Section 74 Translation of Axes


 Randolph Griffith
 2 years ago
 Views:
Transcription
1 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the lst three sections we found stndrd equtions for prbols, ellipses, nd hperbols locted with their es on the coordinte es nd centered reltive to the origin. Wht hppens if we move conics w from the origin while keeping their es prllel to the coordinte es? We will show tht we cn obtin new stndrd equtions tht re specil cses of the eqution A 2 C 2 D E F 0, where A nd C re not both zero. The bsic mthemticl tool used in this endevor is trnsltion of es. The usefulness of trnsltion of es is not limited to grphing conics, however. Trnsltion of es cn be put to good use in mn other grphing situtions. Trnsltion of Aes A trnsltion of coordinte es occurs when the new coordinte es hve the sme direction s nd re prllel to the originl coordinte es. To see how coordintes in the originl sstem re chnged when moving to the trnslted sstem, nd vice vers, refer to Figure 1. FIGURE 1 Trnsltion of coordintes. P(, ) P(, ) 0 (0, 0 ) (0, 0) (h, k) 0 A point P in the plne hs two sets of coordintes: (, ) in the originl sstem nd (, ) in the trnslted sstem. If the coordintes of the origin of the trnslted sstem re (h, k) reltive to the originl sstem, then the old nd new coordintes re relted s given in Theorem 1. THEOREM 1 TRANSLATION FORMULAS 1. h 2. h k k It cn be shown tht these formuls hold for (h, k) locted nwhere in the originl coordinte sstem.
2 74 Trnsltion of Aes 63 EXAMPLE 1 Eqution of Curve in Trnslted Sstem A curve hs the eqution ( 4) 2 ( 1) 2 36 If the origin is trnslted to (4, 1), find the eqution of the curve in the trnslted sstem nd identif the curve. Solution Since (h, k) (4, 1), use trnsltion formuls h 4 k 1 to obtin, fter substitution, This is the eqution of circle of rdius 6 with center t the new origin. The coordintes of the new origin in the originl coordinte sstem re (4, 1) (Fig. 2). Note tht this result grees with our generl tretment of the circle in Section 11. FIGURE 2 ( 4) 2 ( 1) A(4, 1) 10 MATCHED PROBLEM 1 A curve hs the eqution ( 2) 2 8( 3). If the origin is trnslted to (3, 2), find n eqution of the curve in the trnslted sstem nd identif the curve. Stndrd Equtions of Trnslted Conics We now proceed to find stndrd equtions of conics trnslted w from the origin. We do this b first writing the stndrd equtions found in erlier sections in the coordinte sstem with 0 t (h, k). We then use trnsltion equtions to find the stndrd forms reltive to the originl coordinte sstem. The equtions of trnsltion in ll cses re h k
3 64 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY For prbols we hve 2 4 ( h) 2 4( k) 2 4 ( k) 2 4( h) For circles we hve 2 2 r 2 ( h) 2 ( k) 2 r 2 For ellipses we hve for b b b ( h) 2 ( k)2 ( h) 2 ( k)2 b 2 2 For hperbols we hve b b 2 1 ( h) 2 ( k)2 ( k) 2 ( h)2 Tble 1 summrizes these results with pproprite figures nd some properties discussed erlier. Grphing Equtions of the Form A 2 C 2 D E F 0 It cn be shown tht the grph of A 2 C 2 D E F 0 (1) where A nd C re not both zero, is conic or degenerte conic or tht there is no grph. If we cn trnsform eqution (1) into one of the stndrd forms in Tble 1, then we will be ble to identif its grph nd sketch it rther quickl. The process of completing the squre discussed in Section 23 will be our primr tool in ccomplishing this trnsformtion. A couple of emples should help mke the process cler. EXAMPLE 2 Grphing Trnslted Conic Trnsform (2) into one of the stndrd forms in Tble 1. Identif the conic nd grph it. Check b grphing on grphing utilit.
4 74 Trnsltion of Aes 6 TABLE 1 Stndrd Equtions for Trnslted Conics Prbols ( h) 2 4( k) ( k) 2 4( h) F V(h, k) Verte (h, k) Focus (h, k ) 0 opens up 0 opens down V(h, k) F Verte (h, k) Focus (h, k) 0 opens left 0 opens right Circles ( h) 2 ( k) 2 r 2 Center (h, k) Rdius r r C(h, k) ( h) 2 ( k)2 Ellipses b 0 ( h) 2 ( k)2 b 2 2 b (h, k) Center (h, k) Mjor is 2 Minor is 2b Center (h, k) Mjor is 2 Minor is 2b (h, k) b Hperbols ( h) 2 ( k)2 ( k) 2 ( h)2 Center (h, k) Trnsverse is 2 Conjugte is 2b Center (h, k) Trnsverse is 2 Conjugte is 2b b (h, k) (h, k) b
5 66 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Solution Step 1. Complete the squre in eqution (2) reltive to ech vrible tht is squred in this cse : ( 3) 2 4( 2) Add 9 to both sides to complete the squre on the left side. (3) From Tble 1 we recognize eqution (3) s n eqution of prbol opening to the right with verte t (h, k) ( 2, 3). Step 2. Find the eqution of the prbol in the trnslted sstem with origin 0 t (h, k) ( 2, 3). The equtions of trnsltion re red directl from eqution (3): FIGURE Mking these substitutions in eqution (3) we obtin 2 4 (4) A( 2, 3) 0 the eqution of the prbol in the sstem. Step 3. Grph eqution (4) in the sstem following the process discussed in Section 71. The resulting grph is the grph of the originl eqution reltive to the originl coordinte sstem (Fig. 3). To check the grph in Figure 3 on grphing utilit, we cn solve either eqution (2) or eqution (3) for. Choosing eqution (2) hs the dded benefit of providing check of the derivtion of eqution (3). FIGURE ; Qudrtic eqution with 1, b 6, nd c (1) ( 4 1) 2(1) () 3 Figure 4 shows the grph of the two functions determined b eqution () nd the verte of the prbol.
6 74 Trnsltion of Aes 67 MATCHED PROBLEM 2 Trnsform into one of the stndrd forms in Tble 1. Identif the conic nd grph it. EXAMPLE 3 Grphing Trnslted Conic Trnsform into one of the stndrd forms in Tble 1. Identif the conic nd grph it. Find the coordintes of n foci reltive to the originl sstem. Check b grphing on grphing utilit. Solution Step 1. Complete the squre reltive to both nd ( 2 4 ) 4( 2 6 9) 36 9( 2 4 4) 4( 2 6 9) ( 2) 2 4( 3) 2 36 ( 2) 2 4 ( 3)2 9 1 From Tble 1 we recognize the lst eqution s n eqution of hperbol opening left nd right with center t (h, k) (2, 3). Step 2. Find the eqution of the hperbol in the trnslted sstem with origin 0 t (h, k) (2, 3). The equtions of trnsltion re red directl from the lst eqution in step 1: FIGURE Mking these substitutions, we obtin F c 10 F c the eqution of the hperbol in the sstem. Step 3. Grph the eqution obtined in step 2 in the sstem following the process discussed in Section 73. The resulting grph is the grph of the originl eqution reltive to the originl coordinte sstem (Fig. ).
7 68 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Step 4. Find the coordintes of the foci. To find the coordintes of the foci in the originl sstem, first find the coordintes in the trnslted sstem: c c 13 c 13 Thus, the coordintes in the trnslted sstem re F ( 13, 0) nd F( 13, 0) Now, use h 2 k 3 to obtin F ( 13 2, 3) nd F( 13 2, 3) FIGURE ; s the coordintes of the foci in the originl sstem. To check the grph in Figure, we return to the originl eqution nd use the qudrtic formul to solve for : ( ) 0 Write in the form 2 b c (4) ( ) The two functions determined b eqution (6) re grphed in Figure 6. (6) MATCHED PROBLEM 3 Trnsform into one of the stndrd forms in Tble 1. Identif the conic nd grph it. Find the coordintes of n foci reltive to the originl sstem. Eplore/Discuss 1 D If A 0 nd C 0, show tht the trnsltion of es, 2A E trnsforms the eqution A 2 C 2 D E F 0 2C into n eqution of the form A 2 C 2 K.
8 Finding Equtions of Conics 74 Trnsltion of Aes 69 We now reverse the problem: Given certin informtion bout conic in rectngulr coordinte sstem, find its eqution. EXAMPLE 4 Solution FIGURE 7 Finding the Eqution of Trnslted Conic Find the eqution of hperbol with vertices on the line 4, conjugte is on the line 3, length of the trnsverse is 4, nd length of the conjugte is 6. Locte the vertices, smptote rectngle, nd smptotes in the originl coordinte sstem [Fig. 7()], then sketch the hperbol nd trnslte the origin to the center of the hperbol [Fig. 7(b)]. 4 2 b 3 3 () Asmptote rectngle (b) Hperbol Net write the eqution of the hperbol in the trnslted sstem: The origin in the trnslted sstem is t (h, k) ( 4, 3), nd the trnsltion formuls re h ( 4) 4 k 3 Thus, the eqution of the hperbol in the originl sstem is ( 3) 2 4 ( 4)2 9 1 or, fter simplifing nd writing in the form of eqution (1), MATCHED PROBLEM 4 Find the eqution of n ellipse with foci on the line 4, minor is on the line 3, length of the mjor is 8, nd length of the minor is 4.
9 70 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Eplore/Discuss 2 Use the strteg of completing the squre to trnsform ech eqution to n eqution in n coordinte sstem. Note tht the eqution ou obtin is not one of the stndrd forms in Tble 1; insted, it is either the eqution of degenerte conic or the eqution hs no solution. If the solution set of the eqution is not empt, grph it nd identif the grph ( point, line, two prllel lines, or two interesting lines). (A) (B) (C) (D) (E) Answers to Mtched Problems ; prbol 2. ( 2) 2 4( 4); prbol ( 2, 4) ( 2) 2 ( 1)2 3. ; ellipse Foci: F ( 7 2, 1), F( 7 2, 1) 16 9 F F ( 4) 2 ( 3)2 4., or EXERCISE 74 A In Problems 1 8: (A) Find trnsltion formuls tht trnslte the origin to the indicted point (h, k). (B) Write the eqution of the curve for the trnslted sstem. (C) Identif the curve. 1. ( 3) 2 ( ) 2 81; (3, ) 2. ( 3) 2 8( 2); (3, 2) ( 7) 2 ( 4)2 3. ; ( 7, 4) 9 16
10 74 Trnsltion of Aes ( 2) 2 ( 6) 2 36; ( 2, 6). ( 9) 2 16( 4); (4, 9) ( 9) 2 ( )2 6. ; (, 9) 10 6 ( 8) 2 ( 3)2 7. ; ( 8, 3) 12 8 ( 7) 2 ( 8)2 8. ; ( 7, 8) 2 0 In Problems 9 14: (A) Write ech eqution in one of the stndrd forms listed in Tble 1. (B) Identif the curve ( 3) 2 9( 2) ( 2) 2 12( 3) ( ) 2 ( 7) ( ) 2 8( 3) ( 6) 2 24( 4) ( 7) 2 7( 3) 2 28 B In Problems 1 22, trnsform ech eqution into one of the stndrd forms in Tble 1. Identif the curve nd grph it If A 0, C 0, nd E 0, find h nd k so tht the trnsltion of es h, k trnsforms the eqution A 2 C 2 D E F 0 into one of the stndrd forms of Tble If A 0, C 0, nd D 0, find h nd k so tht the trnsltion of es h, k trnsforms the eqution A 2 C 2 D E F 0 into one of the stndrd forms of Tble 1. In Problems 2 36, use the given informtion to find the eqution of ech conic. Epress the nswer in the form A 2 C 2 D E F 0 with integer coefficients nd A A prbol with verte t (2, ), is the line 2, nd pssing through the point ( 2, 1). 26. A prbol with verte t (4, 1), is the line 1, nd pssing through the point (2, 3). 27. An ellipse with mjor is on the line 3, minor is on the line 2, length of mjor is 8, nd length of minor is An ellipse with mjor is on the line 4, minor is on the line 1, length of mjor is 4, nd length of minor is An ellipse with vertices (4, 7) nd (4, 3) nd foci (4, 6) nd (4, 2). 30. An ellipse with vertices ( 3, 1) nd (7, 1) nd foci ( 1, 1) nd (, 1). 31. A hperbol with trnsverse is on the line 2, length of trnsverse is 4, conjugte is on the line 3, nd length of conjugte is A hperbol with trnsverse is on the line, length of trnsverse is 6, conjugte is on the line 2, nd length of conjugte is An ellipse with the following grph: ( 3, 1) ( 2, 4) ( 2, 2) 34. An ellipse with the following grph: (, 2) ( 3, 1) ( 1, 1) ( 3, 3) ( 1, 2)
11 72 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY 3. A hperbol with the following grph: ( 2, 4) (0, 2) 36. A hperbol with the following grph: (4, 4) (2, 2) C In Problems 37 42, find the coordintes of n foci reltive to the originl coordinte sstem. 37. Problem Problem Problem Problem Problem Problem 22 (2, 0) In Problems 43 46, find the coordintes of ll points of intersection to two deciml plces. (3, 1) (3, 3) (2, 2) , , , , Section 7 Prmetric Equtions Prmetric Equtions nd Plne Curves Projectile Motion FIGURE 1 Grph of t 1, t 2 2t, t. 10 Prmetric Equtions nd Plne Curves Consider the two equtions t 1 t 2 2t t (1) Ech vlue of t determines vlue of, vlue of, nd hence, n ordered pir (, ). To grph the set of ordered pirs (, ) determined b letting t ssume ll rel vlues, we construct Tble 1 listing selected vlues of t nd the corresponding vlues of nd. Then we plot the ordered pirs (, ) nd connect them with continuous curve, s shown in Figure 1. The vrible t is clled prmeter nd does not pper on the grph. Equtions (1) re clled prmetric equtions becuse both nd re epressed in terms of the prmeter t. The grph of the ordered pirs (, ) is clled plne curve.
Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationB Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1
Appendi B. Conic Sections B B Conic Sections B. Conic Sections Recognize the four bsic conics: circles, prbols, ellipses, nd hperbols. Recognize, grph, nd write equtions of prbols (verte t origin). Recognize,
More informationAREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More information5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous relvlued
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More informationLECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.
LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 6483.
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationSPECIAL PRODUCTS AND FACTORIZATION
MODULE  Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationAppendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationSection A4 Rational Expressions: Basic Operations
A Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr opentopped bo is to be constructed out of 9 by 6inch sheets of thin crdbord by cutting inch squres out of ech corner nd bending the
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationLet us recall some facts you have learnt in previous grades under the topic Area.
6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us
More informationaddition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.
APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The
More informationwww.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
More informationVectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.
Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles
More informationUnit 6: Exponents and Radicals
Eponents nd Rdicls : The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N):  counting numers. {,,,,, } Whole Numers (W):  counting numers with 0. {0,,,,,, } Integers (I): 
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More information4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
More informationMathematics Higher Level
Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:
More information6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine soclled volumes of
More informationMath Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.
Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while
More informationModule Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials
MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic
More informationPure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
More informationP.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn
33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of
More information1 Numerical Solution to Quadratic Equations
cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More information2.4 Circular Waveguide
.4 Circulr Wveguide y x Figure.5: A circulr wveguide of rdius. For circulr wveguide of rdius (Fig..5, we cn perform the sme sequence of steps in cylindricl coordintes s we did in rectngulr coordintes to
More informationExponential and Logarithmic Functions
Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationVolumes as integrals of crosssections (Sect. 6.1) Volumes as integrals of crosssections (Sect. 6.1)
Volumes s integrls of crosssections (ect. 6.1) Te volume of simple regions in spce Volumes integrting crosssections: Te generl cse. Certin regions wit oles. Volumes s integrls of crosssections (ect.
More informationReview guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationBasic Analysis of Autarky and Free Trade Models
Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently
More informationExponents base exponent power exponentiation
Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationSection 1: Crystal Structure
Phsics 927 Section 1: Crstl Structure A solid is sid to be crstl if toms re rrnged in such w tht their positions re ectl periodic. This concept is illustrted in Fig.1 using twodimensionl (2D) structure.
More informationIntegration. 148 Chapter 7 Integration
48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra
SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting
More informationPlotting and Graphing
Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationVolumes of solids of revolution
Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the xxis. There is strightforwrd technique which enbles this to be done, using
More informationTreatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the ttest is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the ttest cn be used to compre the mens of only
More informationDouble Integrals over General Regions
Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationCurve Sketching. 96 Chapter 5 Curve Sketching
96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationRIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationLectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
More informationApplications to Physics and Engineering
Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics
More informationThe Velocity Factor of an Insulated TwoWire Transmission Line
The Velocity Fctor of n Insulted TwoWire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the
More information19. The FermatEuler Prime Number Theorem
19. The FermtEuler Prime Number Theorem Every prime number of the form 4n 1 cn be written s sum of two squres in only one wy (side from the order of the summnds). This fmous theorem ws discovered bout
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More informationStrong acids and bases
Monoprotic AcidBse Equiliri (CH ) ϒ Chpter monoprotic cids A monoprotic cid cn donte one proton. This chpter includes uffers; wy to fi the ph. ϒ Chpter 11 polyprotic cids A polyprotic cid cn donte multiple
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More information200506 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 256 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
More informationExample A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
More informationThe Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center
Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,
More informationg(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany
Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required
More information10.6 Applications of Quadratic Equations
10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,
More information2 DIODE CLIPPING and CLAMPING CIRCUITS
2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of
More informationThinking out of the Box... Problem It s a richer problem than we ever imagined
From the Mthemtics Techer, Vol. 95, No. 8, pges 568574 Wlter Dodge (not pictured) nd Steve Viktor Thinking out of the Bo... Problem It s richer problem thn we ever imgined The bo problem hs been stndrd
More informationCOMPONENTS: COMBINED LOADING
LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More informationand thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 24925 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
More informationMATLAB Workshop 13  Linear Systems of Equations
MATLAB: Workshop  Liner Systems of Equtions pge MATLAB Workshop  Liner Systems of Equtions Objectives: Crete script to solve commonly occurring problem in engineering: liner systems of equtions. MATLAB
More informationBrillouin Zones. Physics 3P41 Chris Wiebe
Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction
More informationLinear Equations in Two Variables
Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then
More informationSolution: Let x be the larger number and y the smaller number.
Problem The sum of two numbers is 00 The lrger number minus the smller number is Find the numbers [Problem submitted by Vin Lee, LACC Professor of Mthemtics Source: Vin Lee] Solution: Let be the lrger
More informationTHE RATIONAL NUMBERS CHAPTER
CHAPTER THE RATIONAL NUMBERS When divided by b is not n integer, the quotient is frction.the Bbylonins, who used number system bsed on 60, epressed the quotients: 0 8 s 0 60 insted of 8 s 7 60,600 0 insted
More informationFUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation
FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does
More information69. The Shortest Distance Between Skew Lines
69. The Shortest Distnce Between Skew Lines Find the ngle nd distnce between two given skew lines. (Skew lines re nonprllel nonintersecting lines.) This importnt problem is usully encountered in one
More informationDistributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
More informationEuler Euler Everywhere Using the EulerLagrange Equation to Solve Calculus of Variation Problems
Euler Euler Everywhere Using the EulerLgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch
More informationFinite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh
Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 25 September 2015 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is
More informationA.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
More informationPentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simplelooking set of objects through which some powerful
Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this
More informationPHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS
PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,
More informationSolving BAMO Problems
Solving BAMO Problems Tom Dvis tomrdvis@erthlink.net http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only
More information2012 Mathematics. Higher. Finalised Marking Instructions
0 Mthemts Higher Finlised Mrking Instructions Scottish Quliftions Authority 0 The informtion in this publtion my be reproduced to support SQA quliftions only on noncommercil bsis. If it is to be used
More informationGeneralized Inverses: How to Invert a NonInvertible Matrix
Generlized Inverses: How to Invert NonInvertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax
More information4.5 Signal Flow Graphs
3/9/009 4_5 ignl Flow Grphs.doc / 4.5 ignl Flow Grphs Reding Assignment: pp. 8997 Q: Using individul device scttering prmeters to nlze comple microwve network results in lot of mess mth! Isn t there n
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationMultiplication and Division  Left to Right. Addition and Subtraction  Left to Right.
Order of Opertions r of Opertions Alger P lese Prenthesis  Do ll grouped opertions first. E cuse Eponents  Second M D er Multipliction nd Division  Left to Right. A unt S hniqu Addition nd Sutrction
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W02D3_0 Group Problem: Pulleys and Ropes Constraint Conditions
MSSCHUSES INSIUE OF ECHNOLOGY Deprtment of hysics 8.0 W02D3_0 Group roblem: ulleys nd Ropes Constrint Conditions Consider the rrngement of pulleys nd blocks shown in the figure. he pulleys re ssumed mssless
More information