 8 North Carolia Press, Asheville, North Carolia, 1992è, Vol II, pp 1036í41 ë4ë Gold, Jeærey F ad Do H Tucker, Complemetary Sets of Systems of Cogrueces, Proceedigs Natioal Coferece o Udergraduate Research, èuiversity of North Carolia Press, Asheville, North Carolia, 1993è, Vol II, pp 793í96 ë5ë Wacèlaw Sierpiçski, Elemetary Theory of Numbers, Paçstwowe Wydawictwo Naukowe, Warszawa, 1964, pp 190, 413 ë6ë Keeth H Rose, Elemetary Number Theory ad its Applicatios, Third Editio, AddisoWesley Publishig Compay, Massachusetts, 1993, pp 223í 29 ë7ë David M Burto, Elemetary Number Theory, Secod Editio, Wm C Brow Publishers, Iowa, 1989, p 167
Chapter 4 Complementary Sets Of Systems Of Congruences Proceedings NCUR VII. è1993è, Vol. II, pp. 793í796. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationChapter 2 Remodulization of Congruences Proceedings NCUR VI. è1992è, Vol. II, pp. 1036í1041. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker Department
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationIrreducible polynomials with consecutive zero coefficients
Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More information5.3. Generalized Permutations and Combinations
53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More information4. Trees. 4.1 Basics. Definition: A graph having no cycles is said to be acyclic. A forest is an acyclic graph.
4. Trees Oe of the importat classes of graphs is the trees. The importace of trees is evidet from their applicatios i various areas, especially theoretical computer sciece ad molecular evolutio. 4.1 Basics
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE
Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationA Faster ClauseShortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 4960 A Faster ClauseShorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
More information
Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett
(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationNotes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a elemet set, (2) to fid for each the
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationRamseytype theorems with forbidden subgraphs
Ramseytype theorems with forbidde subgraphs Noga Alo Jáos Pach József Solymosi Abstract A graph is called Hfree if it cotais o iduced copy of H. We discuss the followig questio raised by Erdős ad Hajal.
More informationSolutions to Exercises Chapter 4: Recurrence relations and generating functions
Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationLecture 2: Karger s Min Cut Algorithm
priceto uiv. F 3 cos 5: Advaced Algorithm Desig Lecture : Karger s Mi Cut Algorithm Lecturer: Sajeev Arora Scribe:Sajeev Today s topic is simple but gorgeous: Karger s mi cut algorithm ad its extesio.
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More informationExploratory Data Analysis
1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More informationA Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 168040030 haupt@ieee.org Abstract:
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More informationChapter 8 Vector Products Revisited: A New and Eæcient Method of Proving Vector Identities Proceedings NCUR X. è1996è, Vol. II, pp. 994í998 Jeærey F. Gold Department of Mathematics, Department of Physics
More informationOn the L p conjecture for locally compact groups
Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/0302376, ublished olie 2007080 DOI 0.007/s0003007993x Archiv der Mathematik O the L cojecture for locally comact
More informationPresent Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More information2. Degree Sequences. 2.1 Degree Sequences
2. Degree Sequeces The cocept of degrees i graphs has provided a framewor for the study of various structural properties of graphs ad has therefore attracted the attetio of may graph theorists. Here we
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationInteger Factorization Algorithms
Iteger Factorizatio Algorithms Coelly Bares Departmet of Physics, Orego State Uiversity December 7, 004 This documet has bee placed i the public domai. Cotets I. Itroductio 3 1. Termiology 3. Fudametal
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationFrance caters to innovative companies and offers the best research tax credit in Europe
1/5 The Frech Govermet has three objectives : > improve Frace s fiscal competitiveess > cosolidate R&D activities > make Frace a attractive coutry for iovatio Tax icetives have become a key elemet of public
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationChapter 1 A Pri Characterization of T m e Pairs w in Proceedings NCUR V. (1991), Vol. I, pp. 362{366. Jerey F. Gold Department of Mathematics, Department of Physics University of Utah DonH.Tucker Department
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationPerfect Packing Theorems and the AverageCase Behavior of Optimal and Online Bin Packing
SIAM REVIEW Vol. 44, No. 1, pp. 95 108 c 2002 Society for Idustrial ad Applied Mathematics Perfect Packig Theorems ad the AverageCase Behavior of Optimal ad Olie Bi Packig E. G. Coffma, Jr. C. Courcoubetis
More informationChatpun Khamyat Department of Industrial Engineering, Kasetsart University, Bangkok, Thailand ocpky@hotmail.com
SOLVING THE OIL DELIVERY TRUCKS ROUTING PROBLEM WITH MODIFY MULTITRAVELING SALESMAN PROBLEM APPROACH CASE STUDY: THE SME'S OIL LOGISTIC COMPANY IN BANGKOK THAILAND Chatpu Khamyat Departmet of Idustrial
More informationDomain 1: Designing a SQL Server Instance and a Database Solution
Maual SQL Server 2008 Desig, Optimize ad Maitai (70450) 18004186789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More information1.3. VERTEX DEGREES & COUNTING
35 Chapter 1: Fudametal Cocepts Sectio 1.3: Vertex Degrees ad Coutig 36 its eighbor o P. Note that P has at least three vertices. If G x v is coected, let y = v. Otherwise, a compoet cut off from P x v
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationAnalysis Notes (only a draft, and the first one!)
Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationSINCE its introduction, the data cube model [1] has found
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 2, APRILJUNE 200 7 Practical Iferece Cotrol for Data Cubes Haibig Lu ad Yigjiu Li, Member, IEEE Abstract The fudametal problem for iferece
More informationThe Power of Free Branching in a General Model of Backtracking and Dynamic Programming Algorithms
The Power of Free Brachig i a Geeral Model of Backtrackig ad Dyamic Programmig Algorithms SASHKA DAVIS IDA/Ceter for Computig Scieces Bowie, MD sashka.davis@gmail.com RUSSELL IMPAGLIAZZO Dept. of Computer
More informationTerminology for Bonds and Loans
³ ² ± Termiology for Bods ad Loas Pricipal give to borrower whe loa is made Simple loa: pricipal plus iterest repaid at oe date Fixedpaymet loa: series of (ofte equal) repaymets Bod is issued at some
More informationFM4 CREDIT AND BORROWING
FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer
More informationHow to use what you OWN to reduce what you OWE
How to use what you OWN to reduce what you OWE Maulife Oe A Overview Most Caadias maage their fiaces by doig two thigs: 1. Depositig their icome ad other shortterm assets ito chequig ad savigs accouts.
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam FM/CAS Exam 2
TO: Users of the ACTEX Review Semiar o DVD for SOA Exam FM/CAS Exam FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Exam FM (CAS
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationChair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics
Chair for Network Architectures ad Services Istitute of Iformatics TU Müche Prof. Carle Network Security Chapter 2 Basics 2.4 Radom Number Geeratio for Cryptographic Protocols Motivatio It is crucial to
More informationFast Fourier Transform
18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.
More informationRanking Irregularities When Evaluating Alternatives by Using Some ELECTRE Methods
Please use the followig referece regardig this paper: Wag, X., ad E. Triataphyllou, Rakig Irregularities Whe Evaluatig Alteratives by Usig Some ELECTRE Methods, Omega, Vol. 36, No. 1, pp. 4563, February
More informationEngineering Data Management
BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package
More informationFloating Codes for Joint Information Storage in Write Asymmetric Memories
Floatig Codes for Joit Iformatio Storage i Write Asymmetric Memories Axiao (Adrew Jiag Computer Sciece Departmet Texas A&M Uiversity College Statio, TX 77843311 ajiag@cs.tamu.edu Vaske Bohossia Electrical
More informationBENEFITCOST ANALYSIS Financial and Economic Appraisal using Spreadsheets
BENEITCST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal  Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationEntropy of bicapacities
Etropy of bicapacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uivates.fr JeaLuc Marichal Applied Mathematics
More informationON THE EDGEBANDWIDTH OF GRAPH PRODUCTS
ON THE EDGEBANDWIDTH OF GRAPH PRODUCTS JÓZSEF BALOGH, DHRUV MUBAYI, AND ANDRÁS PLUHÁR Abstract The edgebadwidth of a graph G is the badwidth of the lie graph of G We show asymptotically tight bouds o
More informationOne Goal. 18Months. Unlimited Opportunities.
18 fasttrack 18Moth BACHELOR S DEGREE completio PROGRAMS Oe Goal. 18Moths. Ulimited Opportuities. www.ortheaster.edu/cps FastTrack Your Bachelor s Degree ad Career Goals Complete your bachelor s degree
More informationGCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4
GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook Alevel Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5
More informationDAME  Microsoft Excel addin for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2
Itroductio DAME  Microsoft Excel addi for solvig multicriteria decisio problems with scearios Radomir Perzia, Jaroslav Ramik 2 Abstract. The mai goal of every ecoomic aget is to make a good decisio,
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationOn secure and reliable communications in wireless sensor networks: Towards kconnectivity under a random pairwise key predistribution scheme
O secure ad reliable commuicatios i wireless sesor etworks: Towards kcoectivity uder a radom pairwise key predistributio scheme Faruk Yavuz Dept. of ECE ad CyLab Caregie Mello Uiversity Moffett Field,
More informationSystems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 6985295 Email: bcm1@cec.wustl.edu Supervised
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More information