# EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 EXAMPLE DESIGN OF CANTILEVERED WALL, GRANULAR SOIL A sheet pile wall is required to support a 2 excavation. The soil is uniform as shown in the figure. To take into account the friction between the wall and the soil, we use friction angle δ = φ/2. Please note this value is applied only for passive pressure. Use factor of safety =.5 for passive pressure. Question: What is the embedment and maximum bending moment in the pile? Active pressure above cut: φ = 35, Ka = 2, P = Kaγ(2 ) = (0.27)(25)(2) = Ksf Active pressure below cut: Below the cut, use pressure slope input. The pressure slope Pa = Kaγ = (0.027)(25) = Kcf Passive pressure below cut: Soil friction φ = 35, wall friction δ = φ/2, Kp = 6.74 (NAVFAC or Epres program) The pressure slope Pp = Kpγ/F.S. = (6.74)(25)/.50 = 0.56 Kcf A short result for input and output is presented. NOTE: spacing for the sheet pile The program shows that the minimum embedment is 9.3 and the pile length is 2.3. The maximum moment in the pile is 7 Kip-ft /ft. The maximum moment is at 5.9 from the ground surface. EXAMPLE X γ = 25 pcf φ = 35 o δ = φ/2 (only for passive) H = 2 Dredge Line P = ksf kcf Y 0.56 kcf CivilTech Software SHORING EXAMPLES

2 EXAMPLE 2 Alternative Input for Example The conditions are the same as example. In example 2, we use an alternative input to check the versatility of the program. Instead of inputting both active and passive pressures below the cut, we input the net passive pressure below the cut. The net passive pressure is equal to Pp- Pa. Question: What is the embedment and maximum bending moment in pile? Active pressure above cut: Same as Example. Net pressure below cut: Active pressure slope is Pa = Kaγ = (0.27)(25) = Kcf Passive pressure slope is Pp = Kpγ/F.S. = (6.74)(25) /.5 = 0.56 Kcf Net passive pressure slope is Pn = Pp - Pa = = Kcf The point of zero pressure is e = P/ Pn = 0.405/0.526 = 0.77 Input two active pressures in driving pressure input: One is from x = 0 to x = 2. Another is from x = 2 to x = There is no active pressure input below dredge line. The passive pressure starts Y = 0.77, with a net slope = Kcf The same as example. Alternative: Another alternative input is also presented in attached file, example 2A. In this input, the net passive pressure slope, Kcf is directly inputted from Y = 0 with starting pressure of Ksf. In this way, the calculation of zero pressure point, e, can be omitted. CivilTech Software SHORING EXAMPLES 2

3 EXAMPLE 2 X γ = 25 pcf φ = 35 o δ = φ/2 (only for passive) H = 2 e Y = 0.77 P = ksf Y kcf EXAMPLE 3 SURCHARGE, Ps = H = 2 P = P4 =.2 P2 = P5 =.752 P3 = SOIL γ = 25 pcf φ = 30 o δ = φ/2 SOIL 2 γ2 = 30 pcf φ2 = 35 o δ = φ/2 CivilTech Software SHORING EXAMPLES 3

4 EXAMPLE 3 DESIGN OF SHEET PILE WALL WITH TWO SOIL AND SURCHARGE LOAD A sheet pile wall is required to support 2 excavation. F.S. =.5 is required for passive pressure. Soil conditions are shown in the figure. The surcharge load will be in a separate diagram. Question: What is the embedment and maximum bending moment in pile? Active pressure above cut: <soil > φ=30, Ka =0.33, P = Kaγ(2 ) = (0.33)(25)(2) = Ksf Active pressure below cut: <soil > pressure slope, Pa = Kaγ = (0.33)(25) = 0.04 Kcf P2 = Kaγ(5 ) = (0.33)(25)(5) = 0.68 Ksf <soil 2> φ2= 35, Ka = 0.27, pressure slope Pa = Kaγ = (0.27)(30) = Kcf P3 = Kaγ (5 ) = (0.27)(30)(5) = Ksf Passive pressure below cut: <soil > φ = 30, δ= φ/2, Kp = 4.8 (NAVFAC or Epres program) pressure slope, Pp = Kpγ/F.S. = (4.8)(25) /.5 = 0.4 Kcf P4 = Pp(3 ) = 0.4(3) =.2 Ksf <soil 2> φ2 = 35, δ= φ2/2, Kp = 6.74 (NAVFAC or Epres program) pressure slope, Pp = Kpγ/F.S.= (6.74)(30) /.5 = (6.74)(30) /.5 = Kcf P5 = Pp(3 ) = 0.584(3 ) =.752 Ksf Use spacing for the sheet pile and 0.24 Ksf for surcharge load. The program shows that the minimum embedment is 3.3 and the pile length is 25. The maximum moment in the pile is 53.3 K-ft/ft at 7.7 from the ground surface. CivilTech Software SHORING EXAMPLES 4

5 EXAMPLE 4 DESIGN OF SHEET PILE WALL WITH COHESIVE SOIL AND SURCHARGE LOAD Introduction : In this example, the surcharge load is merged with the active pressure. It also can be separated as example 3. Soil 2 below cut line is a cohesive material with cohesion = 500 pcf (F.S. included). Question: What is the embedment and maximum bending moment in the pile? Active pressure above cut: <soil > φ=30, Ka = 0, P = Ka q = (0.33)(300) = 0. Ksf. P2 = Ka (q + γh) = 0.33 ( x 2) = Ksf Passive pressure below cut: <soil 2> φ2 = 0, Ka = 2, P3 = 4c - σv = 4(500) - (q + γh) = [ (2)] = 0.23 Ksf For passive pressure input, use Top Pres.= 0.23 and Pres. Slope = 0 The program shows that the minimum embedment is 4.58 and the pile length is The maximum moment in the pile is 43.2 Kip-ft/ft at 27.3 from the ground surface. EXAMPLE 4 q = 300psf P = 0. H = 2 P3 = 0.23 P2 = SOIL (LOOSE SAND) γ = 22.5 pcf φ = 30 o δ = 0 Cu = 0 SOIL 2 (MED. CLAY) γ2 = 0 pcf φ2 = 0 Cu = 500 psf CivilTech Software SHORING EXAMPLES 5

6 EXAMPLE 5 DESIGN OF SHEET PILE WALL WITH DIFFERENTIAL WATER LEVELS The water level is higher outside of the excavation base. Seepage is allowed to flow through the bottom of the pile. The water pressures of both sides are equal, therefore, the net pressure is zero at the bottom of the pile. Question: What is the embedment and maximum bending moment in the pile? Active pressure above cut: φ = 35, Ka = 5, P = Kaγ(5 ) = (0.27)(25)(5 ) = 0.7 2, P2 = (0.27)( )(2-5 ) + P = Ksf Active pressure below cut: Pa = Kaγ = (0.27)( ) = 0.07 Ksf Passive pressure below cut: φ= 35, Kp = δ = φ /2, P =0 Pp = Kpγ /F.S. = (6.74)(62.6) /.5 = 0.28 Ksf Due to seepage, the net water pressure = 0 at the embedment bottom. Because the embedment depth is unknown, the value can be set 999 to let the program find embedment. (See Chapter 5). The program shows that the minimum embedment is 6.8 and the pile length is The maximum moment in the pile is 38.9 Kip-ft/ft at 20 from the ground surface. EXAMPLE 5 5 H = 2 5 bottom F. S. =.5 P = 0.7 γ = 25 pcf φ = 35 o δ = φ/2 (Only for passive) 2 H = 2 P2 = Pw = The depth is unknown, input 999 in program CivilTech Software SHORING EXAMPLES 6

7 EXAMPLE 6 DESIGN OF ANCHORED SHEET PILE WALL WITH THE SAME WATER LEVEL This example has a 36 deep excavation to which tieback anchors are applied. The water levels are the same inside and outside of the excavation. Two layers of soil are presented in the example. Question: What is the embedment, anchor force, and maximum bending moment in the pile? Active pressure above cut: <soil > φ = 34, Ka = 0, P = Kaγ (0 ) = , P2 = P + Kaγ (36-0) = P + (0.28)(60)(26) = Ksf Active pressure below cut: <soil 2> φ2 = 34.5, Ka = 36, P3 = Ka[γ(0) + γ (26)] =.26 [0(0) + 60(26)] = Ksf Passive pressure below cut: φ2= 34.5, Kp = 6.63, Pp = Kpγ Pn = Pp - Pa = ( )(65) = 0.44 Ksf Try input anchor level at 9 from the ground surface. The program shows that the minimum embedment is 7.5 and the pile length is The maximum moment in the pile is 68.7 Kip-ft/ft at 26 from the ground surface. The brace force = 8.8 K/ft. EXAMPLE T P=0.308 H = 36 P2=0.745 SAND BACK FILL γ = 0 γ = 60 pcf φ = 34 o δ = 0 Ka = 0.28 P3= MEDIUM SAND γ = 65 pcf Kp = 6.63 φ = 34.5 o δ/φ = 0.4 Ka = 0.26 Kp - Ka = 6.37 CivilTech Software SHORING EXAMPLES 7

8 EXAMPLE 7 DESIGN OF ANCHORED SOLDIER PILE WALL WITH LAGGING A soldier pile wall is used in this example with one tieback anchor applied for each pile. Question: What is the embedment, anchor force, and maximum bending moment in the pile? Active pressure above cut: φ = 30, Ka = 2, P = Kaγ(2 ) = Ksf Passive pressure below cut: C = 700 psf, φ = 0, Ka = 2, P2 = 4c - σv = 4(700) - (22.5)(2 ) =.33 Ksf Try an anchor level = 5 from the pile top. The program shows that the minimum embedment is.3 and the pile length is 3.3. The maximum moment in the pile is 3.2 Kip-ft/ft at 9.3 from the ground surface. Horizontal tieback force is 0.6 Kips per pile. EXAMPLE 7 T 5 Lagging spacing = 6 H = 2 P2 =.33 P = LOOSE SAND γ = 22.5 pcf φ = 30 o δ=0 Cu = 0 Ka = 0.33 MED. CLAY γ2 = 0 pcf φ2 = 0 Cu = 700 psf Pile Dia. = 2 CivilTech Software SHORING EXAMPLES 8

9 EXAMPLE 8 DESIGN OF SHEET PILE WALL WITH TIEBACK ANCHOR This example has a limited surcharge load. The surcharge pressure from the Lpres program is 0.42 Ksf as shown in the figure. The water pressure is similar to the condition in example 5. Question: What is the embedment, anchor force, and maximum bending moment in the pile? Surcharge: Ps = 0.42 Ksf Water pressure: Pw = γw (6-8 ) = (62.4)(8) = Ksf Active pressure: P = Kaγ(8 ) = (0.27)(25)(8) = 0.27 Ksf P2 = P +Kaγ= P + (0.27)( )(7) = Ksf Pa = Kpγ = (0.27)( ) = 0.07 Kcf Passive pressure: starting 2 below dredge line P3 = Kp[γ() + γ w ()] = 8.95 [ ] =.26 Ksf Pp = Kpγ = (8.95)( ) = 0.56 Kcf Use 999 for the unknown depth. (See Example 5) The program shows that the minimum embedment is 5 and the pile length is 20. The maximum moment in the pile is 7.3 Kip-ft/ft at 2.5 from the ground surface. T = 8.2 Kips. EXAMPLE 8 q Ps = T P = H = 5 P2 = P3 = γ = 62.6 pcf γ = 25 pcf φ = 35 o δ = φ/2 6 Pw = The depth is unknown, input 999 in program CivilTech Software SHORING EXAMPLES 9

10 EXAMPLE 9 DESIGN OF COFFERDAM WITH TWO BRACES Introduction : A cofferdam is designed for a bridge pier excavation. Two braces are used herein. Question: What is the embedment, brace force, and maximum bending moment in the pile? Surcharge: Ps = 0.42 Ksf Water pressure: Pw = γw (6-8 ) = (62.4)(8) = Ksf Active pressure: P = Kaγ(8 ) = (0.27)(25)(8) = 0.27 Ksf P2 = P +Kaγ = P + (0.27)( )(7) = Ksf Pa= Kpγ = (0.27)( ) = 0.07 Kcf Passive pressure: starting 2 below dredge line P3 = Kp[γ() + γ w ()] =8.95 [ ] =.26 Ksf Pp = Kpγ = (8.95)( ) = 0.56 Kcf The condition is the same as in example 8. The maximum movement is significantly reduced due to two levels of bracing. The program shows that the minimum embedment is 4.2 and the pile length is 9.2. The maximum moment in the pile is 7.8 Kip-ft/ft at 4. from the ground surface. T = 5.3 Kips/ ft and T2=2.9 Kips/ ft. EXAMPLE 9 q Ps = T T2 P = γ = 62.6 pcf γ = 25 pcf φ = 35 o δ = φ/2 H = P3 =.26 P2 = Pw = 0 6 Pw = The depth is unknown, input 999 in program CivilTech Software SHORING EXAMPLES 0

11 EXAMPLE 0 DESIGN OF COFFERDAM WITH THREE BRACES A cofferdam is designed to support an excavation for a bridge pier. Due to a railroad 6 from the wall, surcharge pressure of 0.42 Ksf is applied. No seepage is allowed below the pile bottom. The water pressures at both sides are not equal. The outside pressure is higher than inside. After subtraction of the inside pressure, the net hydraulic pressure is constant below 36. Question: What is the embedment, brace force, and maximum bending moment in the pile? Active pressure above cut: φ = 35, Ka = 8, P = Kaγ(8 ) = (0.27)(25)(8) = , P2 = Kaγ (35-8) + P = (0.27)(62.6)(27) = Ksf Water 36, Pw = (36-8)(62.4) =.747 Ksf Surcharge load: (from Lpres program) from 0 to 0, Ps = 0.42 Ksf at 36, Ps = 0 Active pressure below cut: active pressure slope: Pa = Kaγ = (0.27)(62.6) = 0.07 Kcf Net water pressure: Pw =.747 Ksf constant Passive pressure below cut: φ = 35, δ = φ/2, Kp = 37, P3 = Kpγ (2 ) = 8.95(62.6)(2) = Ksf passive pressure slope: Pp = Kpγ = 8.95(62.6) = 0.56 Kcf The soil below the excavation base is disturbed. Therefore the passive pressure of the top 2 soil below the dredge line is ignored. The input pressure diagram is shown as follows. The program shows that the minimum embedment is 8.5 and the pile length is The maximum moment in the pile is 32.4 Kip-ft/ft at 25.2 from the ground surface. T = 3.6 Kips/ ft, T2 = 2.6 Kips/ ft, and T3 = 6. Kips/ ft. CivilTech Software SHORING EXAMPLES

12 EXAMPLE 0 Surcharge q H = T T2 T3 37 P3 =.26 P = 0.27 P2 = Ps = γ = 62.6 pcf γ = 25 pcf φ = 35 o δ = φ/2 36 Pw =.747 Cancel out CivilTech Software SHORING EXAMPLES 2

13 EXAMPLE DESIGN OF TIEBACK WALL The tieback wall has an 8 spacing of soldier pile supported by timber lagging (3 x 2 ). The active pressure diagram is a trapezoid. The surcharge load of 2 of soil is added to the active diagram. The soldier pile has a 2 diameter shaft. Below the dredge line, the active pressure is acting on one diameter. The passive pressure is acting on two diameters of pile due to the arching effect. Question: What is the embedment, tieback force, and maximum bending moment in the pile? The soil report of this project requires 20(H + 2 ) for active pressure and ignoring the top 2 of passive pressure. The passive resistance is 400 pcf including F.S. Above base 8 spacing Active pressure P2 = P3 = 20(H + 2) = 20(30 + 2) = 0.64 Ksf Below base Active pressure P4 = 30(Z + 2) = 30(30 + 2) = 0.96 Ksf Active pressure slope Pa = 0.03 Kcf Acting diameter of pile. Diameter of pile = 2. Passive pressure slope Pp = 0.4 Kcf Acting 2 diameter of pile. Diameter of pile = 2. Use 3 pressure programs to input the active pressure The program shows that the minimum embedment is 6.7 and the pile length is The maximum moment in the pile is 49.7 Kip-ft at 27. from the ground surface. T = 44.7Kips, T2 = 45.Kips, T3 = 42.9Kips. EXAMPLE Surcharge = 2 (Height of Soil) 5.5 P = 0.04 P2 = H = 6 Lagging Spacing = 8 4 T H = T2 P3 = 0.64 T3 0.2 H = 6 32 P4 = Y 0.03 ( X + 2 ) Acting 2 Dia. of Pile = 4 Acting Dia. Of Pile = 2 CivilTech Software SHORING EXAMPLES 3

14 EXAMPLE 2 DESIGN OF ANCHORED AND RACKING BRACED WALL The original design using one level of tieback is not adequate to support the wall. An additional raking brace is added to help the stability of the wall. Question: What is the embedment, brace force, and maximum bending moment in the pile? Active pressure above exc. 20(H) = 20(30 ) = 0.6 Ksf Acting 8 Active below exc. 30(Y) = 30(30 ) = 0.6 Ksf Acting 2 (diameter of pile) Passive below exc. 400Y Acting 4 (2 diameter of pile) Diameter of pile = 2 Lagging spacing = 8 Surcharge as shown Ps = 0.36 The program only calculates the horizontal bracing force. The user has to calculate the vertical force and the total force based on the horizontal force calculations. The program shows that the minimum embedment is 5.8 and the pile length is The maximum moment in the pile is 28.6 Kip-ft at 24 from the ground surface. T = 6.3 Kips, T2 = 7. Kips. The force is in brace = 50 /Sin 45 = 70.7 Kips. EXAMPLE 2 Surcharge 6 T P = H = 6 Ps = Lagging Spacing = 8 7 H = 30 T2 P2 = o P3 = H = CivilTech Software SHORING EXAMPLES 4

15 EXAMPLE 3 DESIGN OF BRACED CUT WITHOUT EMBEDMENT Introduction : For trench excavation, sometimes the supporting system only uses steel plates, swale, and braces. The steel plates do not penetrate into the ground. The program also can solve these types of problems. The program also can be applied for trench box excavation for pipelines. This example uses three level of braces for a 20 cut. To check the stability problem, the heave program can be used. Question: What is the bracing force? Active pressure: φ = 30 Ka = 0.33 P = 0.65 KaγH = (0.65)(0.33)(20) 20 = 0.5 Ksf In the program output on page 2, check the bottom which will indicate the shoring wall without bracing. 3.7 T = 2.64k/ ft 0 T2 = 2.87k/ ft 6.3 T3 = 2.64k/ ft Maximum moment in plate: 2 Kip-ft/ft EXAMPLE 3 γ = 20pcf φ = 30 o P= H = 4 H = H = 4 CivilTech Software SHORING EXAMPLES 5

16 EXAMPLE 4 DESIGN OF SHEET PILE WALL, POUR SEAL AT BOTTOM Sometimes the bottom of the excavation is sealed to prevent water and heave. In this case, two ways can be used for inputting the concrete seal. ) Use a brace at the level of the seal. Note: the depth of the brace cannot be equal to the depth of the excavation. 0.5 to.0 is required above the excavation level as the input of this example. 2) In the passive pressure input, use a large value of Pres. Top and Pres. Slope. However, if the value is too large, the program cannot function. Trial and error is required. Question: What is the embedment and maximum bending moment in the pile? Active: P = 650 psf Water: P w = γ w (25-0 ) = 62.4 (5) = 936psf Passive: Pp = 300 pcf Concrete seal was poured at bottom of excavation, then dewater to excavation base. Sheet pile spacing (width) = The program shows that the minimum embedment is 3.7 and the pile length is The maximum moment in pile is.7 Kip-ft/ft at 8 from the ground surface. T=5.8 Kips/ ft, T2=5.8 Kips/ ft, and T3=4.2 Kips/ ft. T3 is the concrete seal. If the seal is 2 thick, the compression stress is 75 psi. EXAMPLE 4 P= T T2 0 CONCRETE SEAL, 2 THICK T3 Pw = Cancel out CivilTech Software SHORING EXAMPLES 6

17 EXAMPLE 5 DESIGN OF DEEP EXCAVATION USING MULTI-TIEBACK WALL This is a real project in Seattle area. The excavation is 60 below ground. The lagging spacing is 6. 7 levels of tiebacks are used. Vertical spacings of tiebacks need to be adjusted for a minimum moment in piles and smaller reaction force in tieback. The program proves easy input interface, so the user can change the depth of each tieback and run the program several times to get an optimum result. Question: What is the embedment, tieback force and maximum bending moment in the pile? Active: Above Base P = 0.65 KaγH = (0.65)(0.28)(25)(60) =.365 ksf Below Base Passive: Below Base P 2 = KaγH = (0.28)(25)(60) = 2. ksf Pa = Kaγ = (0.28)(25) = kcf Pp = Kpγ = 6.74 (30) = kcf Surcharge 0-0, Ps = 0.64 ksf; >0, Ps 2 = 0.24 ksf The output results are shown in the following: EXAMPLE P= Surcharge γ = 25 pcf φ = 34 o ka = Ps= 0.64 Lagging Spacing = H = P2 = Acting 2 Dia. of pile = 4. Acting Dia. of pile = 2 Ps2 = γ = 30 pcf φ = 35 o δ = φ/2 kp = 6.74 CivilTech Software SHORING EXAMPLES 7

### Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers

PDHonline Course C155 (2 PDH) Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers Instructor: Richard P. Weber, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA

### PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center

PDHonline Course S151A (1 PDH) Steel Sheet Piling Instructor: Matthew Stuart, PE, SE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

### Module 6 : Design of Retaining Structures. Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ]

Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ] Objectives In this section you will learn the following Introduction Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction

### DIRT DWELLING. and your. www.pinfoundations.com. Pin Foundations Inc., 2008

DIRT and your DWELLING 2008 Pin Foundations Inc., 2008 If we accept that preserving soil in its native condition is necessary, then how do we build? Utilities? Roads? Foundations? Typical Strip, Transfer,

### FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

### Shoring Suite. Version 8. User s Manual

Shoring Suite Version 8 User s Manual CivilTech Software 2015 All the information (including technical and engineering data, processes, and results) presented in this program have been prepared according

### TYPES OF FOUNDATIONS

TYPES OF FOUNDATIONS 1 Foundation Systems Shallow Foundation Deep Foundation Pile Foundation Pier (Caisson) Foundation Isolated spread footings Wall footings Combined footings Cantilever or strap footings

### 5/1/2013. Topics. The challenge is to better maintain native characteristics of soils during and after construction

PIN Foundations Topics Applications Design and Construction Flow Control Credits www.pinfoundations.com Copyright 2008, Pin Foundations, Inc. Curtis Hinman WSU Extension Faculty, Watershed Ecologist chinman@wsu.edu

### GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1

### Helical Design Theory and Applications. By Darin Willis, P.E.

Helical Design Theory and Applications By Darin Willis, P.E. Solution Systems Ram Jack utilizes two unique underpinning & anchoring systems Hydraulically driven piles (pressed) Helical piles (torqued)

### STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

### END SHORE. TABULATED DATA Effective August 5, PACIFIC SHORING, LLC 265 Roberts Avenue Santa Rosa, Ca (707)

1 Effective August 5, 2014 PSH 265 Roberts Avenue Santa Rosa, Ca. 95407 (707) 575-9014 CER, Construction Engineering Resource, Inc. 1837 Wright Street Santa Rosa, Ca. 95404 jmtengr2 @aol.com (707) 484-4704

### 1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

### Pipeline bridge crossing for mining trucks A geotechnical engineering design.

Pipeline bridge crossing for mining trucks A geotechnical engineering design. Bernard Shen Pells Sullivan Meynink, Sydney, Australia ABSTRACT The Donaldson open pit coal mine is located in Blackhill, New

### Designed and Engineered to Perform

History EARTH CONTACT PRODUCTS, L.L.C., is a family owned company, based in Olathe, Kansas. This company was built upon Don May s U.S. Patented fourth-generation Steel Piering System that has led to the

### Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

### REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

### Geotechnical Building Works (GBW) Submission Requirements

Building Control (Amendment) Act 2012 and Regulations 2012: Geotechnical Building Works (GBW) Submission Requirements Building Engineering Group Building and Construction Authority May 2015 Content : 1.

### CH. 6 SOILS & FOUNDATIONS

CH. 6 SOILS & FOUNDATIONS SOIL PROPERTIES Classified into four groups - Sands & gravels - Clays - Silts - Organics Subsurface Exploration Core borings: undisturbed samples of soil - Recovered bore samples

### EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

### Since the Steel Joist Institute

SELECTING and SPECIFYING Wesley B. Myers, P.E. An insider s guide to selecting and specifying K-series, LH, DLH-series joists and joist girders Since the Steel Joist Institute adopted the first standard

### BUILDING CONTROL (ACCREDITED CHECKERS AND ACCREDITED CHECKING ORGANISATIONS) (AMENDMENT NO. 2) REGULATIONS 2008

1 S 249/2008 First published in the Government Gazette, Electronic Edition, on 5th May 2008 at 5:00 pm. NO. S 249 BUILDING CONTROL ACT (CHAPTER 29) BUILDING CONTROL (ACCREDITED CHECKERS AND ACCREDITED

### Tiebacks/Anchors & Soil Nails. Tom Richards, PE Chief Design Engineer Nicholson Construction Company 12 McClane Street Cuddy, PA 15031

Tiebacks/Anchors & Soil Nails Tom Richards, PE Chief Design Engineer Nicholson Construction Company 12 McClane Street Cuddy, PA 15031 Anchors & Nails Design Intro Materials Construction Testing Anchor

### A Case Study for Waterproofing Below Grade Walls Shored with Continuous Soil Mix Technology Using a Bentonite Waterproofing System

A Case Study for Waterproofing Below Grade Walls Shored with Continuous Soil Mix Technology Using a Bentonite Waterproofing System Amanda Prot Rodney Lock Stéphane Hoffman Outline Project Requirements

### International Society for Helical Foundations (ISHF)

QUICK DESIGN GUIDE For Screw-Piles and Helical Anchors in Soils Ver. 1.0 Prepared by Dr. Alan J. Lutenegger, P.E., F. ASCE for International Society for Helical Foundations (ISHF) Copyright 2015 (ISHF)

### A N Beal EARTH RETAINING STRUCTURES - worked examples 1

A N Beal EARTH RETAINING STRUCTURES - worked examples 1 Worked examples of retaining wall design to BS8002 The following worked examples have been prepared to illustrate the application of BS8002 to retaining

### CHAPTER 1 INTRODUCTION TO FOUNDATIONS

CHAPTER 1 INTRODUCTION TO FOUNDATIONS The soil beneath structures responsible for carrying the loads is the FOUNDATION. The general misconception is that the structural element which transmits the load

### CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the

### Underpinning Systems 14.1 FOUNDATION REPAIR. Helical Piles

Helical Piles Howard A. Perko Copyright 0 2009 by John Wiley & Sons, Inc. All rights reserved. C h a p t e r 14 Underpinning Systems There has been tremendous growth in the use of helical piles for underpinning

MICROPILES SUBJECT TO LATERAL LOADING Dr. Jesús Gómez, P.E. Micropile Design and Construction Seminar Las Vegas, NV April 3-4, 2008 Outline When are micropiles subject to lateral load? How do we analyze

### 13.1 SCOPE...13-1 13.2 DEFINITIONS...13-1 13.3 NOTATION...13-1 13.4 DETERMINATION OF SOIL PROPERTIES...13-2

SECTION 13: FOUNDATION DESIGN TABLE OF CONTENTS 13 13.1 SCOPE...13-1 13.2 DEFINITIONS...13-1 13.3 NOTATION...13-1 13.4 DETERMINATION OF SOIL PROPERTIES...13-2 13.5 FOUNDATION BEARING CAPACITY...13-2 13.5.1

### Wang, L., Gong, C. "Abutments and Retaining Structures." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000

Wang, L., Gong, C. "Abutments and Retaining Structures." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 000 9 Abutments and Retaining Structures Linan Wang California

### CHAPTER IV DECKS. (b) Attached Deck: Any deck which is physically connected to the principal building or accessory structure.

CHAPTER IV DECKS SECTION 30.30 GENERAL REQUIREMENTS 1. DEFINITIONS: (a) Deck: Any structure which serves as a raised horizontal platform on floor constructed of wood or other materials, without enclosing

### Steel Sheet Piling. Design Manual

Steel Sheet Piling Design Manual United States Steel Updated and reprinted by U. S. Department of Transportation /FHWA with permission. July 1984 Sections PS32 and PSA28 ate infrequently rolled and we

### HELICAL SCREW ANCHORS AND FOUNDATIONS IN SOIL. History, Applications, Design

HELICAL SCREW ANCHORS AND FOUNDATIONS IN SOIL Historical Perspective 1 st Recorded use of a Screw Pile was by Alexander Mitchell in 1836 for Moorings and was then applied by Mitchell to Maplin Sands Lighthouse

### PILE FOUNDATIONS FM 5-134

C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics

### Objectives. To provide students with:

Excavation Safety 1 Objectives To provide students with: An introduction to 29 CFR 1926, Subpart P-Excavation Standard An overview of soil mechanics An introduction to trenching and excavation hazard recognition

### NC Employees Workplace Program Requirements for Safety and Health. Excavation, Trenching and Shoring

Excavation, Trenching and Shoring Scope The scope of this safety requirement and procedure is to ensure that each state employee has the training and information needed to perform his or her job safely

### Design of an Industrial Truss

Design of an Industrial Truss Roofing U 2 U 3 Ridge U 4 Sagrod 24 U 1 U 5 L 0 L 1 L 2 L 3 L 4 L 5 L 6 6@20 = 120 Elevation of the Truss Top Cord Bracing Sagrod Purlin at top, Bottom Cord Bracing at bottom

### CHAPTER III SITE EXPLORATION

CHAPTER III SITE EXPLORATION Investigational Programs. Field investigations can be divided into two major phases: a surface examination and a subsurface exploration. 1 Surface Examination a. Literature

### Helical Pile Application and Design

PDHonline Course C513 (1 PDH) Helical Pile Application and Design Instructor: Andrew P. Adams, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

### Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

### The Manitoba Water Services Board SECTION

Page 1 of 10 Part 1 General 1.1 DESCRIPTION OF WORK.1 This work shall consist of the removal of all materials of whatever nature, necessary for the proper placement of structure foundations, the supply

### Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

### Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /

### Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate

Addendum HELICAL PULLDOWN Micropile (HPM) Introduction The HPM is a system for constructing a grout column around the shaft of a standard Helical Screw Foundation (see Figure A1). To begin the process,

### SECTION 4 EXCAVATION, TRENCHING AND BACKFILLING 4.01 SCOPE OF WORK

4.01 SCOPE OF WORK The work covered by this section shall consist of furnishing all materials, equipment and labor for the excavating, trenching, backfilling, and bore and jack required to install or repair

### Rehabilitation of Existing River Piers for

Creating Value Delivering Solutions Rehabilitation of Existing River Piers for Dick Henderson Bridge, West Virginia i i Joe Carte, P.E. W.V. Department of Transportation Scott Zang, P.E. Michael Baker

### SECTION 02200 SUPPORT OF EXCAVATION

SECTION 02200 PART 1 GENERAL 1.01 DESCRIPTION A. Section including specifications for design and installation of excavation support. B. Section also includes specifications for excavation support systems

### CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION

391 CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION 9.1 OVERVIEW OF FE SOIL-STRUCTURE INTERACTION Clough and Denby (1969) introduced Finite Element analysis into the soil-structure interaction

### ATLAS RESISTANCE Pier Foundation Systems

ATLAS RESISTANCE Pier Foundation Systems Foundation Repair Systems for Civil Construction Applications: Residential, Commercial, Industrial Atlas Resistance Piers have been used to restore and/or stabilize

### System. Stability. Security. Integrity. 150 Helical Anchor

Model 150 HELICAL ANCHOR System PN #MBHAT Stability. Security. Integrity. 150 Helical Anchor System About Foundation Supportworks is a network of the most experienced and knowledgeable foundation repair

### K x ' Retaining. Walls ENCE 461. Foundation Analysis and Design. Mohr s Circle. and Lateral Earth. Pressures. Lateral Earth Pressure.

Lateral Earth Pressure Coefficient K x ' z ' K = lateral earth pressure coefficient x = horizontal effective stress Mohr s Circle and Lateral Earth Pressures x ' = = z ' ENCE 461 Foundation Analysis and

### Stability. Security. Integrity.

Stability. Security. Integrity. PN #MBHPT Foundation Supportworks provides quality helical pile systems for both new construction and retrofit applications. 288 Helical Pile System About Foundation Supportworks

### information sheet Structural Materials

information sheet Structural Materials Roundwood Applications The information provided below has been taken from the New Zealand Timber Design Guide 2007, published by the Timber Industry Federation and

### OSHA Subpart P Trenching and Excavation

OSHA Subpart P Trenching and Excavation Behold, the trench. Defined as No Wider Than 15 feet. Otherwise, it is an excavation. Trench Cave-Ins A Major Killer in Construction At least 50 fatalities per year,

### Tremie Concrete CM 420 CM 420 CM 420 CM 420. Temporary Structures. Tremie Concrete

Tremie Concrete Underwater concrete plays an important role in the construction of offshore structures. It may be used to tie together various elements in composite action (i.e., to tie piling to the footing).

### Current Version: September 26, 2012 Previous Versions: 02/24/10, 03/26/08, 03/09/04, 02/17/00 and 05/16/97 Item No. 509S Excavation Safety Systems

Item No. 509S Excavation Safety Systems 509S.1 Description This item shall govern the designing, furnishing, installing, maintaining and removing or abandoning of temporary Excavation Safety Systems consisting

### Auger Boring. Dr. Mark Knight. Centre for Advancement of Trenchless Technologies (CATT) University of Waterloo. New Installations.

Auger Boring Dr. Mark Knight Centre for Advancement of Trenchless Technologies (CATT) University of Waterloo 1 New Installations New Installations Non-Steering Methods Steering Methods Moling/Piercing

### High Capacity Helical Piles Limited Access Projects

High Capacity Helical Piles Limited Access Projects Tel 403 228-1767 Canada, USA, Russia Brendan ODonoghue 519 830-6113 Presentation Summary 1. Helical piles Background on large diameter shafts and helices

### Comprehensive Design Example 2: Foundations for Bulk Storage Facility

Comprehensive Design Example 2: Foundations for Bulk Storage Facility Problem The project consists of building several dry product storage silos near an existing rail siding in an open field presently

### INFORMATION BULLETIN NO.

One- and Two-Family Standard Garage Slab and Foundation Wall Details for use with the 2012 International Residential Code (IRC) INFORMATION BULLETIN NO. 114-2012 October 1, 2012 City Planning & Development

### ALLOWABLE LOADS ON A SINGLE PILE

C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 5-1. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity

### The unit costs are based on the trend line of the 3 low bids for the average quantity.

Page 1 of 8 COST ESTIMATE GENERAL INSTRUCTIONS The unit costs are based on the trend line of the 3 low bids for the average quantity. Apply the Unit Costs to ordinary structures. Unit Costs should generally

### SECTION 206 EXCAVATION FOR STRUCTURES

SECTION 206 EXCAVATION FOR STRUCTURES 206.1 Description. This work shall consist of the necessary excavation for the foundations of all structures, removal and disposal of all excavated material, backfilling

### BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM Swaminathan Srinivasan, P.E., M.ASCE H.C. Nutting/Terracon David Tomley, P.E., M.ASCE KZF Design Delivering Success for

### Use of arched cables for fixation of empty underground tanks against underground-waterinduced

Journal of Civil Engineering (IEB), 36 () (008) 79-86 Use of arched cables for fixation of empty underground tanks against underground-waterinduced floatation Ala a M. Darwish Department of Building &

### Formwork for Concrete

UNIVERSITY OF WASHINGTON DEPARTMENT OF CONSTRUCTION MANAGEMENT CM 420 TEMPORARY STRUCTURES Winter Quarter 2007 Professor Kamran M. Nemati Formwork for Concrete Horizontal Formwork Design and Formwork Design

EFFICIENT DESIGN OF VERTICAL MICROPILE SYSTEMS TO LATERAL LOADING Dr. Jesús Gómez, P.E. PE Andy Baxter, P.G. Outline When are micropiles subject to lateral load? How do we analyze them? Shear Friction

### Excavation Safety LCS 6465 (07-11)

Excavation Safety LCS 6465 (07-11) Excavations: Hazard Recognition in Trenching and Shoring A. Weight of Soil The weight of soil varies with type and moisture content. One cubic foot of soil can weigh

### FOOTING DESIGN EXAMPLE

County: Any Design: BRG Date: 10/007 Hwy: Any Ck Dsn: BRG Date: 10/007 FOOTING DESIGN EXAMPLE Design: Based on AASHTO LRFD 007 Specifications, TxDOT LRFD Bridge Design Manual, and TxDOT Project 0-4371

### ALMITA & SCREW PILE INTRODUCTION

ALMITA & SCREW PILE INTRODUCTION Charlie Street Inside Sales charlie.street@almita.com Chris Boettcher Business Development Manager chris.boettcher@almita.com Agenda Safety Moment Introduction of the Company

### SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

### Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining

### DRIVEN PIPE PILES IN DENSE SAND

DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA ABSTRACT: Piles are often driven open ended into dense sand with the aim of increasing the ease of penetration

### SECTION 02401 SHEETING, SHORING AND BRACING

SECTION 02401 SHEETING, SHORING AND BRACING This section should be edited to reflect soil conditions specific to the project site and the recommendations of a Geotechnical Engineer licensed in the State

### Pro-Lift Steel Pile Foundation Repair

Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair System Pro-lift steel piles are designed for the stresses of Texas soils. They can have multiple steel walls, depending on the

### A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

### Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

### Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering

### 11/1/2010 3:57 PM 1 of 11

Masonry Wall 6.0 - MASONRY WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

### Geotechnical Engineering in the Urban Environment Engineering Consulting Services, LTD

Geotechnical Engineering in the Urban Environment Engineering Consulting Services, LTD Karl A. Higgins, III, P.E., Senior Principal Engineer 2014 Annual Meeting Introduction Geotechnical Engineering Challenges

### PILE FOUNDATION. Pile

PILE FOUNDATION. One or more of the followings: (a)transfer load to stratum of adequate capacity (b)resist lateral loads. (c) Transfer loads through a scour zone to bearing stratum 1 (d)anchor structures

### The Manitoba Water Services Board SECTION 022180 Standard Construction Specifications PIPE EXCAVATION, BEDDING AND BACKFILL Page 1 of 11

Page 1 of 11 Part 1 General 1.1 DESCRIPTION OF WORK.1 The work described herein shall consist of the excavation of trenches (or excavation of tunnels); the supply and placing of bedding and backfill materials;

### Concrete Pipe Design Manual INDEX OF CONTENTS. FOREWORD... iii. Chapter 1. INTRODUCTION... 1

Concrete Pipe Design Manual INDEX OF CONTENTS FOREWORD...... iii Chapter 1. INTRODUCTION... 1 Chapter 2. HYDRAULICS OF SEWERS Sanitary Sewers... 3 Determination of Sewer System Type... 3 Determination

Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple

### A. Cylindrical Tank, Fixed-Roof with Rafter & Column (cont.)

According to API 650 Code, Edition Sept. 2003 Page : 23 of 34 9. Seismic Design. [APPENDIX E, API 650] 9.1. Overturning Moment due to Seismic forces applied to bottom of tank shell, M = Z I (C1 Ws Xs +

### GEOTECHNICAL INVESTIGATION CITY OF HOUSTON SURFACE WATER TRANSMISSION PROGRAM CONTRACT 74A-1 WATERLINE COH WBS NO. S-000900-0109-3 HOUSTON, TEXAS

GEOTECHNICAL INVESTIGATION CITY OF HOUSTON SURFACE WATER TRANSMISSION PROGRAM CONTRACT 74A-1 WATERLINE COH WBS NO. S-000900-0109-3 HOUSTON, TEXAS Reported To: LAN, Inc. Houston, Texas by Aviles Engineering

### Fundamentals of Helical Anchors/Piles

Fundamentals of Helical Anchors/Piles By Thomas B. Watson, III, P. E. Table of Contents I. History of Helical Anchors/Piles II. What are Helical Anchors/Piles? III. An Overview of Corrosion IV. Spacing

### Static analysis of restrained sheet-pile walls

Static analysis of restrained sheet-pile walls Bogdan Rymsza Warsaw University of Technology, Civil Engineering Faculty, Poland Krzysztof Sahajda Aarsleff Sp. z o.o., Poland ABSTRACT: The results of displacement

### TRENCHING AND EXCAVATION PROGRAM

Quality. Integrity. Experience. Electrical Engineers and Contractors Since 1918 Specializing in Design/Build TRENCHING AND EXCAVATION PROGRAM Procedures Training Protective Support Systems PURPOSE The

### Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Nathan A. Ingraffea, P.E., S.E. Associate, KPFF Consulting Engineers, Portland, Oregon, USA Abstract The use of steel sheet

### symptoms of a faulty foundation

symptoms of a faulty foundation How does drought impact your home's foundation? For many Texas families, their home becomes the single largest investment and also the family fortune. The home's foundation

### Retaining Wall Global Stability & AASHTO LRFD Unnecessary, Unreasonable Guideline Changes Result in Huge Wastes of Money at Some Wall Locations

Retaining Wall Global Stability & AASHTO LRFD Unnecessary, Unreasonable Guideline Changes Result in Huge Wastes of Money at Some Wall Locations The implementation of the AASHTO LRFD Bridge Design Specifications