A N Beal EARTH RETAINING STRUCTURES - worked examples 1

Save this PDF as:

Size: px
Start display at page:

Transcription

1 A N Beal EARTH RETAINING STRUCTURES - worked examples 1 Worked examples of retaining wall design to BS8002 The following worked examples have been prepared to illustrate the application of BS8002 to retaining wall design. They are not full detailed calculations such as might be prepared for a real wall design but are limited to the calculation of earth pressure and bearing capacity, showing how the recommendations of BS8002 are applied in practice. BS8002 introduces radical changes in the design of retaining walls. Traditionally, the forces applied to a wall have been calculated using representative values of key parameters such as soil strength and then safety and satisfactory service performance are ensured by applying suitable safety factors to the results of the calculations. BS8002 takes a completely different approach: there are no formal safety factors and instead safety and satisfactory performance in service are ensured by using applied forces and soil strengths which are conservative estimates, in order to produce what is effectively a 'worst case analysis. To assist understanding of the changes introduced by BS8002 and how they affect design, in the examples each wall is first designed in accordance with the traditional method (CP2) and it is then designed again in accordance with BS8002 and the results are compared. It is hoped that this will assist engineers changing over to the new Code, by letting them see how the new design method works and also giving them some feel for how it compares with past practice.

2 A N Beal EARTH RETAINING STRUCTURES - worked examples Mass Concrete Wall 1.1 H = 4m, retaining compact medium sand, no water pressure. CP2 Design No Surch. Table 2, Table 3 Soil properties (Table 2) compact sand: φ = 35º-40º, loose sand φ = 30º-35º; Cl wall friction δ = 20º assume φ = 35º Density = 19kN/m 3 Table 1 Active Earth pressure coefficient K a = 0.23 Cl For overturning stability, the load resultant in a gravity wall must be kept within middle third of wall; a safety factor of 2 against sliding is required 1500mm Consider base moments about wall centre line (all forces kn/m) thick wall Active pressure P an ½ ² Self weight 4.0x1.5x wall friction 35 tan20º TOTALS Load eccentricity = 37.2/150.7 = 0.247m, middle 1/3 limit = 1.50/6 = 0.25m overturning e= 0.247m < 0.25m OK Peak ground bearing pressure = 150.7/1.5)(1+(6x0.247/1.5)) = 199 Minus overburden - 0.6x19 = - 11 Peak net ground bearing pressure 188kN/m² Table 8 Allowable net bearing pressure = 2-4t/ft² = kN/m² 188 < 215kN/m² OK Cl Sliding: base friction = tan35º. Sliding force = 35kN/m, resistance = 150.7tan35º = 105.5kN/m. Safety Factor = 105.5/35 = 3.01 F of S = 3.01> 2 OK (Note: passive resistance also from soil in front of wall.) 1500mm thick wall OK CP2 Design Consider with 10kN/m² surcharge with Surch. 1750mm Active pressure P an ½ ² Thick wall Surcharge 0.23x10x Self weight 4.0x1.75x wall friction (35+9.2) tan20º TOTALS Load eccentricity = 51.0/177.1 = 0.288m overturning middle 1/3 limit = 1.75/6 = 0.292m e=0.288m <0.292m OK 1750mm thick wall OK

3 A N Beal EARTH RETAINING STRUCTURES - worked examples 3 BS8002 BS8002 Design Table 1 Dense medium sand, moderate grading: density = 18.5kN/m³ Assume sub-angular soil particles, SPT N = 20 at 3m depth Cl A = 2º, B = 2º, Fig. 2 Overburden pressure = = 55.5kN/m²: N /N = 1.7 Table 3 so N = =34, so C = 4.8º φ max = φ max 38.8º tanφ max φ crit = φ crit 34º tanφ crit Cl Wall friction δ = 20º Cl design tanφ = tanφ max/m or tanφ crit. = or design tanφ = (M = 1.2) design φ = 33.8º Cl design tanδ = tan 20º or 0.75xdesign tanφ = or design tanδ = From table design φ = 33.8º, design δ = 20º K a = Case A 10kN/m² surcharge on retained soil behind wall. Try 1400mm thick wall. 1400mm thick Active pressure = ½x0.242x18.5x4² Serviceability Ultimate Surcharge = 0.242x10x Wall self weight = 4.0x1.40x Wall friction = 45.5x TOTAL Load eccentricity e = 55.6/145.4 e =0.382m Net bearing pressure at toe = 145.4/ x55.6/1.4² - 0.6x18.5 = 263kN/m². Dense sand, allowable pressure = 600kN/m² 263 < 600 kn/m² OK Check ultimate allowable bearing pressure to CIRIA C516 Base effective breadth B = = 0.635m Average bearing pressure = 145.4/0.635 = 228.9kN/m² Bearing capacity = q N qi q + ½γ B N γ i γ Horizontal/Vertical F H/F v = 45.5/145.4 φ design = 33.8º i q = (1-0.7 F H/F v)³ = 0.476, i γ = (1 - F H/F v)³ = design φ = 33.8º N q = 28.7, Nγ = 37.1, q = = 11.1kN/m² Bearing cap. = = Cl , Sliding: base coefficient of friction = tanφ crit or 0.75(design tanφ ) = or Vert. load x friction = 145.4x0.503 = 73.1kN/m Sliding force = 45.5kN/m, 231.5kN/m² > OK 45.5 < 73.1kN/m. OK Case B Unplanned excavation in front of wall but no surcharge behind. Depth of excavation = 10% of clear height of wall = 0.34m. 1400mm thick Active pressure = ½x0.242x18.5x4² Self weight = 4.0x1.40x wall friction = 35.8x Serviceability Bearing pressure at toe = 141.8/ x38.7/1.4² = 220 < 600 kn/m² OK

4 A N Beal EARTH RETAINING STRUCTURES - worked examples 4 Ultimate Load eccentricity = 35.8/141.8 = 0.252m Effective breadth B = = 0.895m Bearing pressure = 141.8/0.895 = 158.4kN/m² Bearing capacity = q N qi q + ½γ B N γ i γ F H/F v = 35.8/141.8 φ design = 33.8º i q = 0.558, i γ = 0.418, q = = 4.81kN/m² Bearing capacity = = 205.6kN/m² < kn/m² OK Cl , Sliding force = 35.8kN/m resistance = = 71.3kN/m 35.8 < 71.3kN/m OK Case A (surcharge) is critical, 1400mm thick wall required. Comments If there is a 10kN/m 2 surcharge behind the wall, BS8002 requires a thinner wall than CP2 (1400mm thick compared with 1750mm). However if there is no surcharge, the two codes give similar results (BS8002: 1400mm, CP2: 1500mm), because BS8002 requires a surcharge to be considered in all cases. (If the wall designed for surcharge to BS8002 is checked to CP2, the calculated load eccentricity on the foundation is 0.26t, approximately on the edge of the middle half of the section, rather than the middle third.)

5 A N Beal EARTH RETAINING STRUCTURES - worked examples Mass concrete wall as 1.1 but with water behind wall CP2 Table 3 No surcharge (Assume soil below base of wall has low permeability; assume water table at front of wall is at ground level. Assume head of water at front of wall varies linearly between 0 and 0.6m and at back between 0 and 3.5m.) CP2 Design Buoyant density of soil = 11kN/m² Try 3000mm thick wall. 3000mm thick Active pressure ½ ² ½ ² Water pressure ½ ² Self weight Wall friction ( )tan20º Water uplift (1) / (2) TOTALS Load eccentricity = 111.9/224.2 = 0.499m middle 1/3 limit = 3000/6 = 0.50m e= <0.50 OK Peak bearing pressure = (224.2/3.0)x( /3.0) = 149.3kN/m² Table 8 Allowable pressure (submerged) = 1-2t/ft² = kN/m² say OK Sliding: force = 83.6kN/m base friction resistance = 224.2tan35º = 157.0kN/m passive resistance + water pressure in front of wall K p = 6.0 P p = ½ ² + ½ ² = = 13.7kN/m total resistance = = 170.7kN/m Cl Fof S against sliding = 170.7/83.6 = > 2 OK

6 A N Beal EARTH RETAINING STRUCTURES - worked examples 6 Surcharge CP2 Table mm Consider with 10kN/m 2 surcharge behind wall CP2 Design Buoyant density of soil = 11kN/m² Try 3300mm thick wall. thick active + water pressure surcharge pressure 0.23x10x self weight 4.0x3.3x wall friction ( )tan20º Water uplift (1) / (2) TOTALS Load eccentricity = 128.1/249.2 = 0.514m middle 1/3 limit = 3300/6 = 0.55m 0.55m<0.514m OK Peak bearing pressure = (249.2/3.3)x( /3.3) = 146.1kN/m² Table 8 Allowable pressure (submerged) = 1-2t/ft² = kN/m² say OK Sliding: force = 92.8kN/m base friction resistance = 249.2tan35º = 174.5kN/m passive resistance + water pressure in front of wall K p = 6.0 P p = ½ ² + ½ ² = = 13.7kN/m total resistance = = 188.2kN/m Cl Fof S against sliding = 188.2/92.8 = 2.03 > 2 OK With surcharge, 3300mm thick wall required

7 A N Beal EARTH RETAINING STRUCTURES - worked examples 7 BS8002 Table 1 Case A 2900mm thick wall BS8002 Design Soil saturated density = 21.5 kn/m³; buoyant density γ = = 11.7kN/m³ Assume variation of water pressure below wall same as CP2 example. surcharge 10kN/m² Active pressure ½ ² / ½ ² Water pressure ½ ² Surcharge Self weight Wall friction ( )tan20º Water uplift (1) / (2) TOTALS Serviceability Pressure under toe = 221.3/ x126.7/2.9² = 166.7kN/m² Ultimate Load eccentricity = 126.7/221.3 = 0.573m B = = 1.755m Average effective bearing pressure = 221.3/1.755 = 126.1kN/m² Case B 2900mm thick wall Bearing capacity = q N qi q + ½γ B N γ i γ F H/F v = 95.5/221.3 i q = (1-0.7 F H/F v)³ = i γ = (1 - F H/F v)³ = φ = 33.8º N q = 28.7, N γ = 37.1, q = = 7.0kN/m² Bearing capacity = = kn/m² > OK Sliding: force = 95.5kN/m friction resistance = = 111.3kN/m 0.34m deep unplanned excavation in front of wall Assume water table at front of wall is at ground level. 95.5<111.3kN/m OK Active pressure ½ ² ½ ² Water pressure ½ ² Self weight Wall friction ( )tan20º Water uplift (1) / (2) TOTALS Serviceability Pressure under toe = 220.1/ x114.9/2.9² = 157.9kN/m²

8 A N Beal EARTH RETAINING STRUCTURES - worked examples 8 Ultimate Load eccentricity = 114.9/220.1 = 0.522m B = = 1.856m Average effective bearing pressure = 220.1/1.856 = 118.6kN/m² Bearing capacity = q N qi q + ½γ B N γ i γ H/V = 85.8/220.1 i q = (1-0.7 F H/F v)³ = i γ = (1 - F H/F v)³ = φ = 33.8º N q = 28.7, N γ = 37.1, q = = 3.04kN/m² Bearing capacity = = 125.2kN/m² 118.6<125.2kN/m² OK Sliding: force = 85.8kN/m, friction resistance = = 110.7kN/m 85.8<110.7kN/m OK Comments Where there is a surcharge, BS8002 allows a thinner wall than the CP2 wall (2900mm compared with 3300mm).However if there is no surcharge, BS8002 requires about the same wall thickness as CP2 (2900mm compared with 3000mm). (If the BS8002 design is checked to CP2, the load eccentricity on the foundation amounts to 0.2t. This is outside the middle third but still inside the middle half of the section.)

9 A N Beal EARTH RETAINING STRUCTURES - worked examples Brickwork wall Note: CP2 gives recommendations for allowable stresses for masonry in retaining walls. An alternative CP2 design has also been prepared with the masonry designed to BS5628:1. The BS8002 design is prepared using BS5628: Arrangement as 1.1. H = 4m, retaining compact medium sand, no water pressure. CP2 CP2 Design Consider brick wall base Table 2 Soil properties: compact sand: φ = 35º-40º loose sand φ = 30º-35º assume φ = 35º density = 19kN/m³ Cl wall friction δ = 20º Table 1 Earth pressure coefficient K a = 0.23 No surcharge 900mm thick Consider base moments taken about wall centre line (all forces kn/m) TOTALS Vertical stress = 70.4/900 = 0.078N/mm², bending stress = /900² = 0.178N/mm² net tension = 0.10N/mm² Cl allowable tension (1:3 mortar) = 15psi = 0.103N/mm² 0.10 < 0.103N/mm²OK Surcharge 1100mm thick Use 900mm thick masonry wall Consider with 10kN/m 2 surcharge behind wall. Active pressure P an (½ ²) Self weight 3.4x0.9x wall friction 25.3xtan20º Active pressure P an (½ ²) Surcharge 0.23x10x Self weight 3.4x1.1x20kN/m wall friction ( )tan20º TOTALS Vertical stress = 86.8/1100 = 0.079N/mm 2 bending stress = 35.3x1000x6/ = 0.175N/mm 2 net tension = 0.096N/mm 2 Use 1100mm thick wall < 0.103N/mm 2 OK

10 A N Beal EARTH RETAINING STRUCTURES - worked examples 10 CP2/ BS5628 No surcharge Consider same wall but designed to BS5628, factored loads. Load factor = 1.4 (CP2 earth pressure), 0.9 (dead load), normal materials and construction, so materials factor = 3.5 (compression), 3.0 (flexural tension) 900mm wall Factored vertical load = 0.9x x9.2 = = 68.0 Factored O/T moment = 1.4x( ) = 34.1kNm/m Cl Check moment resistance f kx = 0.5N/mm 2, f k = 11.4N/mm 2, g d = 68/900 = 0.075N/mm 2 Z = 0.1x90²/6 = 135cm³/mm M r = (0.5/ )Z = 32.7kNm/m Use 950mm wall Increase to 950mm thick wall 34.1 > 32.7kNm/m not OK Surcharge 1100mm wall Factored vertical load = 0.9x x12 = = 84.1 Factored O/T mom. = 1.4x( ) = 49.4kNm/m Cl Check moment resistance f kx = 0.5N/mm 2, f k = 11.4N/mm 2, g d = 84.1/1100 = 0.076N/mm 2 Z = 0.1x110²/6 = 217cm³/mm M r = (0.5/ )Z = 52.7kNm/m Use 1100mm thick wall 49.4 < 52.7kNm/m OK

11 A N Beal EARTH RETAINING STRUCTURES - worked examples 11 BS8002 BS8002 Design Masonry design to BS5628: load factor = 1.2 (earth and water pressure), 0.9 (dead load). Table 1 Dense medium sand, moderate grading: density = 18.5kN/m³ Assume sub-angular soil particles, SPT N = 20 at 3m depth Cl A = 2º, B = 2º, Fig. 2 N /N = 1.7, so N = 34, C = 2º φ max = = 38.8º tanφ max = φ crit = = 34º tanφ crit = Cl Wall friction δ = 20º Cl design tanφ = tanφ max/m or tanφ crit = or (M=1.2) tan = 33.8º design φ = 33.8º Cl design tanδ = tan 20º or 0.75 design tanφ = or = Table K a = Case A 1100mm wall Design for 10kN/m² surcharge on retained soil behind wall. Active pressure ½x0.242x18.5x3.4² Surcharge 0.242x10x Wall self weight 3.4x1.1x Wall friction 34.1x TOTAL Factored vertical load = 0.9x x12.4 = = Factored O/T moment = 1.2x( ) - 1.2x6.8 = = Cl Check moment resistance f kx = 0.5N/mm 2, f k = 11.4N/mm 2, g d = 82.2/1100 = N/mm 2 Z = 0.1x110²/6 = 201.7cm³/mm M r = (0.5/ )Z = 48.7kNm/m 82.2kN/m 43.8kNm/m 43.8 < 48.7kNm/m OK Comments Where there is a surcharge behind the wall, BS8002 requires the same wall thickness as CP2. If there is no surcharge, BS8002 requires a thicker wall than CP2 (1100mm instead of 950mm thick wall (using BS5628 masonry stresses) or 900mm thick wall (using CP2 s own permissible stresses).

12 A N Beal EARTH RETAINING STRUCTURES - worked examples Ground conditions as 1.2. Consider base of brick wall. BS8002 Cl recommends that unreinforced masonry walls are waterproofed, so for the purposes of this example, the rear face of the wall is assumed to be waterproofed with bitumen-coated polythene sheet. The friction between fill and the back of the wall is taken as zero in this case. CP2 CP2 design K a = 0.23 No surcharge 1550m thick Surcharge 1700mm thick Soil dry density 19kN/m² buoyant density 11 kn/m² φ = 35º, δ = 0º K a = 0.27 Active pressure ½ ² ½ ² Water pressure ½ ² Self weight TOTALS Axial stress in brickwork = 105.4/1550 = 0.068N/mm 2 Bending stress = ( )/ = 0.163N/mm 2 net tension Consider wall with 10kN/m² surcharge 0.095<0.103N/mm² OK Active pressure ½ ² ½ ² Water pressure ½ ² Surcharge Self weight TOTALS Axial stress in brickwork = 115.6/1700 = 0.068N/mm² Bending stress = ( )/1700² = 0.168N/mm² net tension Use 1700mm thick wall 0.10<0.103N/mm² OK

13 A N Beal EARTH RETAINING STRUCTURES - worked examples 13 CP2/BS5628 no surcharge 1550mm thick Surcharge 1750mm thick Consider same wall but designed to BS5628, factored loads. Load factor = 1.4 (water & CP2 earth pressure), 0.9 (dead load). Active pressure Water pressure Self weight ( ) TOTALS Factored vert. load = 0.9x105.4 = 94.9 Factored O/T moment = 1.4x65.2 = 91.3kNm/m factored axial stress = 94.9/1550 = 0.061N/mm 2 Z = 0.1x155 2 /6 = 400cm 3 /mm, bending stress = 0.228N/mm 2 net bending tension = 0.167N/mm 2 allowable = 0.5/3.0 = 0.167N/mm² use 1550mm thick wall Consider wall with 10kN/m² surcharge 0.167=0.167N/mm² OK Active pressure Water pressure ½ ² Surcharge Self weight TOTALS Factored vert. load = 0.9x119 = Factored O/T moment = 1.4x80.8 = 113.1kNm/m factored axial stress = 107.1/1750 = 0.061N/mm 2 Z = 0.1x175 2 /6 = 510cm 3 /mm, bending stress = 0.222N/mm 2 net bending tension = 0.161N/mm 2 allowable = 0.5/3.0 = 0.167N/mm² Use 1750mm thick wall 0.161<0.167N/mm² OK

14 A N Beal EARTH RETAINING STRUCTURES - worked examples 14 BS mm thick BS8002 design φ = 33.8º design tanδ = 0 K = Soil saturated density γ = 21.5 kn/m³; buoyant density γ = = 11.7kN/m³ Active pressure P an = (½ ²) ( ) (½ ( ) ) water = (½ ) surcharge = self weight= TOTAL Load factors 1.2 (unfavourable), 0.9 (favourable) Factored vert. load = 0.9x112 = 107.1kN/m Factored O/T moment = = 110.9kNm/m g d = 107.1/1700 = 0.063N/mm 2, Z = 482cm 3 /mm net tension= = allowable = (0.5/3.0) = =0.167N/mm² OK Use 1700mm thick wall Comments Where there is a surcharge, the BS8002 wall design is the same as CP2 (1700mm thick). Where there is no surcharge, CP2 allows a slightly thinner wall (1550mm thick).

15 A N Beal EARTH RETAINING STRUCTURES - worked examples Gabion wall CP2 does not give specific recommendations for gabion walls. However it does give recommendations for the design of crib walls, which are similar to gabion walls. The crib wall rules recommend that the vertical force resultant is kept inside the middle quarter of the wall, i.e. e < 0.125b (Cl ). An alternative CP2 design has also been prepared in accordance with recommendations of one of the main gabion manufacturers, Maccaferri, who recommend that the variation in pressure across the wall base is limited to 50kN/m². BS8002 recommends that the resultant vertical force is kept inside the middle third, i.e. 0. (Cl ). 3.1 Gabion wall retaining broken brick fill, bearing on firm clay (c u = 75kN/m³). CP2 Design (Resolve forces into horizontal and vertical components in design calculations.) No surcharge Table 2 Soil properties broken brick: φ = 35º-45º, assume φ = 40º Density = kN/m³, assume dense density = 17kN/m³ Cl wall friction δ = φ = 40º. δ = 40º α = 6º. From table*, α = 0º K ah = 0.161, θ = -10º K ah = K ah = No surcharge try 1250mm thick Density of filling = 60% 23kN/m³ = 13.8kN/m³. Active pressure P ah = ½ ² Self weight = wall friction = (29.3) tan(40º-6º) TOTAL CP2 1250mm eccentricity = 9.1/95.7 = 0.095m < 1.25/8 =0.156m M ferri 1500mm 1500mm thick 0.095<0.156m OK to CP2 Bearing pressure = 95.7/1.25 +/- (6 9.1/1.25²) +/-34.9>25kN/m² not OK = 76.6+/-34.9kN/mN² (Maccaferri criterion) 1500mm thick wall to meet Maccaferri criterion. 10kN/m² surcharge Active pressure P ah = ½ ² Surcharge Self weight = wall friction = 29.3 tan(40º-6º) tan(40º-6º) TOTAL eccentricity = 15.8/117.7 = 0.134m < 1.5/8 = 0.188m OK

16 A N Beal EARTH RETAINING STRUCTURES - worked examples 16 BS8002 Table 1 Bearing pressure = 117.7/1.5 +/-(6 15.8/1.5²) = /- 42.1kN/m² 1500mm OK for CP2 but 1750mm for Maccaferri limits. Brick hardcore density = 17.5kN/m³ Table 3 Critical state friction angle (well graded) φ crit = = 38º Say N = 15 at 4m; N = =25.5 φ = = 41.1º tanφ crit = 0.781, tanφ /1.2 = 0.727, tan = 36º φ = 36º wall friction tan δ = 0.75design tanφ = δ = 28.6º α = -6º From table, α = 0º K ah = 0.208, α = -10º K ah = K ah = mm thick Min. surcharge 10kN/m² Active pressure P ah = ½ ² Surcharge P ah = Self weight = wall friction = 39.6 tan(28.6º-6º) tan(28.6º-6º) TOTAL eccentricity = 31.2/130.6 = 0.239m; limit = 1.75/6 = 0.292m 0.239m<0.292m OK Serviceability Toe bearing pressure = 130.6/ x31.2/1.75² = < 150 kn/m² OK Ultimate bearing capacity Base effective breadth B = = 1.272m Average bearing pressure = 130.6/1.272 = 102.7kN/m² Bearing capacity = 5.14c ui c + q c u = 75kN/m² i c = 0.85 q = 10.5kN/m² Bearing capacity = 5.14 x 75 x = 338kN/m² To comply with Maccaferri limit, try 2250mm thick wall 102.7<338kN/m² OK Active pressure P ah = ½ ² Surcharge P ah = Self weight = wall friction = 39.6 tan(28.6º-6º) tan(28.6º-6º) TOTAL eccentricity = 14.6/165.1 = 0.088m limit = 2.25/6 = 0.375m OK Pressure variation across base = +/-(6 14.6/2.25²) = +/-17.3kN/m². +/-17.3<+/-25kN/m² OK Comparison BS8002 requires a 1750mm thick wall and this increases to 2250mm if the Maccaferri pressure limits are imposed. For CP2 designs, the corresponding thicknesses are 1500mm and 1750mm; where there is no surcharge, CP2 would permit a 1250mm thick wall.

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers

PDHonline Course C155 (2 PDH) Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers Instructor: Richard P. Weber, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

Structural Steel Design Project

Job No: Sheet 1 of 1 Rev Job Title: Eccentrically Loaded Bolt Group Worked Example 1 Checked by Date Design Example 1: Design a bolted connection between a bracket 8 mm thick and the flange of an ISHB

Reinforced Soil Retaining Walls-Design and Construction

Lecture 31 Reinforced Soil Retaining Walls-Design and Construction Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Evolution of RS-RW Classical gravity

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

TYPES OF FOUNDATIONS

TYPES OF FOUNDATIONS 1 Foundation Systems Shallow Foundation Deep Foundation Pile Foundation Pier (Caisson) Foundation Isolated spread footings Wall footings Combined footings Cantilever or strap footings

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL

EXAMPLE DESIGN OF CANTILEVERED WALL, GRANULAR SOIL A sheet pile wall is required to support a 2 excavation. The soil is uniform as shown in the figure. To take into account the friction between the wall

Module 6 : Design of Retaining Structures. Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ]

Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ] Objectives In this section you will learn the following Introduction Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

THE DEVELOPMENT OF DESIGN METHODS FOR REINFORCED AND UNREINFORCED MASONRY BASEMENT WALLS J.J. ROBERTS

THE DEVELOPMENT OF DESIGN METHODS FOR REINFORCED AND UNREINFORCED MASONRY BASEMENT WALLS J.J. ROBERTS Technical Innovation Consultancy Emeritus Professor of Civil Engineering Kingston University, London.

Understanding BS EN 771-3: Aggregate concrete masonry units

60 Charles Street, Leicester LE1 1FB Tel: 0116 253 6161 Fax: 0116 251 4568 Email: enquiries@cba-blocks.org.uk Website: www.cba-blocks.org.uk February 2006 Understanding BS EN 771-3: Aggregate concrete

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST OBJEVTIVES To determine the shear strength parameters for a

CH. 6 SOILS & FOUNDATIONS

CH. 6 SOILS & FOUNDATIONS SOIL PROPERTIES Classified into four groups - Sands & gravels - Clays - Silts - Organics Subsurface Exploration Core borings: undisturbed samples of soil - Recovered bore samples

Use of arched cables for fixation of empty underground tanks against underground-waterinduced

Journal of Civil Engineering (IEB), 36 () (008) 79-86 Use of arched cables for fixation of empty underground tanks against underground-waterinduced floatation Ala a M. Darwish Department of Building &

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

EMPLOYER : POWER GRID COMPANY OF BANGLADESH LIMITED (PGCB )

EMPLOYER : POWER GRID COMPANY OF BANGLADESH LIMITED (PGCB ) CONTRACT NO. : PGCB/DANIDA/1 DESIGN-BUILD AND TURNKEY CONTRACT FOR CONSTRUCTION OF 132kV JOYDEVPUR - KABIRPUR - TANGAIL TRANSMISSION LINE PROJECT

Pipeline bridge crossing for mining trucks A geotechnical engineering design.

Pipeline bridge crossing for mining trucks A geotechnical engineering design. Bernard Shen Pells Sullivan Meynink, Sydney, Australia ABSTRACT The Donaldson open pit coal mine is located in Blackhill, New

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the

CHAPTER 1 INTRODUCTION TO FOUNDATIONS

CHAPTER 1 INTRODUCTION TO FOUNDATIONS The soil beneath structures responsible for carrying the loads is the FOUNDATION. The general misconception is that the structural element which transmits the load

THE ENGINEER S TOOLBOX

Materials Densities 1 t/m 3 = 10 kn/m 3 Strength and stress limits Water 1 t/m 3 Concrete Steel 7.8 t/m 3 Timber 0.8 t/m 3 Carbon fibre 1.5 t/m 3 Aluminium 2.7 t/m 3 2.4 t/m 3 normal weight 1.9 t/m 3 light

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 2

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 2 In the previous lecture, we have seen the origin of soils and different types

Dimensional and Structural Data for Elliptical Pipes. PD 26 rev D 21/09/05

Dimensional and Structural Data for Elliptical Pipes 21/09/05 Page 1 of 15 1. Foreword This document details a method for the structural design of Stanton Bonna Elliptical pipes for the common conditions

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

Soil Strength. Performance Evaluation of Constructed Facilities Fall 2004. Prof. Mesut Pervizpour Office: KH #203 Ph: x4046

ENGR-627 Performance Evaluation of Constructed Facilities, Lecture # 4 Performance Evaluation of Constructed Facilities Fall 2004 Prof. Mesut Pervizpour Office: KH #203 Ph: x4046 1 Soil Strength 2 Soil

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. The design of any foundation consists of following two parts.

8.7. Design procedure for foundation The design of any foundation consists of following two parts. 8.7.1 Stability analysis Stability analysis aims at removing the possibility of failure of foundation

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada

Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial

Guidance Note on Garden & Retaining Walls

January 2014 Guidance Note on Garden & Retaining Walls Correct construction and detailing of freestanding garden and retaining walls is important to ensure long term performance. These structures are especially

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem

HOW TO DESIGN CONCRETE STRUCTURES Foundations

HOW TO DESIGN CONCRETE STRUCTURES Foundations Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and

10.1 Powder mechanics

Fluid and Particulate systems 424514 /2014 POWDER MECHANICS & POWDER FLOW TESTING 10 Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 10.1 Powder mechanics RoNz 2/38 Types of flow of

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining

Design of an Industrial Truss

Design of an Industrial Truss Roofing U 2 U 3 Ridge U 4 Sagrod 24 U 1 U 5 L 0 L 1 L 2 L 3 L 4 L 5 L 6 6@20 = 120 Elevation of the Truss Top Cord Bracing Sagrod Purlin at top, Bottom Cord Bracing at bottom

Construction Planning, Equipment, and Methods

CHAPTER Construction Planning, Equipment, and Methods Sixth Edition GEOTECHNICAL MATERIALS, COMPACTION, AND STABILIZATION A. J. Clark School of Engineering Department of Civil and Environmental Engineering

Seismic Design of Shallow Foundations

Shallow Foundations Page 1 Seismic Design of Shallow Foundations Reading Assignment Lecture Notes Other Materials Ch. 9 FHWA manual Foundations_vibrations.pdf Homework Assignment 10 1. The factored forces

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

APOLLO SALES LTD SITE SCAFFOLD STEP DESIGN CHECK CALCULATIONS

Alan White Design APOLLO SALES LTD SITE SCAFFOLD STEP DESIGN CHECK CALCULATIONS Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T. Feb 2014 Somerset House 11 Somerset Place GLASGOW G3 7JT Tel:0141

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

Chapter 2 Basis of design and materials

Chapter 2 Basis of design and materials 2.1 Structural action It is necessary to start a design by deciding on the type and layout of structure to be used. Tentative sizes must be allocated to each structural

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus

Dubai Municipality Standard DMS 1: Part 5: 2004

Specification for precast concrete blocks Part 5: Normal-weight concrete-polystyrene sandwich masonry blocks Issue Date Revision Revision Description Prepared by Approved by Authorized by 19/12/2004 Issue

Comprehensive Design Example 2: Foundations for Bulk Storage Facility

Comprehensive Design Example 2: Foundations for Bulk Storage Facility Problem The project consists of building several dry product storage silos near an existing rail siding in an open field presently

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Module - 03 Lecture - 09 Stability of Slopes Welcome back to the classes of on this Stability

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,

CE 366 SETTLEMENT (Problems & Solutions)

CE 366 SETTLEMENT (Problems & Solutions) P. 1) LOAD UNDER A RECTANGULAR AREA (1) Question: The footing shown in the figure below exerts a uniform pressure of 300 kn/m 2 to the soil. Determine vertical

Structural Design Criteria & Design Loads on Delhi Metro Rail and Checking of Safety of Radial Joints in Tunnel Lining Segments

International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Structural Design Criteria & Design Loads on Delhi Metro Rail and Checking of Safety of Radial Joints in Tunnel

Embedded Retaining Wall Design Engineering or Paradox?

Embedded Retaining Wall Design Engineering or Paradox? A personal viewpoint by A.Y. Chmoulian, associate at Royal Haskoning Introduction Retaining wall design theory is a complicated subject with a long

Soil Mechanics SOIL STRENGTH page 1

Soil Mechanics SOIL STRENGTH page 1 Contents of this chapter : CHAPITRE 6. SOIL STRENGTH...1 6.1 PRINCIPAL PLANES AND PRINCIPAL STRESSES...1 6.2 MOHR CIRCLE...1 6.2.1 POLE METHOD OF FINDING STRESSES ON

Section 5A: Guide to Designing with AAC

Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...

Unit 48: Structural Behaviour and Detailing for Construction. Chapter 13. Reinforced Concrete Beams

Chapter 13 Reinforced Concrete Beams Concrete is a material strong in its resistance to compression, but very weak indeed in tension. good concrete will safely take a stress upwards of 7 N/mm 2 in compression,

CHAPTER: 6 FLOW OF WATER THROUGH SOILS

CHAPTER: 6 FLOW OF WATER THROUGH SOILS CONTENTS: Introduction, hydraulic head and water flow, Darcy s equation, laboratory determination of coefficient of permeability, field determination of coefficient

Hardy Frame. at top plates. 1/4 x 3" screws. on nuts and washers (Requires 5,000 psi non-shrink grout) Brace Frame HARDY FRAME BRACE FRAME 4X FILLER

FRAME On Foundations Hardy Frame Panel Hardy Frame Panel Hardy Frame Panel Hardy Frame Panel with 2x filler at top plates with 4x filler at Portal FRAME 1/4 x 4 PANEL 1/2" screws WITH 2X FILLER FRAME 1/4

PILE FOUNDATIONS FM 5-134

C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

Design Manual to BS8110

Design Manual to BS8110 February 2010 195 195 195 280 280 195 195 195 195 195 195 280 280 195 195 195 The specialist team at LinkStudPSR Limited have created this comprehensive Design Manual, to assist

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

Simplifying design and construction. Alan Tovey, Director The Basement Information Centre

Simplifying design and construction Alan Tovey, Director The Basement Information Centre Simplifying design and construction Grades of construction Construction options Design and waterproofing issues

11. THE STABILITY OF SLOPES

11-1 11. THE STABILITY OF SLOPES 11.1 INTRODUCTION The quantitative determination of the stability of slopes is necessary in a number of engineering activities, such as: (a) (b) (c) (d) the design of earth

11/1/2010 3:57 PM 1 of 11

Masonry Wall 6.0 - MASONRY WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

Retaining Wall Systems

Retaining Wall Systems A family of Retaining Wall Products The versatile Allan Block product line allows easy design and construction of retaining walls to meet specific engineering and site requirements.

Design guide. Part 1: Structural Design

Design guide Part 1: Structural Design Design guide Part 1: Structural Design Advantages: Fast Economical Strong Insulating Environmentally friendly Versatile Modernist house supplied by SIPBuild Vernacular

STRUCTURES: DESIGN SUBSTRUCTURES SPECIAL STRUCTURES) MATERIALS PART 1 BD 41/97

DESIGN MANUAL FOR ROADS AND BRIDGES VOLUME 2 SECTION 1 HIGHWAY STRUCTURES: DESIGN (SUBSTRUCTURES AND SPECIAL STRUCTURES) MATERIALS SUBSTRUCTURES PART 1 BD 41/97 REINFORCED CLAY BRICKWORK RETAINING WALLS

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 19 Effective Stress-I I I

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 19 Effective Stress-I I I Welcome to the third lecture on effective stress. In the

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

Good Craftsmanship Guide. Foundations, Substructures and Ground Floors

Good Craftsmanship Guide Foundations, Substructures and Ground Floors Introduction This Good Craftsmanship Guide highlights key problems with foundations, substructures and ground floors and gives guidance

Welded Mesh Gabions Retaining Wall Design Guide

Welded Mesh Gabions Retaining Wall Design Guide Anping County Zhuoda Hardware Mesh Co.,Ltd. Wire Mesh Industrial Zone, Anping County, Hebei, P. R. China. Tel : 0086-318-7752001 7531068 Fax : 0086-318-7802001

SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS. Prepared by Risi Stone Systems Used by permission.

SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS Prepared by Risi Stone Systems Used by permission. 1-800-UNILOCK www.unilock.com FOREWORD This outline specification has been prepared for

Reinforced Concrete Design to BS8110 Structural Design 1 Lesson 5

Lesson 5: Deflection in reinforced concrete beams Content 4.1 Introduction 4. Definitions 4..1 Tension 4.. Compression 4.3 Initial sizing 4.3.1 Worked example 4.4 Reinforcement details 4.5 Anchorage at

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

Terzaghi's Bearing Capacity Equations

Terzaghi's Bearing Capacity Equations Bearing capacity equation Bearing capacity factors Bearing capacity Chart Example 1: trip footing on cohesionless soil Example 2: quare footing on clay soil Example

A. Cylindrical Tank, Fixed-Roof with Rafter & Column (cont.)

According to API 650 Code, Edition Sept. 2003 Page : 23 of 34 9. Seismic Design. [APPENDIX E, API 650] 9.1. Overturning Moment due to Seismic forces applied to bottom of tank shell, M = Z I (C1 Ws Xs +

isocem s/b isocem s/b

isocem s/b NON AUTOCLAVED STRUCTURAL CELLULAR CONCRETE...the action of the man, in harmony with nature... isocem s/b isocem s/b IS A TECHNOLOGY DEVELOPPED AND PRODUCED BY NON-AUTOCLAVED CELLULAR CONCRETE

Vibro Compaction of reclaimed land TC 17 workshop Madrid Keller Grundbau GmbH

Vibro Compaction of reclaimed land TC 17 workshop Madrid Keller Grundbau GmbH Dr.-Ing. Jimmy Wehr M.Sc. Research and Development Keller Holding GmbH IT S NOT THE VIEW; IT S THE VISION. Contents Introduction

CE-632 Foundation Analysis and Design

CE-63 Foundation Analysis and Design Shallow Foundations 1 SUMMARY of Terminology Gross Loading Intensity Total pressure at the level of foundation including the weight of superstructure, foundation, and

DIRT DWELLING. and your. www.pinfoundations.com. Pin Foundations Inc., 2008

DIRT and your DWELLING 2008 Pin Foundations Inc., 2008 If we accept that preserving soil in its native condition is necessary, then how do we build? Utilities? Roads? Foundations? Typical Strip, Transfer,

THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS

Chapter 11 Slope Stabiliza bilization and Stability of Cuts and Fills THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS are 1) to create space for the road template and driving surface; 2) to balance material

Centre, Bandar Tasik Selatan, Kuala Lumpur, Malaysia.

Methodology for Design of Piled Raft for Five-Storeys Buildings on Very Soft Clay Tan, Y.C. 1, Cheah, S.W. 1 and Taha, M.R. 2 Abstract Conventional piled foundation is usually designed for buildings to

SERIES 2400 BRICKWORK, BLOCKWORK AND STONEWORK

MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY WORKS VOLUME 1 SPECIFICATION FOR HIGHWAY WORKS SERIES 2400 BRICKWORK, BLOCKWORK AND STONEWORK Contents Clause Title Page 2401 Cement 2 2402 Aggregates 2 2403 Water

Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate

Addendum HELICAL PULLDOWN Micropile (HPM) Introduction The HPM is a system for constructing a grout column around the shaft of a standard Helical Screw Foundation (see Figure A1). To begin the process,

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

Chapter 5 Earth Pressure and Water Pressure

PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 5 EARTH PRESSURE AND WATER PRESSURE Chapter 5 Earth Pressure and Water Pressure Public Notice Earth Pressure and Water Pressure Article 14 1

Shallow Foundation Analysis on Heterogeneous Soil Formation in the Niger Delta of Nigeria

Shallow Foundation Analysis on Heterogeneous Soil Formation in the Niger Delta of Nigeria Akpila, S.B Department of Civil Engineering Rivers State University of Science & Technology, PortHarcourt. Eluozo,

Effect of shape on bearing capacity of embedded footings on reinforced foundation beds over soft non-homogeneous ground

Japanese Geotechnical Society Special Publication The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering Effect of shape on bearing capacity of embedded footings on reinforced

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1

Timber Frame Construction

Timber Frame Construction Introduction Design and Detailing What is timber? Failure modes History of timber frame construction Forms of timber frame construction Live and dead loads Wind loads Roof construction

International Society for Helical Foundations (ISHF)

QUICK DESIGN GUIDE For Screw-Piles and Helical Anchors in Soils Ver. 1.0 Prepared by Dr. Alan J. Lutenegger, P.E., F. ASCE for International Society for Helical Foundations (ISHF) Copyright 2015 (ISHF)

SUSPENDED BEAM & BLOCK FLOOR

www.supremeconcrete.co.uk SUSPENDED BEAM & BLOCK FLOOR The Supreme Beam and Block Flooring System saves time and cost on site. The floor is quick to install without the need for specialist skills. Site