CE6502 Foundation Engineering Question Bank


 Arthur Walters
 1 years ago
 Views:
Transcription
1 DEPARTMENT: CIVIL SUBJECT CODE: CE6502 QUESTION BANK SEMESTER: V SUBJECT NAME: FOUNDATION ENGINEERING UNIT 1 SITE INVESTIGATION AND SELECTION OF FOUNDATION PART A (2 Marks) 1. List the various methods of soil exploration techniques. 2. Discuss the correction applied in SPT test. 3. Define depth of exploration. 4. Formulate the merits and demerits of wash boring. BT6 5. Compare the various methods of site exploration BT6 6. Summarize Augur boring. 7. Explain standard penetration number BT6 8. Classify the corrections to be carried out in SPT test. 9. State the uses of soil exploration 10. What do you infer from soil exploration? 11. Write the different types of samplers. 12. Illustrate the various parameters affecting the sampling disturbance. 13. Summarize the advantages of SCPT over SPT. 14. Examine a report on spacing of bore holes. 15. Identify the difference between disturbed & undisturbed samples. 16. Tabulate a note on representative and nonrepresentative samples 17. Define liquefaction of sand 18. Formulate the importance of area ratio. BT State the uses of Bore log report.
2 20. The internal diameter of a sampler is 40 mm and the external diameter is 42 mm. Will you consider the sample obtained from the sampler as disturbed or undisturbed? PART B (16 Marks) 1. Enumerate the scope and objectives of methods of soil exploration. BT6 2. Enlist the following samplers with neat sketches (i) Split spoon sampler.(8) (ii) Thin walled sampler.(8) 3. With a neat sketch, explain the types of boring (i) Auger boring(8) (ii) Wash boring(8) 4. Summarize a detailed report on various types of samplers 5. Discuss the factors incorporated in SPT test and tell about correction applied on same 6. Explain the various parameters which affect the sampling in detail 7. Illustrate the following types of Geophysical methods (i) Electrical resistivity methods(8) (ii) Seismic refraction method(8) 8. Evaluate the selection of foundation location based on soil condition. 9. Explain dynamic cone penetration test. 10 Describe the salient features of a good subsoil investigation report. 11 Prepare a report on the following (i) Significant depth of exploration(6) (ii) Spacing of Bore holes(6) (iii) Site investigation report(4) 12 Mention the advantage and disadvantages of SPT test over SCPT test 13 Describe about following (i) Soil Exploration Methods(12) (ii) Importance of area ratio(4)
3 14 Demonstrate the following methods (i) Seismo electrical method(8) (ii) Well logging(8) UNIT 2 SHALLOW FOUNDATION PART A (2 Marks) 1. Compare shallow foundation with deep foundation. 2. Discuss the factors to be considered while designing the foundation 3. Write the difference between bearing capacity and ultimate bearing capacity BT6 4. Summarize Safe bearing capacity and Allowable bearing pressure 5. Explain ultimate bearing capacity with the help of load settlement curve. 6. Illustrate the different modes of shear failure 7. Relate local shear failure and General shear failure. 8. Write the procedure to find effective dimension eccentrically loaded footing. 9. Select the Assumptions & Limitations made in Terzaghi s Analysis?. 10. Estimate the factors affecting Bearing capacity. 11. Define Settlement. 12. Classify the components of settlement 13. Compare Coefficient of volume change and volume change. 14. Distinguish between Immediate Settlement and consolidation settlement. 15. State primary consolidation and secondary consolidation. 16. What do you understand from Secondary compression settlement? 17. Tabulate the corrections to be made for the Settlement due to Consolidation. 18. Show the corrections made for the observed SPT values. 19. Criticize the factors affecting Bearing capacity.
4 20. Examine the factors consider in seismic design of shallow foundation. PART B (16 Marks) 1. Explain the IS code recommendations for the location and depth of foundation. 2. Illustrate the different modes of failure of foundation soil. 3. Evaluate the following (i)spt(6) (ii) SCPT and Plate load test(10) 4. Calculate the Safe bearing capacity per unit area of 1. a strip footing 1 m wide(4) 2. a square footing 3m x 3m(4) 3. a circular footing of 3m diameter.(4) 4. a rectangular footing of 1.3x2.2m(4) Unit weight of the soil 1.8 t/m3, cohesion = 2t/m 2 And Ф = 20 o,nc = 17.5, Nq = 7.5 and N γ = 5. Depth of footing is 1.6m below ground surface. 5. An R.C. Column footing 2.26 m in square shape is to rest 1.5 m below level ground level is on cohesive soil. The unit weight is 17.6kN/m 3. What is the safe load if cohesion is 30kN/m 3 factor of safety 2.4. Angle of internal friction 33 by IS code. 6. Design a strip footing to carry a load of 750kN/m at a depth of 1.6m in a cohesive soil having unit weight of 18kN/ m 3 & c=20kn/ m 2 and angle of internal friction is 25 degree. Determinethe width of footing, using F.O.S as 3. Use terzhagi s equations. Nc = 25.1, Nq = 12.7 and N γ = In a plate bearing test on pure clayey soil failure occurred at a load of 12.2 tones. The size of the plate was 45 cm x 45 cm and the test was one at a depth of 1.0 m below ground level. Find out the ultimate bearing capacity for a 1.5 m wide continuous wall footing with its base at a depth of 2m below ground level. The unit wt. of clay may be taken as 1.9 gm/ c.c. and Nc = 5.7, Nq = 1 and Nγ = A square footing located at a depth of 1.5 m below the ground surface in cohesionless soil carries a column load of 1280 kn. The soil is submerged having an effective unit weight of 11.5 kn/m3 and an angle of shearing resistane of 30 o. Find the size of the following for Fs = 3 by Terzaghi s theory of general shear failure. 9. A footing foundation of 3m X 3m is to be constructed at a site at a depth of 1.5 m below ground level. The water table is at the base level of foundation. The average static cone
5 penetration resistance obtained at the site is 20 Kg/m 2.the soil is cohesive determine the safe bearing capacity for a settlement of 40mm. 10. Two plate load test s were conducted at the level of a prototype foundation in cohesion less soil close to each other. The following data are given. Size of plate Load Settlement 0.3x0.3m 30 KN 25mm 0.6x0.6m 90 KN 25mm Find the size of the square footing to carry a load of 800 KN at the same specifying of settlement of 25mm 11. (i)an RCC foundation of size 18m x 36m have a uniform pressure of 180KN/m2 on a soil mass with modulus of elasticity 45KN/m2.Determine the immediate settlement Assume poisons ratio as 0.5(10) (ii)draw the pressure distribution of rigid footing in cohesive soil(4) 12. Summarize the following (i) General Shear failure(6) (ii) Local shear failure(5) (iii) Punching shear failure(5) 13. (i) A footing 2m x 2m is at a depth of 1.5 m in a sand deposit for which the N value is 27,Water table is at 2m from the Ground level. Determine the safe bearing capacity if the permissible settlement is 40 mm.(10) (ii) Write about influence of water table in determination of bearing capacity(6) 14. Write about the following methods of bearing capacity determination (i) Terzhagi method(4) (ii) Meyerhoff method(4) (iii) IS Code Method(4) (iv) Skempton method(4)
6 UNIT 3 FOOTINGS AND RAFTS PART A (2 Marks) 1. Select the types of shallow foundations 2. Define spread or Isolated footing 3. Examine the behavior of Cantilever footing 4. Write about Raft or mat foundation BT6 5. Evaluate the concept of eccentric loading. 6. What are the circumstances necessitating combined footing? 7. Under what circumstances a rectangular and trapezoidal combined footings are adopted 8. Estimate the circumstances of strap footing adoption. 9. Where the Raft or Mat Foundation would be used? 10. Select the condition for selecting the critical section for bending moment of a spread or isolated footing. 11. What is the condition for selecting the critical section for checking diagonal shear and Punching shear of a spread (or) isolated footing? 12. How the overall depth of isolated footings is determined? 13. Explain about floating foundation. 14. Compare the two methods of design of raft foundation as per IS code BT Mention the assumptions made in the conventional method of design of raft foundation 16. State the criteria for selecting P.C.C. and R.C.C. strip footings 17. Compare differential settlement with consolidation settlement 18. Compare angular distortion and angle of internal friction. 19. Define contact pressure. 20. What is mean by modulus of sub grade reaction (Ks)?
7 PART B (16 Marks) 1. State the Principles of proportioning of footings BT6 2. Summarize the following (i) Seismic considerations in foundation design(8) (ii) Design Procedure of strip footing.(8) 3. Explain the procedure for the Design of spread or isolated footings. 4. Illustrate the procedure for proportioning and designing of the following footings (i) Rectangular combined footings. (8) (ii) Trapezoidal combined footings.(8) 5. Describe the following (i) Proportioning and designing of the strap footings.(8) (ii) Pressure distribution in foundation (8) 6. A trapezoidal footing is to be produced to support two square columns of 30 cm and 50 cm sides respectively. Columns are 6 meters apart and the safe bearing capacity of the soil is 400 kn/m2. The bigger column carries a load of 500 kn and the smaller carries a load of 3000kN. Design a suitable size of the footing so that if does not extend beyond the face of the columns. BT6 7. Explain the Procedure of conventional design of the raft footings. BT6 8. Design a square footing to carry a load of 1000kN on a column 300x300 mm. allowable soil pressure 200kN/m2. Permissible stress 500kN/m2.use M20 & Fe415 steel. 9. The plan of a mat foundation with 9 columns. Assuming that the mat is rigid, determine the soil pressure distribution. All the columns are of size 0.6m x 0.6m. 10. Write about the following (i) Differential settlement (4) (ii) Causes for differential settlement(6) (iii) Remedies for differential Settlement(6) 11. Summarize the following (i) Types of mat foundation.(8) (ii) Application and condition for mat foundation(8) 12. Design a footing to carry a load of 1000KN and a column size of 0.3m x 0.3m.Allowable soil pressure 200 Kn/m2.Permissible Stress 500Kn/m2.Use M20 and Fe415 BT6 BT Examine (i) Types of floating foundation(8)
8 (ii) Problems to be considered in design of floating foundation.(8) 14. Determine the dimension for strap footing for the two columns of size 0.4m x 0.4m,allowable soil pressure is 100 KN/m2.Distance between 2 columns is 6m.Take eccentricity of footing of column is 1m.Assume necessary data if available. UNIT 4 PILE FOUNDATION PART A (2 Marks) 1. Where the deep foundations are employed? 2. Identify the General forms of deep foundation. 3. Tabulate the different types of piles according to Material of construction. 4. Draw the failure pattern of pile foundation 5. Examine the different types of piles according to its function 6. What are the different types of piles according to its method of Installation? 7. Draw the various patterns of pile arrangements 8. State the methods of pile driving 9. Explain the Protection of pile during driving. 10. What are the precautions should be to ovoid heaving of soil while driving the pile? 11. Classify the methods for estimating the load carrying capacity of a pile. 12. Report on reasons for conducting initial tests on piles. 13. What are the preparations should be made for pile load test 14. Define Negative skin friction (or) down drag 15. Write about Group action of piles 16. Give the importance of spacing of piles in group action 17. Define Pile group efficiency 18. What are the factors affecting pile group efficiency?
9 19. State the reasons for the settlement of pile groups 20. State the seismic considerations in pile foundation PART B (16 Marks) 1. What are the different types of piles and explain it? 2. (i) A wooden pile is being driven with a drop hammer weighing 20 KN having a free fall of 1m.Thepenetration in the last blow is 5mm.Determine the load carrying capacity using engineering news formula.(8) (ii) Compare and contrast engineering news and hileys formula(8) 3. Summarize the following methods of load carrying capacity of pile (i) Static formula (8) (ii) Dynamic formula(8) 4. Illustrate the following methods (i) Pile load test(12) (ii) Negative skin friction(4) 5. A concrete pile 30 cm diameter is driven into a medium dense sand (φ = 35, γ = 21kN/m 3 ), k = 1.0, tan δ = 0.7, Nq = 60). For a depth of 8m, Estimate the safe load. Taking a factor of safety of 2.5, if the water table rises to 2 m below the ground surface take γ w = 10 kn/m2.assume necessary data if available. 6. A square concrete pile (30cm side) 10 m long is driven into coarse sand having γ = 18.5 BT6 kn/m 3 & N = 20. Determine the allowable load (F.S = 3.0) 7. A reinforced concrete piles weights 30 KN,is driven by a drop hammer weights 40 KN having an effective fall of 0.8m.The average set per blow is 1.4cm.The total temporary elastic compression is 1.8.Assuming coefficient of resistance as 0.25.Determine the safe load using (i) Engineering News Formula(8) (ii) Hileys Formula(8) 8. A pile group consists of 9 friction piles of 30cm diameter and 10m length driven in clay (Cu = 100kN/m2. r = 20kN/m3). Determine the safe load for the group (F.S =3, α = 0.6) 9. Design a square pile group to carry 400kN in clay with an unconfined compressive strength of 60kN/m2. The piles are 30 cm diameter and 6 m long. Adhesion may be taken as 0.6
10 10. A 16 pile group has to be arranged in the form of a square in soft clay with uniform spacing. Neglecting end bearing, determine the optimum value of the spacing of the piles in terms of the pile assuming a shear mobilization factor of Determine the group capacity of 15 piles arranged in 3 rows of diameter 300mm.If the piles are driven 8m in to clay with cohesion = 25 kn/m2.take spacing of piles as 0.8m 12. Analyze the following (i) Under reamed pile foundation(8) (ii) Group capacity of pile(4) (iii) Seismic Consideration in pile design(4) 13. For a pile group of 3000 KN of base 5m in a clay layer of 20m having a length of 10.5m.Find the Settlement of pile group.take liquid limit as 60% at an angle of load dispersion =30 degree. Assume necessary data if available. 14. A group of nine piles of 300mm diameter,spaced at 1m.Find the efficiency of pile group using (i) Felds rule(8) (ii) ConverseLabarra formula(8) UNIT 5 RETAINING WALLS PART A (2 Marks) 1. State Active Earth pressure. 2. Define passive Earth pressure. 3. Summarize coefficient of earth pressure 4. Enumerate the assumptions made in Rankine s theory. 5. What is the critical height of an unsupported vertical cut in cohesive soil? 6. Evaluate the assumptions made in Coulomb s Wedge theory. 7. Distinguish Coloumb s wedge theory from Rankine s theory. 8. Sketch the variation of earth pressure and coefficient of earth pressure with the movement of the wall 9. Give the minimum factor of safety for the stability of a retaining wall. 10. If a retaining wall of 5 m high is restrained from yielding, what will be the total earth pressure at rest per metre length of wall? Given: the back fill is cohesion less soil having φ = 30 and γ = 18 kn/m Make an estimate of lateral earth pressure coefficient on a basement wall supports soil to a depth of 2 m. Unit weight and angle of shearing resistance of retained soil
11 are 16 kn/m3 and 32 respectively. 12. Is granular materials are preferred for the backfill of a retaining wall? Why 13. How do tension cracks influence the distribution of active earth pressure in pure cohesion? 14. Why lateral wall movement required for complete mobilization of passive state is higher than that for active state? 15. Draw the force polygon for a rough retaining wall with slanting back retains a cohesive soil in coulombs active state? 16. What do you understand by plastic equilibrium in soils? 17. State critical failure plane. 18. Write about surcharge angle. BT Discuss about earth pressure at rest 20. If the poissons ratio of soil is 0.4, Find its coefficient of earth pressure at rest. PART B (16 Marks) 1. A retaining wall is 4 metres high. Its back is vertical and it has got sandy backfill upto its top. The top of the fill is horizontal and carries a uniform surcharge of 85 kn/m2. Dry density of soil = 18.5 kn/m3. Moisture content of soil above water table = 12%. Angle of internal friction of soil = 30, specific gravity of soil particles = Porosity of backfill = 30%. The wall friction may be neglected. Determine the following (i) Depth of Zero tension Crack(4) (ii) Active pressure acting on the wall(12) 2. Explain Rankine s Active earth pressure theory for cohesion less soil and cohesive soil 3. Show how Rankine s Passive earth pressure theory varies for cohesion less and cohesive soil 4. Construct a coulomb s wedge theory for soil pressure distribution. BT6 5. Critize the Culmann s construction for active pressure of cohesion less soil 6. Analyze the Effect of line load on retaining wall.
12 7. A retaining wall of 6 m high has a saturated backfill of soft clay soil. The properties of the clay soil are γ sat = kn/m3, unit cohesion Cu = 18 kn/m2. Determine (i) the expected depth of tensile crack in the soil(6) (ii) the active earth pressure before the occurrence of tensile crack(6) (iii) the active pressure after the occurrence of tensile crack(4) 8. A wall of 8 m height retains sand having a density of Mg/m3 and angle of internal friction of 34. If the surface of the backfill slopes upwards at 15 to the horizontal, find the active thrust per unit length of the wall. Use Rankine s conditions. 9. A retaining wall has a vertical back and is 7.32 m high. The soil is sandy loam of unit weight 17.3kN/m3. it shows a cohesion of 12 kn/m2 and φ = 20. Neglecting wall friction, determine the thrust on the wall. The upper surface of the fill is horizontal. 10. A smooth rigid retaining wall of 6 m high carries a uniform surcharge load of 12 kn/m2. The backfill is clayey sand possessing the following properties. γ = 16.0 kn/m3, φ = 25, and c = 6.5 kn/m2 for a retaining wall system, the following data were available: (i) Height of wall = 7 m. (ii) Properties of backfill: γd =16 kn/m3, φ = 35 (iii) Angle of wall friction, δ = 20 (iv) Back of wall is inclined at 20 to the vertical (positive batter) (v) Backfill surface is sloping at 1:10. Find the following (i) Active earth pressure(8) (ii) Passive earth pressure(8) 11. Prepare a short note on (i) Plastic Equillibrium of Soils.(10) (ii) Stability of retaining Wall.(6) 12. Sketch the variation of the earth pressure and explain it for the following (i) Active state(8) (ii) Passive State(8) 13. Summarize the following (i) Depth of Tension Crack(6) (ii) Economical design of Retaining Walls.(6) (iii) Nature and magnitudes of earth pressures(4) 14. Give a brief note on the following with variation of pressure distribution (i) Cantilever Retaining Wall(8) (ii) Counterfort Retaining Wall(8)
Module 5 (Lectures 17 to 19) MAT FOUNDATIONS
Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS
More informationINDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode
INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance
More informationGEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design
GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1
More informationModule 7 (Lecture 24 to 28) RETAINING WALLS
Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5
More informationPILE FOUNDATIONS FM 5134
C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 61. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics
More informationTYPES OF FOUNDATIONS
TYPES OF FOUNDATIONS 1 Foundation Systems Shallow Foundation Deep Foundation Pile Foundation Pier (Caisson) Foundation Isolated spread footings Wall footings Combined footings Cantilever or strap footings
More informationGeotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur
Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture No. # 13 (Refer Slide Time: 00:18) So last class, it was
More informationREINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach  Fifth Edition. Walls are generally used to provide lateral support for:
HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering
More informationShallow Foundation Analysis on Heterogeneous Soil Formation in the Niger Delta of Nigeria
Shallow Foundation Analysis on Heterogeneous Soil Formation in the Niger Delta of Nigeria Akpila, S.B Department of Civil Engineering Rivers State University of Science & Technology, PortHarcourt. Eluozo,
More informationModule 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : Insitu tests [ Section 4.1: Penetrometer Tests ] Objectives
Lecture 4 : Insitu tests [ Section 4.1: Penetrometer Tests ] Objectives In this section you will learn the following Penetrometer Tests Standard penetration test Static cone penetration test Dynamic cone
More informationGeotechnical Investigation Test Report
Geotechnical Investigation Test Report Report No. htsc/rcd/ 3457 Dated:  20/03/2010 Asphalt Standard Penetration Test as per IS 2131  IS 6403 Soil Job Card No  1649 Cement Client/Department
More informationEarth Pressure and Retaining Wall Basics for NonGeotechnical Engineers
PDHonline Course C155 (2 PDH) Earth Pressure and Retaining Wall Basics for NonGeotechnical Engineers Instructor: Richard P. Weber, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA
More informationTerzaghi's Bearing Capacity Equations
Terzaghi's Bearing Capacity Equations Bearing capacity equation Bearing capacity factors Bearing capacity Chart Example 1: trip footing on cohesionless soil Example 2: quare footing on clay soil Example
More informationINTRODUCTION TO SOIL MODULI. JeanLouis BRIAUD 1
INTRODUCTION TO SOIL MODULI By JeanLouis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:
More informationCOMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2
(PREVIEW) SP 36 (Part 2) : 1988 COMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2 IS 1893 : 1979 (Reaffirmed 1987) CODE OF PRACTICE FOR SUBSURFACE INVESTIGATION FOR FOUNDATIONS 1.1 This code deals
More information1 Mobilisation and demobilisation 1 Deep boring sum 2 Cone penetration tests sum 3 Miscellenous tests sum
Malaysian Civil Engineering Standard Method of Measurement (MyCESMM) CLASS D: SITE INVESTIGATION WORK Measurement covered under other classes: Excavation not carried out for the purpose of soil investigation
More informationGUJARAT NARMADA VALLEY FERTILIZER CO. LTD. (GNFC Ltd) TECHNICAL REPORT GEOTECHNICAL INVESTIGATION FOR PROPOSED TDI PLANT AT VILLAGE RAHIYAD, DAHEJ
GUJARAT NARMADA VALLEY FERTILIZER CO. LTD. (GNFC Ltd) TECHNICAL REPORT OF GEOTECHNICAL INVESTIGATION FOR PROPOSED TDI PLANT AT VILLAGE RAHIYAD, DAHEJ BY: DR.K.C.THAKER B.E.(CIVIL) ; M.TECH (S.M.); (I.I.T,
More informationEffect of shape on bearing capacity of embedded footings on reinforced foundation beds over soft nonhomogeneous ground
Japanese Geotechnical Society Special Publication The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering Effect of shape on bearing capacity of embedded footings on reinforced
More informationMETHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION
International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, MarchApril 2016, pp. 4566, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2
More informationIntroduction to Spread Footings and Mat Foundations
Introduction to Spread Footings and Mat Foundations Course No: G02008 Credit: 2 PDH J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI Continuing Education and Development, Inc. 9 Greyridge Farm Court
More informationWorked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites
Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
More informationFOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples
FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 141 Load Path and Transfer to
More information13. AN INTRODUCTION TO FOUNDATION ENGINEERING
131 13. AN INTRODUCTION TO FOUNDATION ENGINEERING 13.1 TYPES OF FOUNDATIONS The foundation is that portion of a structure that transmits the loads from the structure to the underlying foundation material.
More informationPILE FOUNDATION. Pile
PILE FOUNDATION. One or more of the followings: (a)transfer load to stratum of adequate capacity (b)resist lateral loads. (c) Transfer loads through a scour zone to bearing stratum 1 (d)anchor structures
More informationCIVL451. Soil Exploration and Characterization
CIVL451 Soil Exploration and Characterization 1 Definition The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally
More informationProgram COLANY Stone Columns Settlement Analysis. User Manual
User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY
More informationFINAL REPORT ON SOIL INVESTIGATION
FINAL REPORT ON SOIL INVESTIGATION FOR PROPOSED CONSTRUCTION AT SS6B AREA AT HPCL VISAKH REFINERY VISAKHAPATNAM ANDHRA PRADESH J.J. ASSOCIATES(VISAKHAPATNAM) AETP(P) LIMITED #1163, RockDale Layout,
More informationThe Islamic university  Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION. Instructor : Dr.
The Islamic university  Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural
More informationBearing Capacity (Daya Dukung Tanah)
Bearing Capacity (Daya Dukung Tanah) Dr. Ir.H. Erizal, MAgr Definisi Daya dukung yang diizinkan (allowable bearing cap.) tekanan maksimum yang dapat diaplikasikan ke tanah dimana 2 kondisi diatas dipenuhi.
More informationALLOWABLE LOADS ON A SINGLE PILE
C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 51. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity
More informationCE 366 SETTLEMENT (Problems & Solutions)
CE 366 SETTLEMENT (Problems & Solutions) P. 1) LOAD UNDER A RECTANGULAR AREA (1) Question: The footing shown in the figure below exerts a uniform pressure of 300 kn/m 2 to the soil. Determine vertical
More informationKWANG SING ENGINEERING PTE LTD
KWANG SING ENGINEERING PTE LTD 1. INTRODUCTION This report represents the soil investigation works at Aljunied Road / Geylang East Central. The objective of the soil investigation is to obtain soil parameters
More informationDRIVEN PIPE PILES IN DENSE SAND
DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA ABSTRACT: Piles are often driven open ended into dense sand with the aim of increasing the ease of penetration
More informationEXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL
EXAMPLE DESIGN OF CANTILEVERED WALL, GRANULAR SOIL A sheet pile wall is required to support a 2 excavation. The soil is uniform as shown in the figure. To take into account the friction between the wall
More informationSTRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.
STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill
More informationDIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA
DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST OBJEVTIVES To determine the shear strength parameters for a
More informationENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
More informationENCE 4610 Foundation Analysis and Design
This image cannot currently be displayed. ENCE 4610 Foundation Analysis and Design Shallow Foundations Total and Differential Settlement Schmertmann s Method This image cannot currently be displayed. Strength
More informationSPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT
SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration
More informationFinite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil
Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.
More informationDesign of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. The design of any foundation consists of following two parts.
8.7. Design procedure for foundation The design of any foundation consists of following two parts. 8.7.1 Stability analysis Stability analysis aims at removing the possibility of failure of foundation
More informationA study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil
ISSN: 31953 (An ISO 39: 00 Certified Organization) A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil Utpal Kumar Das Associate Professor, Department
More informationBEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD PENETRATION TEST METHOD
SENRA Academic Publishers, British Columbia Vol., No. 1, pp. 272774, February 20 Online ISSN: 0353; Print ISSN: 177 BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD
More informationClassification of highways, types of surveys, crosssection and profiles, soil investigation
Syllabus for regularization of Degree holders (Civil Engineering) WATER AND WASTE WATER ENGINEERING Types of demand, water quality, forecasting of design demand, types of intakes, types of conveyance of
More informationGeotechnical Investigation Reports and Foundation Recommendations  Scope for Improvement  Examples
Geotechnical Investigation Reports and Foundation Recommendations  Scope for Improvement  Examples Prof. V.S.Raju (Formerly: Director, IIT Delhi & Professor and Dean, IIT Madras) Email: rajuvs_b@yahoo.com
More informationDESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,
DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared
More informationHIGHWAYS DEPARTMENT GUIDANCE NOTES ON SOIL TEST FOR PAVEMENT DESIGN
HIGHWAYS DEPARTMENT GUIDANCE NOTES ON SOIL TEST FOR PAVEMENT DESIGN Research & Development Division RD/GN/012 August 1990 HIGHWAYS DEPARTMENT GUIDANCE NOTES (RD/GN/012) SOIL TEST FOR PAVEMENT DESIGN Prepared
More informationc. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.
Design Manual Chapter 6  Geotechnical 6B  Subsurface Exploration Program 6B2 Testing A. General Information Several testing methods can be used to measure soil engineering properties. The advantages,
More informationSoil Strength. Performance Evaluation of Constructed Facilities Fall 2004. Prof. Mesut Pervizpour Office: KH #203 Ph: x4046
ENGR627 Performance Evaluation of Constructed Facilities, Lecture # 4 Performance Evaluation of Constructed Facilities Fall 2004 Prof. Mesut Pervizpour Office: KH #203 Ph: x4046 1 Soil Strength 2 Soil
More informationComprehensive Design Example 2: Foundations for Bulk Storage Facility
Comprehensive Design Example 2: Foundations for Bulk Storage Facility Problem The project consists of building several dry product storage silos near an existing rail siding in an open field presently
More informationPDCA DrivenPile Terms and Definitions
PDCA DrivenPile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified
More informationPDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center
PDHonline Course S151A (1 PDH) Steel Sheet Piling Instructor: Matthew Stuart, PE, SE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 220306658 Phone & Fax: 7039880088 www.pdhonline.org
More informationTHE EFFECT OF IMPROVEMENT SURROUNDING SOIL ON BORED PILE FRICTION CAPACITY
International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, JanFeb 2016, pp. 260273, Article ID: IJCIET_07_01_022 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1
More informationHigher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher
Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering
More informationvulcanhammer.net This document downloaded from
This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works
More informationEffect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand
Discovery ANALYSIS The International Daily journal ISSN 2278 5469 EISSN 2278 5450 2015 Discovery Publication. All Rights Reserved Effect of grain size, gradation and relative density on shear strength
More informationLABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO
LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO STANDARD IS: 2720 (Part 16) 1979. DEFINITION California bearing ratio is the ratio of force per unit area required to penetrate in to a soil mass with
More informationConstruction Planning, Equipment, and Methods
CHAPTER Construction Planning, Equipment, and Methods Sixth Edition GEOTECHNICAL MATERIALS, COMPACTION, AND STABILIZATION A. J. Clark School of Engineering Department of Civil and Environmental Engineering
More informationNew building plans on the surface above the existing underground Willemspoortunnel in Rotterdam
New building plans on the surface above the existing underground Willemspoortunnel in Rotterdam Ragavan Appiah, Aronsohn raadgevende ingenieurs bv, Rotterdam, The Netherlands The development of new projects
More informationTHE ENGINEER S TOOLBOX
Materials Densities 1 t/m 3 = 10 kn/m 3 Strength and stress limits Water 1 t/m 3 Concrete Steel 7.8 t/m 3 Timber 0.8 t/m 3 Carbon fibre 1.5 t/m 3 Aluminium 2.7 t/m 3 2.4 t/m 3 normal weight 1.9 t/m 3 light
More informationEFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED
International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3
More informationTrench Rescue by Buddy Martinette
Trench Rescue by Buddy Martinette SOIL TYPE AND TESTING It is imperative that rescue personnel understand soil types and testing procedures if the want to be competent at trench rescue operations. Determining
More informationSilos. Florea Dinu. Lecture 20: 28/02/2014
Silos Florea Dinu Lecture 20: 28/02/2014 European Erasmus Mundus Master Course Sustainable Constructions under Natural 520121120111CZERA MUNDUSEMMC Silos Silos are used by a wide range of industries
More informationTreasure s report of 1 st Lizzi Scholarship
Treasure s report of 1 st Lizzi Scholarship IWM2006 in Schrobenhausen, Germany: May 5th, 2006 Shingo MORIMASA Graduate Student, GeoMechanics Group, Toyohashi University of Technology Treasure s Report
More informationLABORATORY CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES
Test Procedure for LABORATORY CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES TxDOT Designation: Tex142E Effective Date: August 1999 1. SCOPE 1.1 This method is a system for classifying disturbed and
More informationReport on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars
Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of
More informationSOIL IMPROVEMENT BY PRECOMPRESSION AT A TANK FARM SITE IN CENTRAL JAVA, INDONESIA
SOIL IMPROVEMENT BY PRECOMPRESSION AT A TANK FARM SITE IN CENTRAL JAVA, INDONESIA Kul Bhushan, President, Group Delta Consultants, Inc., Aliso Viejo, CA, USA Carlos V. Amante, Project Engineer, Group Delta
More informationCEEN 162  Geotechnical Engineering Laboratory Session 7  Direct Shear and Unconfined Compression Tests
PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the
More informationGeotechnical Investigation using Standard Penetration Test (SPT) in Rangamati, Bandarban and Khagrachari Towns
1. Introduction 1.1 Scope of Work The Asian Disaster Preparedness Centre (ADPC) is implementing the project Seismic Hazard and Vulnerability Mapping for Rangamati, Bandarban and Khagrachari Municipality.
More information1.0 INTRODUCTION 1 2.0 SCOPE OF WORK 2 3.0 EXECUTION OF FIELD WORK 2 4.0 LABORATORY TESTS 8 5.0 FINDINGS OF THE GEOTECHNICAL INVESTIGATION 9
REPORT ON GEOTECHNICAL INVESTIGATION FOR LPG MOUNDED STORAGE AT VISAKHA REFINERY, MALKAPURAM, VISAKHAPATNAM (A.P) FOR HINDUSTAN PETROLEUM CORPORATION LIMITED CONTENTS SR.NO. DESCRIPTION PAGE NO. 1.0 INTRODUCTION
More informationHOW TO DESIGN CONCRETE STRUCTURES Foundations
HOW TO DESIGN CONCRETE STRUCTURES Foundations Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and
More informationSPECIFICATION FOR SEGMENTAL RETAINING WALL SYSTEMS
SPECIFICATION FOR SEGMENTAL RETAINING WALL SYSTEMS PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing segmental retaining wall (SRW) units to the lines and grades designated on
More informationSPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)
Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks
More informationChapter 2 Basis of design and materials
Chapter 2 Basis of design and materials 2.1 Structural action It is necessary to start a design by deciding on the type and layout of structure to be used. Tentative sizes must be allocated to each structural
More informationDesign of pile foundations following Eurocode 7Section 7
Brussels, 1820 February 2008 Dissemination of information workshop 1 Workshop Eurocodes: background and applications Brussels, 1820 Februray 2008 Design of pile foundations following Eurocode 7Section
More informationAdvanced Geotechnical Laboratory
Swinburne University of Technology Repeated Load Triaxial Test, swellshrinkage, shear wave velocity, soil suction, flexible wall hydraulic conductivity. Advanced Geotechnical Systems Tier is supported
More informationINTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013
INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013 Copyright by the authors  Licensee IPA Under Creative Commons license 3.0 Research article ISSN 0976 4399 Reliability of
More informationvulcanhammer.net This document downloaded from
This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works
More informationSpecification Guidelines: Allan Block Modular Retaining Wall Systems
Specification Guidelines: Allan Block Modular Retaining Wall Systems The following specifications provide Allan Block Corporation's typical requirements and recommendations. At the engineer of record's
More informationDYNAMIC PILE MONITORING FOR OFFSHORE PILE ACCEPTANCE
DYNAMIC PILE MONITORING FOR OFFSHORE PILE ACCEPTANCE Scott Webster and Robin Givet, GRL Engineers, Inc., Charlotte, NC, USA Dynamic pile Monitoring Services (DMS) have been used for testing of offshore
More informationMat Foundations. 6.1 Introduction. 6.2 Combined Footings
6 Mat Foundations 6.1 Introduction Under normal conditions, square and rectangular footings such as those described in Chapters 3 and 4 are economical for supporting columns and walls. However, under certain
More informationCOSMOS 2012: Earthquakes in Action COSMOS 2012
COSMOS 2012 What is SFSI and why is it important? Soil issues in Earthquakes Structures where SFSI important Retaining structures (lateral earth pressure) Foundations (spread and pile footings, bearing
More informationLECTURE NOTE COURE CODE BCE402
LECTURE NOTE COURE CODE BCE40 GEOTECHNICAL ENGINEERING II BCE40 Syllabus Module I (10 Hours) Stress distribution in soil: Boussinesq equations, Stress isobar and pressure bulb concept, pressure distribution
More informationEstimation of Adjacent Building Settlement During Drilling of Urban Tunnels
Estimation of Adjacent Building During Drilling of Urban Tunnels Shahram Pourakbar 1, Mohammad Azadi 2, Bujang B. K. Huat 1, Afshin Asadi 1 1 Department of Civil Engineering, University Putra Malaysia
More informationHardened Concrete. Lecture No. 14
Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability
More informationEXPERIMENTAL EVALUATION OF REINFORCED CONCRETE BEAM RETROFITTED WITH FERROCEMENT
Int. J. Struct. & Civil Engg. Res. 2013 Y V Ladi and P M Mohite, 2013 Research Paper EXPERIMENTAL EVALUATION OF REINFORCED CONCRETE BEAM RETROFITTED WITH FERROCEMENT Y V Ladi 1 * and P M Mohite 2 *Corresponding
More informationA N Beal EARTH RETAINING STRUCTURES  worked examples 1
A N Beal EARTH RETAINING STRUCTURES  worked examples 1 Worked examples of retaining wall design to BS8002 The following worked examples have been prepared to illustrate the application of BS8002 to retaining
More informationNEGATIVE SKIN FRICTION AND SETTLEMENT OF PILES. Dr. Bengt H. Fellenius, P. Eng. University of Ottawa, Canada
Fellenius, B. H., 1984. Negative skin friction and settlement of piles. Second International Seminar, Pile Foundations, Nanyang Technological Institute, Singapore, November 2830, 12 p. NEGATIVE SKIN FRICTION
More informationLaterally Loaded Piles
Laterally Loaded Piles 1 Soil Response Modelled by py Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil
More informationNumerical Analysis of Texas Cone Penetration Test
International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012 Numerical Analysis of Texas Cone Penetration Test Nutan Palla Project Engineer, TolunayWong Engineers, Inc. 10710 S Sam
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
More informationSwinburne University of Technology. Centre for Sustainable Infrastructure
Swinburne University of Technology Centre for Sustainable Infrastructure Swinburne University of Technology is undergoing rapid growth, particularly in the area of engineering research and education. Advanced
More informationThese slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.
Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers
More information2009 JapanRussia Energy and Environment Dialogue in Niigata S26 TANAKA ERINA
Importance of the Site Investigation for Development of Methane Hydrate Hokkaido University Hiroyuki Tanaka Civil Engineer My Background Site Investigation Soil Parameters for Design Very Soft Clay and
More informationModule 1 : Site Exploration and Geotechnical Investigation. Lecture 5 : Geophysical Exploration [ Section 5.1 : Methods of Geophysical Exploration ]
Objectives In this section you will learn the following General Overview Different methods of geophysical explorations Electrical resistivity method Seismic refraction method 5 Geophysical exploration
More informationCHAPTER 9 FEM MODELING OF SOILSHEET PILE WALL INTERACTION
391 CHAPTER 9 FEM MODELING OF SOILSHEET PILE WALL INTERACTION 9.1 OVERVIEW OF FE SOILSTRUCTURE INTERACTION Clough and Denby (1969) introduced Finite Element analysis into the soilstructure interaction
More informationCONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST
CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,
More informationChapter 4: Buoyancy & Stability
Chapter 4: Buoyancy & Stability Learning outcomes By the end of this lesson students should be able to: Understand the concept of buoyancy hence determine the buoyant force exerted by a fluid to a body
More informationDESIGN OF PILES AND PILE GROUPS CONSIDERING CAPACITY, SETTLEMENT, AND NEGATIVE SKIN FRICTION
DESIGN OF PILES AND PILE GROUPS CONSIDERING CAPACITY, SETTLEMENT, AND NEGATIVE SKIN FRICTION Introduction Bengt H. Fellenius, Dr.Tech., P.Eng. Background Notes for Demo Example for UniPile at www.unisoftltd.com
More information