Save this PDF as:

Size: px
Start display at page:

Download "0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5"

## Transcription

1 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e. decide betwee the followig hypotheses: H 0 : P = P 0, H 1 : P = P 0. We already kow how to test this hypothesis usig chi-squared goodess-of-fit test. If distributio P 0 is cotiuous we had to group the data ad cosider a weaker discretized ull hypothesis. We will ow cosider a differet test for H 0 based o a very differet idea that avoids this discretizatio all data ormal fit 0.8 me data me fit wome data wome fit Cumulative probability Cumulative probability Data Data Figure 13.1: (a) Normal fit to the etire sample. (b) Normal fit to me ad wome separately. Example.(KS test) Let us agai look at the ormal body temperature dataset. Let all be a vector of all 130 observatios ad me ad wome be vectors of legth 65 each correspodig to me ad wome. First, we fit ormal distributio to the etire set all. MLE ˆµ ad ˆ are 83

2 mea(all) = , std(all,1) = We see i figure 13.1 (a) that this distributio fits the data very well. Let us perfom KS test that the data comes from this distributio N(ˆµ, ˆ2). To ru the test, first, we have to create a vector of N(ˆµ, ˆ2) c.d.f. values o the sample all (it is a required iput i Matlab KS test fuctio): CDFall=ormcdf(all,mea(all),std(all,1)); The we ru Matlab kstest fuctio [H,P,KSSTAT,CV] = kstest(all,[all,cdfall],0.05) which outputs H = 0, P = , KSSTAT = , CV = We accept H 0 sice the p-value is CV is a critical value such that H 0 is rejected if statistic KSSTAT > CV. Remark. KS test is desiged to test a simple hypothesis P = P 0 for a give specified distributio P 0. I the example above we estimated this distributio, N(ˆµ, ˆ2) from the data so, formally, KS is iaccurate i this case. There is a versio of KS test, called Lilliefors test, that tests ormality of the distributio by comparig the data with a fitted ormal distributio as we did above, but with a correctio to give a more accurate approximatio of the distributio of the test statistic. Example. (Lilliefors test.) We use Matlab fuctio [H,P,LSTAT,CV] = lillietest(all) that outputs H = 0, P = , LSTAT = , CV = We accept the ormality of all with p-value Example. (KS test for two samples.) Next, we fit ormal distributios to me ad wome separately, see figure 13.1 (b). We see that they are slightly differet so it is a atural questio to ask whether this differece is statistically sigificat. We already looked at this problem i the lecture o t-tests. Uder a reasoable assumptio that body temperatures of me ad wome are ormally distributed, all t-tests - paired, with equal variaces ad with uequal variaces - rejected the hypothesis that the mea body temperatures are equal µ me = µ wome. I this sectio we will describe a KS test for two samples that tests the hypothesis H 0 : P 1 = P 2 that two samples come from the same distributio. Matlab fuctio kstest2 [H,P,KSSTAT] = kstest2(me, wome) 84

3 outputs H = 0, P = , KSSTAT = It accepts the ull hypothesis sice p-value > 0.05 = - a default value of the level of sigificace. Accordig to this test, the differece betwee two samples is ot sigificat eough to say that they have differet distributio. Let us ow explai some ideas behid these tests. Let us deote by F (x) = P(X 1 x) a c.d.f. of a true uderlyig distributio of the data. We defie a empirical c.d.f. by 1 F (x) = P (X x) = I(X i x) i=1 that couts the proportio of the sample poits below level x. For ay fixed poit x R the law of large umbers implies that F (x) = 1 I(X i x) EI(X 1 x) = P(X 1 x) = F (x), i=1 i.e. the proportio of the sample i the set (, x] approximates the probability of this set. It is easy to show from here that this approximatio holds uiformly over all x R: sup F (x) F (x) 0 xr i.e. the largest differece betwee F ad F goes to 0 i probability. The key observatio i the Kolmogorov-Smirov test is that the distributio of this supremum does ot deped o the ukow distributio P of the sample, if P is cotiuous distributio. Theorem 1. If F (x) is cotiuous the the distributio of does ot deped o F. Proof. Let us defie the iverse of F by sup F (x) F (x) xr F 1 (y) = mi{x : F (x) y}. The makig the chage of variables y = F (x) or x = F 1 (y) we ca write P(sup F (x) F (x) t) = P( sup F (F 1 (y)) y t). xr 0y1 Usig the defiitio of the empirical c.d.f. F we ca write F (F 1 (y)) = 1 I(X i F 1 (y)) = 1 I(F (X i ) y) i=1 i=1 85

4 Cumulative probability sup F (x) F (x) x frag replacemets Figure 13.2: Kolmogorov-Smirov test statistic. ad, therefore, 1 P( sup F (F 1 (y)) y t) = P sup I(F (X i ) y) y t. 0y1 0y1 The distributio of F (X i ) is uiform o the iterval [0, 1] because the c.d.f. of F (X 1 ) is P(F (X 1 ) t) = P(X 1 F 1 (t)) = F (F 1 (t)) = t. Therefore, the radom variables U i = F (X i ) for i are idepedet ad have uiform distributio o [0, 1], so we proved that 1 P(sup F (x) F (x) t) = P sup I(U i y) y t xr which is clearly idepedet of F. 0y1 i=1 i=1 86

5 To motivate KS test, we will eed oe more result which we will formulate without proof. First of all, let us ote that for a fixed poit x the CLT implies that d (F (x) F (x)) N 0, F (x)(1 F (x)) because F (x)(1 F (x)) is the variace of I(X 1 x). If turs out that if we cosider sup F (x) F (x) it will also coverge i distributio. Theorem 2. We have, xr P sup F (x) F (x) t H(t) = 1 2 ( 1) i 1 xr where H(t) is the c.d.f. of Kolmogorov-Smirov distributio. e 2i2 t Let us reformulate the hypotheses i terms of cumulative distributio fuctios: H 0 : F = F 0 vs. H 1 : F = F 0, where F 0 is the c.d.f. of P 0. Let us cosider the followig statistic D = sup F (x) F 0 (x). xr If the ull hypothesis is true the, by Theorem 1, we distributio of D ca be tabulated (it will deped oly o ). Moreover, if is large eough the the distributio of D is approximated by Kolmogorov-Smirov distributio from Theorem 2. O the other had, suppose that the ull hypothesis fails, i.e. F = F 0. Sice F is the true c.d.f. of the data, by law of large umbers the empirical c.d.f. F will coverge to F ad as a result it will ot approximate F 0, i.e. for large we will have sup F (x) F 0 (x) > x for some small eough. Multiplyig this by implies that If H 0 fails the D > + as. Therefore, to test H 0 we will cosider a decisio rule H = 0 : D c H 1 : D > c i=1 D = sup F (x) F 0 (x) >. xr The threshold c depeds o the level of sigificace ad ca be foud from the coditio = P( = H 0 H 0 ) = P(D c H 0 ). 87

6 Sice uder H 0 the distributio of D ca be tabulated for each, we ca fid the threshold c = c from the tables. I fact, most statistical table books have these distributios for up to 100. Seems like Matlab has these tables built i the kstest but the distributio of D is ot available as a separate fuctio. Whe is large the we ca use KS distributio to fid c sice = P(D c H 0 ) 1 H(c). ad we ca use the table for H to fid c. KS test for two samples. Kolmogorov-Smirov test for two samples is very similar. Suppose that a first sample X 1,..., X m of size m has distributio with c.d.f. F (x) ad the secod ssmple Y 1,..., Y of size has distributio with c.d.f. G(x) ad we wat to test H 0 : F = G vs. H 1 : F = G. If F m (x) ad G (x) are correspodig empirical c.d.f.s the the statistic m 1/2 D m = sup F m (x) G (x) m + satisfies Theorems 1 ad 2 ad the rest is the same Example. Let us cosider a sample of size 10: 0.58, 0.42, 0.52, 0.33, 0.43, 0.23, 0.58, 0.76, 0.53, 0.64 ad let us test the hypothesis that the distributio of the sample is uiform o [0, 1] i.e. H 0 : F (x) = F 0 (x) = x. The figure 13.3 shows the c.d.f. F 0 ad empirical c.d.f. F (x). To compute D we otice that the largest differece betwee F 0 (x) ad F (x) is achieved either before or after oe of the jumps, i.e. F (X i ) F (X i ) - before the ith jump sup F (x) F (x) = max 1i F (X i ) F (X i ) - after the ith jump. 0x1 Writig these differeces for our data we get before the jump after the jump The largest value will be achieved at = 0.26 ad, therefore, D = sup F (x) x = = x1 x 88

7 1 Empirical CDF sup F (x) x 0x1 = 0.26 F(x) frag replacemets x Figure 13.3: F ad F 0 i the example. If we take the level of sigificace = 0.05 ad use KS approximatio of Theorem 2 to fid threshold c: 1 H(c) = 0.05 c = 1.35, the accordig to KS test = H 1 : D 1.35 H 2 : D > 1.35 we accept the ull hypothesis H 0 sice D = 0.82 < c = However, we have oly = 10 observatios so the approximatio of Theorem 2 might be iaccurate. We could use the advaced statistical tables to fid the distibutio of D for = 10 or let Matlab do it. Ruig [H,P,KSSTAT,CV] = kstest(x,[x,x],0.05) (remark 1 ) outputs H = 0, P = , KSSTAT = , CV = Here the secod iput of kstest should be a 2 matrix where the first colum is the data X ad the secod colum is the correspodig values of c.d.f. F 0 (x). But sice we test with F 0 (x) = x, the secod colum is equal to X ad, thus, we iput [X,X] 89

8 Sice Matlab fuctio kstest does ot scale the statistic by sice it is usig the exact distributio of sup x F (x) F (x) istead of approximatio of Theorem 2, the critical value CV mupliplied by, i.e = will be exactly our threshold such that P(D > c H 0 ) = = It is slightly differet from c = 1.35 give by the approximatio of Theorem 2. So for small sample sizes it is better to use the exact distributio of D. 90

### Output Analysis (2, Chapters 10 &11 Law)

B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

### Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

### 15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

### Chapter 7 Methods of Finding Estimators

Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

### Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

### THE TWO-VARIABLE LINEAR REGRESSION MODEL

THE TWO-VARIABLE LINEAR REGRESSION MODEL Herma J. Bieres Pesylvaia State Uiversity April 30, 202. Itroductio Suppose you are a ecoomics or busiess maor i a college close to the beach i the souther part

### PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

### Incremental calculation of weighted mean and variance

Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

### PSYCHOLOGICAL STATISTICS

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

### Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

### Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

### Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

### A Mathematical Perspective on Gambling

A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

### Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

### LECTURE 13: Cross-validation

LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

### Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

### A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design

A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 haupt@ieee.org Abstract:

### 5 Boolean Decision Trees (February 11)

5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

### INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

### TI-83, TI-83 Plus or TI-84 for Non-Business Statistics

TI-83, TI-83 Plu or TI-84 for No-Buie Statitic Chapter 3 Eterig Data Pre [STAT] the firt optio i already highlighted (:Edit) o you ca either pre [ENTER] or. Make ure the curor i i the lit, ot o the lit

### Department of Computer Science, University of Otago

Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

### Now here is the important step

LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

### OMG! Excessive Texting Tied to Risky Teen Behaviors

BUSIESS WEEK: EXECUTIVE EALT ovember 09, 2010 OMG! Excessive Textig Tied to Risky Tee Behaviors Kids who sed more tha 120 a day more likely to try drugs, alcohol ad sex, researchers fid TUESDAY, ov. 9

### arxiv:1506.03481v1 [stat.me] 10 Jun 2015

BEHAVIOUR OF ABC FOR BIG DATA By Wetao Li ad Paul Fearhead Lacaster Uiversity arxiv:1506.03481v1 [stat.me] 10 Ju 2015 May statistical applicatios ivolve models that it is difficult to evaluate the likelihood,

### Chair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics

Chair for Network Architectures ad Services Istitute of Iformatics TU Müche Prof. Carle Network Security Chapter 2 Basics 2.4 Radom Number Geeratio for Cryptographic Protocols Motivatio It is crucial to

### A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

### Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

### Hypothesis testing using complex survey data

Hypotesis testig usig complex survey data A Sort Course preseted by Peter Ly, Uiversity of Essex i associatio wit te coferece of te Europea Survey Researc Associatio Prague, 5 Jue 007 1 1. Objective: Simple

### Multi-server Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu

Multi-server Optimal Badwidth Moitorig for QoS based Multimedia Delivery Aup Basu, Iree Cheg ad Yizhe Yu Departmet of Computig Sciece U. of Alberta Architecture Applicatio Layer Request receptio -coectio

### THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

### Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

### Analyzing Longitudinal Data from Complex Surveys Using SUDAAN

Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

### Exploratory Data Analysis

1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios

### Universal coding for classes of sources

Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric

### CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

### Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

### Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model

Tradig the radomess - Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore

### Present Values, Investment Returns and Discount Rates

Preset Values, Ivestmet Returs ad Discout Rates Dimitry Midli, ASA, MAAA, PhD Presidet CDI Advisors LLC dmidli@cdiadvisors.com May 2, 203 Copyright 20, CDI Advisors LLC The cocept of preset value lies

### Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

### THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

### TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies

### The Power of Free Branching in a General Model of Backtracking and Dynamic Programming Algorithms

The Power of Free Brachig i a Geeral Model of Backtrackig ad Dyamic Programmig Algorithms SASHKA DAVIS IDA/Ceter for Computig Scieces Bowie, MD sashka.davis@gmail.com RUSSELL IMPAGLIAZZO Dept. of Computer

### *The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

### The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

### BOUNDS FOR THE PRICE OF A EUROPEAN-STYLE ASIAN OPTION IN A BINARY TREE MODEL

BOUNDS FOR THE PRICE OF A EUROPEAN-STYLE ASIAN OPTION IN A BINARY TREE MODEL HUGUETTE REYNAERTS, MICHELE VANMAELE, JAN DHAENE ad GRISELDA DEELSTRA,1 Departmet of Applied Mathematics ad Computer Sciece,

### Perfect Packing Theorems and the Average-Case Behavior of Optimal and Online Bin Packing

SIAM REVIEW Vol. 44, No. 1, pp. 95 108 c 2002 Society for Idustrial ad Applied Mathematics Perfect Packig Theorems ad the Average-Case Behavior of Optimal ad Olie Bi Packig E. G. Coffma, Jr. C. Courcoubetis

### HOW MANY TIMES SHOULD YOU SHUFFLE A DECK OF CARDS? 1

1 HOW MANY TIMES SHOULD YOU SHUFFLE A DECK OF CARDS? 1 Brad Ma Departmet of Mathematics Harvard Uiversity ABSTRACT I this paper a mathematical model of card shufflig is costructed, ad used to determie

### Entropy of bi-capacities

Etropy of bi-capacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uiv-ates.fr Jea-Luc Marichal Applied Mathematics

### Modified Line Search Method for Global Optimization

Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

### Notes on exponential generating functions and structures.

Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

### STATISTICAL METHODS FOR BUSINESS

STATISTICAL METHODS FOR BUSINESS UNIT 7: INFERENTIAL TOOLS. DISTRIBUTIONS ASSOCIATED WITH SAMPLING 7.1.- Distributios associated with the samplig process. 7.2.- Iferetial processes ad relevat distributios.

### TIGHT BOUNDS ON EXPECTED ORDER STATISTICS

Probability i the Egieerig ad Iformatioal Scieces, 20, 2006, 667 686+ Prited i the U+S+A+ TIGHT BOUNDS ON EXPECTED ORDER STATISTICS DIMITRIS BERTSIMAS Sloa School of Maagemet ad Operatios Research Ceter

### Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

### Actuarial Models for Valuation of Critical Illness Insurance Products

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 015 Actuarial Models for Valuatio of Critical Illess Isurace Products P. Jidrová, V. Pacáková Abstract Critical illess

### Chapter 5: Basic Linear Regression

Chapter 5: Basic Liear Regressio 1. Why Regressio Aalysis Has Domiated Ecoometrics By ow we have focused o formig estimates ad tests for fairly simple cases ivolvig oly oe variable at a time. But the core

### Domain 1: Designing a SQL Server Instance and a Database Solution

Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

### Estimating Probability Distributions by Observing Betting Practices

5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,

### Fast Fourier Transform

18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.

### 5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

### Factors of sums of powers of binomial coefficients

ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

### Overview on S-Box Design Principles

Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea

### Designing Incentives for Online Question and Answer Forums

Desigig Icetives for Olie Questio ad Aswer Forums Shaili Jai School of Egieerig ad Applied Scieces Harvard Uiversity Cambridge, MA 0238 USA shailij@eecs.harvard.edu Yilig Che School of Egieerig ad Applied

### Elementary Theory of Russian Roulette

Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

### MTO-MTS Production Systems in Supply Chains

NSF GRANT #0092854 NSF PROGRAM NAME: MES/OR MTO-MTS Productio Systems i Supply Chais Philip M. Kamisky Uiversity of Califoria, Berkeley Our Kaya Uiversity of Califoria, Berkeley Abstract: Icreasig cost

### 19 Another Look at Differentiability in Quadratic Mean

19 Aother Look at Differetiability i Quadratic Mea David Pollard 1 ABSTRACT This ote revisits the delightfully subtle itercoectios betwee three ideas: differetiability, i a L 2 sese, of the square-root

### Irreducible polynomials with consecutive zero coefficients

Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem

### Betting on Football Pools

Bettig o Football Pools by Edward A. Beder I a pool, oe tries to guess the wiers i a set of games. For example, oe may have te matches this weeked ad oe bets o who the wiers will be. We ve put wiers i

### Optimal Adaptive Bandwidth Monitoring for QoS Based Retrieval

1 Optimal Adaptive Badwidth Moitorig for QoS Based Retrieval Yizhe Yu, Iree Cheg ad Aup Basu (Seior Member) Departmet of Computig Sciece Uiversity of Alberta Edmoto, AB, T6G E8, CAADA {yizhe, aup, li}@cs.ualberta.ca

### Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

### Groups of diverse problem solvers can outperform groups of high-ability problem solvers

Groups of diverse problem solvers ca outperform groups of high-ability problem solvers Lu Hog ad Scott E. Page Michiga Busiess School ad Complex Systems, Uiversity of Michiga, A Arbor, MI 48109-1234; ad

### Logistic Regression. Chapter 12. 12.1 Modeling Conditional Probabilities

Chapter 12 Logistic Regressio 12.1 Modelig Coditioal Probabilities So far, we either looked at estimatig the coditioal expectatios of cotiuous variables (as i regressio), or at estimatig distributios.

### Mean-Semivariance Optimization: A Heuristic Approach

57 Mea-Semivariace Optimizatio: A Heuristic Approach Javier Estrada Academics ad practitioers optimize portfolios usig the mea-variace approach far more ofte tha the measemivariace approach, despite the

### THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY

- THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY BY: FAYE ENSERMU CHEMEDA Ethio-Italia Cooperatio Arsi-Bale Rural developmet Project Paper Prepared for the Coferece o Aual Meetig

### Time Value of Money. First some technical stuff. HP10B II users

Time Value of Moey Basis for the course Power of compoud iterest \$3,600 each year ito a 401(k) pla yields \$2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

### Intelligent Sensor Placement for Hot Server Detection in Data Centers - Supplementary File

Itelliget Sesor Placemet for Hot Server Detectio i Data Ceters - Supplemetary File Xiaodog Wag, Xiaorui Wag, Guoliag Xig, Jizhu Che, Cheg-Xia Li ad Yixi Che The Ohio State Uiversity, USA Michiga State

### Optimal Strategies from Random Walks

Optimal Strategies from Radom Walks Jacob Aberethy Divisio of Computer Sciece UC Berkeley jake@csberkeleyedu Mafred K Warmuth Departmet of Computer Sciece UC Sata Cruz mafred@cseucscedu Joel Yelli Divisio

### Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

### The 3σ-rule for outlier detection from the viewpoint of geodetic adjustment

The 3σ-rule for outlier detectio from the viewpoit of geodetic adjustmet Author Prof. Dr.-Ig. Rüdiger Lehma Uiversity of Applied Scieces Dresde Faculty of Spatial Iformatio Friedrich-List-Platz 1 D-01069

### A Constant-Factor Approximation Algorithm for the Link Building Problem

A Costat-Factor Approximatio Algorithm for the Lik Buildig Problem Marti Olse 1, Aastasios Viglas 2, ad Ilia Zvedeiouk 2 1 Ceter for Iovatio ad Busiess Developmet, Istitute of Busiess ad Techology, Aarhus

### Capacity of Wireless Networks with Heterogeneous Traffic

Capacity of Wireless Networks with Heterogeeous Traffic Migyue Ji, Zheg Wag, Hamid R. Sadjadpour, J.J. Garcia-Lua-Aceves Departmet of Electrical Egieerig ad Computer Egieerig Uiversity of Califoria, Sata

### TO: Users of the ACTEX Review Seminar on DVD for SOA Exam FM/CAS Exam 2

TO: Users of the ACTEX Review Semiar o DVD for SOA Exam FM/CAS Exam FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Exam FM (CAS

### 7. Concepts in Probability, Statistics and Stochastic Modelling

7. Cocepts i Probability, Statistics ad Stochastic Modellig 1. Itroductio 169. Probability Cocepts ad Methods 170.1. Radom Variables ad Distributios 170.. Expectatio 173.3. Quatiles, Momets ad Their Estimators

### NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,

NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical

### On the Capacity of Hybrid Wireless Networks

O the Capacity of Hybrid ireless Networks Beyua Liu,ZheLiu +,DoTowsley Departmet of Computer Sciece Uiversity of Massachusetts Amherst, MA 0002 + IBM T.J. atso Research Ceter P.O. Box 704 Yorktow Heights,

### The Fundamental Capacity-Delay Tradeoff in Large Mobile Ad Hoc Networks

The Fudametal Capacity-Delay Tradeoff i Large Mobile Ad Hoc Networks Xiaoju Li ad Ness B. Shroff School of Electrical ad Computer Egieerig, Purdue Uiversity West Lafayette, IN 47907, U.S.A. {lix, shroff}@ec.purdue.edu

### Simple Annuities Present Value.

Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

### AMS 2000 subject classification. Primary 62G08, 62G20; secondary 62G99

VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS Jia Huag 1, Joel L. Horowitz 2 ad Fegrog Wei 3 1 Uiversity of Iowa, 2 Northwester Uiversity ad 3 Uiversity of West Georgia Abstract We cosider a oparametric

### How to set up your GMC Online account

How to set up your GMC Olie accout Mai title Itroductio GMC Olie is a secure part of our website that allows you to maage your registratio with us. Over 100,000 doctors already use GMC Olie. We wat every

### Data Analysis and Statistical Behaviors of Stock Market Fluctuations

44 JOURNAL OF COMPUTERS, VOL. 3, NO. 0, OCTOBER 2008 Data Aalysis ad Statistical Behaviors of Stock Market Fluctuatios Ju Wag Departmet of Mathematics, Beijig Jiaotog Uiversity, Beijig 00044, Chia Email:

### MAXIMUM LIKELIHOODESTIMATION OF DISCRETELY SAMPLED DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH. By Yacine Aït-Sahalia 1

Ecoometrica, Vol. 7, No. 1 (Jauary, 22), 223 262 MAXIMUM LIKELIHOODESTIMATION OF DISCRETEL SAMPLED DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH By acie Aït-Sahalia 1 Whe a cotiuous-time diffusio is

### ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE

Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau

### Pre-Suit Collection Strategies

Pre-Suit Collectio Strategies Writte by Charles PT Phoeix How to Decide Whether to Pursue Collectio Calculatig the Value of Collectio As with ay busiess litigatio, all factors associated with the process

### Concept: Types of algorithms

Discrete Math for Bioiformatics WS 10/11:, by A. Bockmayr/K. Reiert, 18. Oktober 2010, 21:22 1001 Cocept: Types of algorithms The expositio is based o the followig sources, which are all required readig:

### (VCP-310) 1-800-418-6789

Maual VMware Lesso 1: Uderstadig the VMware Product Lie I this lesso, you will first lear what virtualizatio is. Next, you ll explore the products offered by VMware that provide virtualizatio services.

### GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

### Limited and Online Supply and the Bayesian Foundations of Prior-free Mechanism Design

Limited ad Olie Supply ad the Bayesia Foudatios of Prior-free Mechaism Desig ABSTRACT Nikhil R. Devaur Microsoft Research Oe Microsoft Way Redmod, WA ikdev@microsoft.com We study auctios for sellig a limited