Circles and Tangents with Geometry Expressions


 Britton Logan Tyler
 1 years ago
 Views:
Transcription
1 icles nd Tngents with eomety xpessions IRLS N TNNTS WITH OMTRY XPRSSIONS... INTROUTION... 2 icle common tngents... 3 xmple : Loction of intesection of common tngents... 4 xmple 2: yclic Tpezium defined by common tngents of 2 cicles... 5 xmple 3: Tingle fomed by the intesection of the inteio common tngents of two cicles... 7 xmple 4: Locus of centes of common tngents to two cicles... 8 xmple 5: Length of the common tngent to two tngentil cicles... 9 xmple 6: Tngents to the Rdicl xis of Pi of icles... 0 belos... xmple 7: Vious icles in n quiltel Tingle... 2 xmple 8: Two cicles inside cicle twice the dius, then thid... 4 xmple 9: theoem old in Pppus time... 9 xmple 0: nothe mily of Tngentil icles xmple : Yet nothe mily of icles xmple 2: chimedes Twins xmple 3: Squeezing cicle between two cicles... 29
2 IRLS N TRINLS WITH OMTRY XPRSSIONS Intoduction eomety xpessions utomticlly genetes lgebic expessions fom geometic figues. o exmple in the digm below, the use hs specified tht the tingle is ight nd hs shot sides length nd b. The system hs clculted n expession fo the length of the ltitude: b b 2 +b 2 We pesent collection of woked exmples using eomety xpessions. In most cses, digm is pesented with little comment. It is hoped tht these digms e sufficiently self explntoy tht the ede will be ble to cete them himself. The gol of these exmples is to demonstte the sot of poblems which the softwe is cpble of hndling, nd to suggest venues of futhe explotion fo the ede. The exmples e clusteed by theme. 2
3 icle common tngents The following set of exmples exploes some popeties of the common tngents of pis of cicles. 3
4 IRLS N TRINLS WITH OMTRY XPRSSIONS xmple : Loction of intesection of common tngents icles nd hve dii nd s espectively. If the centes of the cicles e pt, nd is the intesection of the inteio common tngent with the line joining the two centes, wht e the lengths nd? s +s s +s How bout the exteio common tngent? s  +s s<  s +s s< 4
5 xmple 2: yclic Tpezium defined by common tngents of 2 cicles iven cicles dii nd s nd distnce pt, wht is the ltitude of the tpezium fomed by joining the intesections of the 4 common tngents with one of the cicles? 2 s 2 s I s H J Notice tht this is symmeticl in nd s, nd hence the tpezium in cicle hs the sme ltitude. 5
6 IRLS N TRINLS WITH OMTRY XPRSSIONS Look t the tio of the es of the tpezi in the pevious digm: z 2 2 s ss s ss 2 2 z 2 2 s ss 2 +2 s ss 2 2 I s H J z z 2 s Notice tht the tio of tpezium es is the sme s the tio of dii. 6
7 xmple 3: Tingle fomed by the intesection of the inteio common tngents of two cicles Notice tht if is the e of the tingle fomed by the centes of the cicles, then e STU is: 2st ( + s)( s + t)( + t) s s t +b+c +bc b+c +b+c 2 (+s) (+t) (s+t) P I c W O K X M H t Q Y J b L N Notice tht this tio is independent of the size of,b, nd c. 7
8 IRLS N TRINLS WITH OMTRY XPRSSIONS xmple 4: Locus of centes of common tngents to two cicles W tke the locus s the dius of the left cicle vies. The midpoints of ll fou common tngents lie on the sme fouth ode cuve 4 X 4 +8 X 2 Y 2 +4 Y 42 X 32 X Y s 2 +Y s 2 +X s 2 +X s 2 =0 K s L (0,0) (,0) M I H R J We cn use Mple to solve fo the intesections with the x xis: > subs(y=0,4*x^4+8*y^2*x^2+4*y^42**x^32**y^2*x+^4s^2*^2+(4*^24*s^2)*y^2+(3*^24*s^2)*x^2+(6*^3+4*s^2*)*x ); 4 X 42 X s ( s 2 ) X 2 + ( s 2 ) X > solve(%,x);  s, + s, 2, 2 8
9 xmple 5: Length of the common tngent to two tngentil cicles succinct fomul: 2 s s 9
10 IRLS N TRINLS WITH OMTRY XPRSSIONS xmple 6: Tngents to the Rdicl xis of Pi of icles The dicl xis of pi of cicles is the line joining the points of intesection. The lengths of tngents fom given point on this xis to the two cicles e the sme b s 4 +s b s 4 +s b H s 0
11 belos set of exmples studying cicles squeezed between othe cicles.
12 IRLS N TRINLS WITH OMTRY XPRSSIONS xmple 7: Vious icles in n quiltel Tingle We look t the dii of vious cicles in n equiltel tingle:
13 3 54 I H Wht would the next length in the sequence be? 3
14 IRLS N TRINLS WITH OMTRY XPRSSIONS xmple 8: then thid Two cicles inside cicle twice the dius, H
15 nd if we keep on going: 2 3 H J 3 2 I L K 9 M N 2 5
16 IRLS N TRINLS WITH OMTRY XPRSSIONS The genel cse looks like this: 2 + x x x H 2 We cn copy this expession into Mple to genete the bove sequence: > /(/2*/+/x+2*sqt(/2*/(^2)+/2/x/)); > subs(=,%); x x 6
17 + + 2 x 2 + > f:=x>/(/2+/x+sqt(2+2/x)); f := x x > f(); > f(2/3); > f(/3); > f(2/); > f(/9); > f(2/27); > little nlysis of the seies cn led us to postulte the fomul 2/(n^2+2) fo the n th cicle: Let s feed the nth tem into Mple: > f(2/((n)^2+2)); 2 x 2 x 7
18 IRLS N TRINLS WITH OMTRY XPRSSIONS ( n ) 2 ( n ) 2 In ode to get the expession to simplify, we mke the ssumption tht n>: > ssume(n>); > simplify(f(2/((n)^2+2))); n~ 2 We see tht this is the next tem in the seies. y induction, we hve shown tht the n th 2 cicle hs dius n 8
19 xmple 9: theoem old in Pppus time theoem which ws old in Pppus dys (3 d centuy ) eltes the dii to height of the cicles in figues like the bove: 2 3 H J 3 2 I L K
20 IRLS N TRINLS WITH OMTRY XPRSSIONS pplying the genel model, we get fomul: x 2 2 x 22 x gin, we cn copy this into Mple fo nlysis: > subs(x=2/(n^2+2),=,%); 2 x 2 2 x 20
21 > simplify(%); n~ n~ 2 4 n~ 2 + n~ 2 We see tht the height bove the centeline fo these cicles is the dius multiplied by 2n. 2
22 IRLS N TRINLS WITH OMTRY XPRSSIONS xmple 0: nothe mily of Tngentil icles H I K L J 3 22 N M
23 We cn follow though simil nlysis to the pevious section: 3 + x x x H 3 2 > f:=x>/(/3+/x+2/3*sqt(6+3/x)); f := x x 3 x > f(); I 3 23
24 IRLS N TRINLS WITH OMTRY XPRSSIONS > f(3/0); > f(%); > > ssume(n>); > simplify(f(3/((n)^2+6))); n~ 2 > simplify(%); 24
25 xmple : Yet nothe mily of icles We genelize the sitution fom couple of exmples go. We look t the fmily geneted by two cicles of dius nd b inside cicle of dius +b: b (+b) b+b 2 H b (+b) 2 + b+b 2 b (+b) J b+b 2 b (+b) b+b 2 N K L I +b M b The ptten is petty obvious this time: the dius of the nth cicle is: b( + b) 2 2 n + b + b 2 25
26 IRLS N TRINLS WITH OMTRY XPRSSIONS To pove this, we deive the fomul fo the genel cicle dius x, nd nlyze in Mple: b + x  +b +2 b x  b (+b)  x (+b) H J I x +b b Now we ty feeding in one of the cicle dii into this fomul in mple (fist mking the ssumption tht the dii e positive (long with n> fo lte use): > ssume(>0,b>0,n>); > f:=x>/(/b+/x/(+b)+2*sqt(/(x*b)/((+b)*b) /((+b)*x))); f := x b x + b xb ( + b) b ( + b) x 26
27 > f((+b)*b*/(9*^2+b*+b^2)); 9 ~ 2 + b~ ~ + b~ 2 / + b~ ( ~ + b~ ) b~ ~ ~ + b~ 9 ~ 2 + b~ ~ + b~ ( ~ + b~ ) b~ 2 ~ ( ~ + b~ ) b~ > simplify(%); ( ~ + b~ ) b~ ~ 6 ~ 2 + b~ ~ + b~ 2 Let s ty the genel cse, feeding in the fomul fo the n st dius: 9 ~ 2 + b~ ~ + b~ 2 ( ~ + b~ ) 2 b~ ~ > simplify(f((+b)*b*/((n)^2*^2+b*+b^2))); b~ ~ ( ~ + b~ ) b~ ~ + ~ 2 n~ 2 + b~ 2 y induction, we hve poved the genel esult. 27
28 IRLS N TRINLS WITH OMTRY XPRSSIONS xmple 2: chimedes Twins The given cicles e mutully tngentil with dius, b nd +b. chimedes twins e the cicles tngentil to the common tngent of the inne cicles. We see fom the symmety of the dius expession tht they e conguent. +b b +b I b +b K b 28
29 xmple 3: Squeezing cicle between two cicles Tke cicle dius 2 centeed t (,0) nd cicle dius 4 centeed t (,0). Now look t the locus of the cente of the cicle tngent to both. 4 t x 29 y 2 =0 (,0) (,0) 2 It s n ellipse. om the dwing we cn see tht the semi mjo xis in the x diection is 3. Wht is the semi mjo xis in the y diection? 29
r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2
icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:
More informationIntro to Circle Geometry By Raymond Cheong
Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.
More informationSummary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
More informationG.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS
G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS Regul polygon e of inteet to u becue we begin looking t the volume of hexgonl pim o Tethedl nd to do thee type of clcultion we need to be ble to olve fit
More informationMath 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5
Mth 5: Clculus II Mth/Sci mjos) MWF m / pm, Cmpion 35 Witten homewok 5 6.6, p. 458 3,33), 6.7, p. 467 8,3), 6.875), 7.58,6,6), 7.44,48) Fo pctice not to tun in): 6.6, p. 458,8,,3,4), 6.7, p. 467 4,6,8),
More informationGeometric Sequences. Definition: A geometric sequence is a sequence of the form
Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece
More informationLaplace s Equation on a Disc
LECTURE 15 Lplce s Eqution on Disc Lst time we solved the Diichlet poblem fo Lplce s eqution on ectngul egion. Tody we ll look t the coesponding Diichlet poblem fo disc. Thus, we conside disc of dius 1
More informationMAGNETIC FIELD AROUND CURRENTCARRYING WIRES. point in space due to the current in a small segment ds. a for field around long wire
MAGNETC FELD AROUND CURRENTCARRYNG WRES How will we tckle this? Pln: 1 st : Will look t contibution d to the totl mgnetic field t some point in spce due to the cuent in smll segment of wie iotsvt Lw
More informationCurvature. (Com S 477/577 Notes) YanBin Jia. Oct 8, 2015
Cuvtue Com S 477/577 Notes YnBin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.
More informationN V V L. R a L I. Transformer Equation Notes
Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 witeup. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions
More information(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?
Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the
More information32. The Tangency Problem of Apollonius.
. The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 6070 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok
More informationA Simple Method for Generating Rational Triangles
A Simple Method fo Geneting Rtionl Tingles Konstntine Zelto Deptment Of Mthemtics College Of Ats And Sciences Mil Stop 94 Univesity Of Toledo Toledo,OH 436063390 U.S.A. Intoduction The pupose of this
More informationSection 3.3: Geometric Sequences and Series
ectio 3.3: Geometic equeces d eies Geometic equeces Let s stt out with defiitio: geometic sequece: sequece i which the ext tem is foud by multiplyig the pevious tem by costt (the commo tio ) Hee e some
More informationv o a y = = * Since H < 1m, the electron does not reach to the top plate.
. The uniom electic ield between two conducting chged pltes shown in the igue hs mgnitude o.40 N/C. The plte seption is m, nd we lunch n electon om the bottom plte diectl upwd with v o 6 m/s. Will the
More informationOrbits and Kepler s Laws
Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how
More informationThomas J. Osler, Mathematics Department and Tirupathi R. Chandrupatla, Mechanical Engineering. Rowan University Glassboro, NJ
/9/04 SOME UNUSUAL EXPRESSIONS FOR THE INRADIUS OF A TRIANGLE Tomas J. Osle, Matematics Depatment and Tiupati R. Candupatla, Mecanical Engineeing Rowan Univesity Glassboo, NJ 0808 Osle@owan.edu Candupatla@owan.edu
More informationLesson 8.1 Areas of Rectangles and Parallelograms
Leon 8.1 e of Rectngle nd Pllelogm 1. Find the e of the hded egion.. Find the e of the hded egion. 17 cm 9 cm 5 cm 8 cm 1.5 cm 13 cm cm cm 3. Rectngle D h e 684 m nd width 44 m. Find it length. 4. Find.
More informationSECTION 54 Trigonometric Functions
Tigonometic Functions 78. Engineeing. In Polem 77, though wht ngle in dins will the ck wheel tun if the font wheel tuns though dins? The c length on cicle is esy to compute if the coesponding centl ngle
More informationLesson 8.1 Areas of Rectangles and Parallelograms
Leon 8.1 Ae of Rectngle nd Pllelogm In Eecie 1 4, find the e of the hded egion. 1.. 1 1 cm 3. 17 cm 4. 9 cm 5 cm 1.5 cm cm 5. Rectngle ABCD h e 684 m nd width 44 m. Find it length. 6. Dw pllelogm with
More informationPHYS 4110 Dynamics of Space Vehicles
PHYS 40 Dynmics of Sce Vehicles Chte 7: Obitl Mneues Eth, Moon, Ms, nd eyond D. Jinjun Shn, Pofesso of Sce Engineeing Detment of Eth nd Sce Science nd Engineeing Room 55, Petie Science nd Engineeing uilding
More informationRandom Variables and Distribution Functions
Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using
More informationr Curl is associated w/rotation X F
13.5 ul nd ivegence ul is ssocited w/ottion X F ivegence is F Tody we define two opetions tht cn e pefomed on vecto fields tht ply sic ole in the pplictions of vecto clculus to fluid flow, electicity,
More informationUNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More informationPythagoras theorem and trigonometry (2)
HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in rightngled tringles. These
More informationOnline Homework 12 Solution
Online Homewok Solution Electic nd Mgnetic Field Vectos Conceptul Question Pt A The electic nd mgnetic field vectos t specific point in spce nd time e illustted. Bsed on this infomtion, in wht diection
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More informationSection 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables
The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More informationExam in physics, Elgrunder (Electromagnetism), 20140326, kl 9.0015.00
Umeå Univesitet, Fysik 1 Vitly Bychkov Em in physics, Elgunde (Electomgnetism, 146, kl 9.15. Hjälpmedel: Students my use ny book(s. Mino notes in the books e lso llowed. Students my not use thei lectue
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationNapoleon and Pythagoras with Geometry Expressions
Npoleon nd Pythgors with eometry xpressions NPOLON N PYTORS WIT OMTRY XPRSSIONS... 1 INTROUTION... xmple 1: Npoleon s Theorem... 3 xmple : n unexpeted tringle from Pythgorslike digrm... 5 xmple 3: Penequilterl
More informationLecture 3 1/16. Torque on a Dipole. The magnitude of the torque: center of mass. Fsin F Q. dipole moment. torque points into the page
Lectue 3 /6 Toque on Dipole F F sin The mgnitude of the toque: Fsin d Fsin psin p ( d Fsin d qsin F  d F θ cente of mss dipole moment p q d toque points into the pge Lectue 3 /6 uiz uestion An electic
More informationIn the lecture on double integrals over nonrectangular domains we used to demonstrate the basic idea
Double Integals in Pola Coodinates In the lectue on double integals ove nonectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example
More informationQuadrilaterals Here are some examples using quadrilaterals
Qudrilterls Here re some exmples using qudrilterls Exmple 30: igonls of rhomus rhomus hs sides length nd one digonl length, wht is the length of the other digonl? 4  Exmple 31: igonls of prllelogrm Given
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationWrite and Graph Equations of Circles
0.7 Wite and Gaph Equations of icles Befoe You wote equations of lines in the coodinate plane. Now You will wite equations of cicles in the coodinate plane. Wh? So ou can detemine zones of a commute sstem,
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More information2.016 Hydrodynamics Prof. A.H. Techet
.016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting
More informationm, where m = m 1 + m m n.
Lecture 7 : Moments nd Centers of Mss If we hve msses m, m 2,..., m n t points x, x 2,..., x n long the xxis, the moment of the system round the origin is M 0 = m x + m 2 x 2 + + m n x n. The center of
More informationSect 8.3 Triangles and Hexagons
13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed twodimensionl geometric figure consisting of t lest three line segments for its
More informationWorksheet 24: Optimization
Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationSeventh Edition DYNAMICS 15Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University
Seenth 15Fedinand P. ee E. Russell Johnston, J. Kinematics of Lectue Notes: J. Walt Ole Texas Tech Uniesity Rigid odies CHPTER VECTOR MECHNICS FOR ENGINEERS: YNMICS 003 The McGawHill Companies, Inc. ll
More informationAddition and subtraction of rational expressions
Lecture 5. Addition nd subtrction of rtionl expressions Two rtionl expressions in generl hve different denomintors, therefore if you wnt to dd or subtrct them you need to equte the denomintors first. The
More informationNew proofs for the perimeter and area of a circle
New poofs fo the peimete and aea of a cicle K. Raghul Kuma Reseach Schola, Depatment of Physics, Nallamuthu Gounde Mahalingam College, Pollachi, Tamil Nadu 64001, India 1 aghul_physics@yahoo.com aghulkumak5@gmail.com
More informationUniversity Physics AI No. 1 Rectilinear Motion
Uniesity Physics AI No. Rectiline Motion Clss Numbe Nme I.Choose the Coect Answe. An object is moing long the is with position s function of time gien by (. Point O is t. The object is efinitely moing
More informationNet Change and Displacement
mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More information2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationVolumes of solids of revolution
Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the xxis. There is strightforwrd technique which enbles this to be done, using
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationFor the Final Exam, you will need to be able to:
Mth B Elementry Algebr Spring 0 Finl Em Study Guide The em is on Wednesdy, My 0 th from 7:00pm 9:0pm. You re lloed scientific clcultor nd " by 6" inde crd for notes. On your inde crd be sure to rite ny
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationThe Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof.
The Prllelogrm Lw Objective: To tke students through the process of discovery, mking conjecture, further explortion, nd finlly proof. I. Introduction: Use one of the following Geometer s Sketchpd demonstrtion
More informationTHE GEOMETRIC SERIES
Mthemtics Revisio Guides The Geometic eies Pge of M.K. HOME TUITION Mthemtics Revisio Guides Level: A / A Level AQA : C Edexcel: C OCR: C OCR MEI: C THE GEOMETRIC ERIE Vesio :. Dte: 8060 Exmples 7 d
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationLecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
More informationON THE CHINESE CHECKER SPHERE. Mine TURAN, Nihal DONDURMACI ÇİN DAMA KÜRESİ ÜZERİNE
DÜ Fen Bilimlei Enstitüsü Degisi Sı 9 Ağustos 9 On The Chinese Cheke Sphee M. Tun N. Donumı ON THE CHINESE CHECKER SHERE Mine TURAN Nihl DONDURMACI Deptment of Mthemtis Fult of Ats n Sienes Dumlupin Univesit
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationThe Quadratic Formula and the Discriminant
99 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt
More informationArea Between Curves: We know that a definite integral
Are Between Curves: We know tht definite integrl fx) dx cn be used to find the signed re of the region bounded by the function f nd the x xis between nd b. Often we wnt to find the bsolute re of region
More informationThe ISLM Model. Underlying model due to John Maynard Keynes Model representation due to John Hicks Used to make predictions about
The SLM Model Underlying model due to John Mynrd Keynes Model representtion due to John Hicks Used to mke predictions bout nterest rtes Aggregte spending ( ggregte output) mportnt ssumption: price is
More informationhas the desired form. On the other hand, its product with z is 1. So the inverse x
First homework ssignment p. 5 Exercise. Verify tht the set of complex numers of the form x + y 2, where x nd y re rtionl, is sufield of the field of complex numers. Solution: Evidently, this set contins
More informationChapter 22 The Electric Field II: Continuous Charge Distributions
Chpte The lectic Field II: Continuous Chge Distibutions Conceptul Poblems [SSM] Figue 7 shows n Lshped object tht hs sides which e equl in length. Positive chge is distibuted unifomly long the length
More informationSequences and Series
Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More informationHelicopter Theme and Variations
Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the
More informationK.S.E.E.B., Malleshwaram, Bangalore SSLC MathematicsModel Question Paper1 (2015) Regular Private Candidates (New Syllabus)
K.S.E.E.B., Malleshwaam, Bangaloe SSLC MathematicsModel Question Pape1 (015) Regula Pivate Candidates (New Syllabus) Max Maks: 100 No. of Questions: 50 Time: 3 Hous Code No. : Fou altenatives ae given
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationReview Module: Dot Product
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics 801 Fall 2009 Review Module: Dot Poduct We shall intoduce a vecto opeation, called the dot poduct o scala poduct that takes any two vectos and
More informationOn the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding
Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl
More informationSpirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
More informationProblems on Force Exerted by a Magnetic Fields from Ch 26 T&M
Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuentcaying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to
More informationModern Linear Algebra
Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Wintesemeste 04/05 D. Hon Mathematics fo Business and Economics LVN. 0069.0 Moden Linea Algeba (A Geometic Algeba cash couse,
More informationChapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
More informationPower and Sample Size Calculations for the 2Sample ZStatistic
Powe and Sample Size Calculations fo the Sample ZStatistic James H. Steige ovembe 4, 004 Topics fo this Module. Reviewing Results fo the Sample Z (a) Powe and Sample Size in Tems of a oncentality Paamete.
More informationContinuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
More informationIn order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.
Radians At school we usually lean to measue an angle in degees. Howeve, thee ae othe ways of measuing an angle. One that we ae going to have a look at hee is measuing angles in units called adians. In
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More information1.2 c. = or 58.7% Similarly weight fraction of Se is. = or 41.3%
1. c Consider the semiconducting IIVI compound cdmium selenide,. Given the tomic msses of nd, find the weight frctions of nd in the compound nd grms of nd needed to mke 100 grms of. The tomic mss of nd
More informationSkills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationFigure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
More information1 Numerical Solution to Quadratic Equations
cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll
More information5.2 The Definite Integral
5.2 THE DEFINITE INTEGRAL 5.2 The Definite Integrl In the previous section, we sw how to pproximte totl chnge given the rte of chnge. In this section we see how to mke the pproximtion more ccurte. Suppose
More informationComplementary Coffee Cups
Complementry Coffee Cups Thoms Bnchoff Tom Bnchoff (Thoms Bnchoff@brown.edu) received his B.A. from Notre Dme nd his Ph.D. from the University of Cliforni, Berkeley. He hs been teching t Brown University
More informationRevision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More informationSHORT REVISION SOLUTIONS OF TRIANGLE
FREE Download Study Package fom website: wwwtekoclassescom SHORT REVISION SOLUTIONS OF TRINGLE I SINE FORMUL : In any tiangle BC, II COSINE FORMUL : (i) b + c a bc a b c sin sinb sin C o a² b² + c² bc
More information(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a
Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 6069] Asteios Pntoktos Associte Pofesso
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationCOMPONENTS: COMBINED LOADING
LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of
More informationElectrostatics Electric Dipole. Equatorial axis. q 2l
lectosttics lectic Diole () Genel infomtion : System of two equl nd oosite chges seted by smll fixed distnce is clled diole A qutoil xis l q Diole xis (i) Diole xis : Line joining negtive chge to ositive
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationChapter 23 Electrical Potential
hpte Electicl Potentil onceptul Polems [SSM] A poton is moved to the left in unifom electic field tht points to the ight. Is the poton moving in the diection of incesing o decesing electic potentil? Is
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More information