Section 7-4 Translation of Axes

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Section 7-4 Translation of Axes"

Transcription

1 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the lst three sections we found stndrd equtions for prbols, ellipses, nd hperbols locted with their es on the coordinte es nd centered reltive to the origin. Wht hppens if we move conics w from the origin while keeping their es prllel to the coordinte es? We will show tht we cn obtin new stndrd equtions tht re specil cses of the eqution A 2 C 2 D E F 0, where A nd C re not both zero. The bsic mthemticl tool used in this endevor is trnsltion of es. The usefulness of trnsltion of es is not limited to grphing conics, however. Trnsltion of es cn be put to good use in mn other grphing situtions. Trnsltion of Aes A trnsltion of coordinte es occurs when the new coordinte es hve the sme direction s nd re prllel to the originl coordinte es. To see how coordintes in the originl sstem re chnged when moving to the trnslted sstem, nd vice vers, refer to Figure 1. FIGURE 1 Trnsltion of coordintes. P(, ) P(, ) 0 (0, 0 ) (0, 0) (h, k) 0 A point P in the plne hs two sets of coordintes: (, ) in the originl sstem nd (, ) in the trnslted sstem. If the coordintes of the origin of the trnslted sstem re (h, k) reltive to the originl sstem, then the old nd new coordintes re relted s given in Theorem 1. THEOREM 1 TRANSLATION FORMULAS 1. h 2. h k k It cn be shown tht these formuls hold for (h, k) locted nwhere in the originl coordinte sstem.

2 7-4 Trnsltion of Aes 63 EXAMPLE 1 Eqution of Curve in Trnslted Sstem A curve hs the eqution ( 4) 2 ( 1) 2 36 If the origin is trnslted to (4, 1), find the eqution of the curve in the trnslted sstem nd identif the curve. Solution Since (h, k) (4, 1), use trnsltion formuls h 4 k 1 to obtin, fter substitution, This is the eqution of circle of rdius 6 with center t the new origin. The coordintes of the new origin in the originl coordinte sstem re (4, 1) (Fig. 2). Note tht this result grees with our generl tretment of the circle in Section 1-1. FIGURE 2 ( 4) 2 ( 1) A(4, 1) 10 MATCHED PROBLEM 1 A curve hs the eqution ( 2) 2 8( 3). If the origin is trnslted to (3, 2), find n eqution of the curve in the trnslted sstem nd identif the curve. Stndrd Equtions of Trnslted Conics We now proceed to find stndrd equtions of conics trnslted w from the origin. We do this b first writing the stndrd equtions found in erlier sections in the coordinte sstem with 0 t (h, k). We then use trnsltion equtions to find the stndrd forms reltive to the originl coordinte sstem. The equtions of trnsltion in ll cses re h k

3 64 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY For prbols we hve 2 4 ( h) 2 4( k) 2 4 ( k) 2 4( h) For circles we hve 2 2 r 2 ( h) 2 ( k) 2 r 2 For ellipses we hve for b b b ( h) 2 ( k)2 ( h) 2 ( k)2 b 2 2 For hperbols we hve b b 2 1 ( h) 2 ( k)2 ( k) 2 ( h)2 Tble 1 summrizes these results with pproprite figures nd some properties discussed erlier. Grphing Equtions of the Form A 2 C 2 D E F 0 It cn be shown tht the grph of A 2 C 2 D E F 0 (1) where A nd C re not both zero, is conic or degenerte conic or tht there is no grph. If we cn trnsform eqution (1) into one of the stndrd forms in Tble 1, then we will be ble to identif its grph nd sketch it rther quickl. The process of completing the squre discussed in Section 2-3 will be our primr tool in ccomplishing this trnsformtion. A couple of emples should help mke the process cler. EXAMPLE 2 Grphing Trnslted Conic Trnsform (2) into one of the stndrd forms in Tble 1. Identif the conic nd grph it. Check b grphing on grphing utilit.

4 7-4 Trnsltion of Aes 6 TABLE 1 Stndrd Equtions for Trnslted Conics Prbols ( h) 2 4( k) ( k) 2 4( h) F V(h, k) Verte (h, k) Focus (h, k ) 0 opens up 0 opens down V(h, k) F Verte (h, k) Focus (h, k) 0 opens left 0 opens right Circles ( h) 2 ( k) 2 r 2 Center (h, k) Rdius r r C(h, k) ( h) 2 ( k)2 Ellipses b 0 ( h) 2 ( k)2 b 2 2 b (h, k) Center (h, k) Mjor is 2 Minor is 2b Center (h, k) Mjor is 2 Minor is 2b (h, k) b Hperbols ( h) 2 ( k)2 ( k) 2 ( h)2 Center (h, k) Trnsverse is 2 Conjugte is 2b Center (h, k) Trnsverse is 2 Conjugte is 2b b (h, k) (h, k) b

5 66 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Solution Step 1. Complete the squre in eqution (2) reltive to ech vrible tht is squred in this cse : ( 3) 2 4( 2) Add 9 to both sides to complete the squre on the left side. (3) From Tble 1 we recognize eqution (3) s n eqution of prbol opening to the right with verte t (h, k) ( 2, 3). Step 2. Find the eqution of the prbol in the trnslted sstem with origin 0 t (h, k) ( 2, 3). The equtions of trnsltion re red directl from eqution (3): FIGURE Mking these substitutions in eqution (3) we obtin 2 4 (4) A( 2, 3) 0 the eqution of the prbol in the sstem. Step 3. Grph eqution (4) in the sstem following the process discussed in Section 7-1. The resulting grph is the grph of the originl eqution reltive to the originl coordinte sstem (Fig. 3). To check the grph in Figure 3 on grphing utilit, we cn solve either eqution (2) or eqution (3) for. Choosing eqution (2) hs the dded benefit of providing check of the derivtion of eqution (3). FIGURE ; Qudrtic eqution with 1, b 6, nd c (1) ( 4 1) 2(1) () 3 Figure 4 shows the grph of the two functions determined b eqution () nd the verte of the prbol.

6 7-4 Trnsltion of Aes 67 MATCHED PROBLEM 2 Trnsform into one of the stndrd forms in Tble 1. Identif the conic nd grph it. EXAMPLE 3 Grphing Trnslted Conic Trnsform into one of the stndrd forms in Tble 1. Identif the conic nd grph it. Find the coordintes of n foci reltive to the originl sstem. Check b grphing on grphing utilit. Solution Step 1. Complete the squre reltive to both nd ( 2 4 ) 4( 2 6 9) 36 9( 2 4 4) 4( 2 6 9) ( 2) 2 4( 3) 2 36 ( 2) 2 4 ( 3)2 9 1 From Tble 1 we recognize the lst eqution s n eqution of hperbol opening left nd right with center t (h, k) (2, 3). Step 2. Find the eqution of the hperbol in the trnslted sstem with origin 0 t (h, k) (2, 3). The equtions of trnsltion re red directl from the lst eqution in step 1: FIGURE Mking these substitutions, we obtin F c 10 F c the eqution of the hperbol in the sstem. Step 3. Grph the eqution obtined in step 2 in the sstem following the process discussed in Section 7-3. The resulting grph is the grph of the originl eqution reltive to the originl coordinte sstem (Fig. ).

7 68 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Step 4. Find the coordintes of the foci. To find the coordintes of the foci in the originl sstem, first find the coordintes in the trnslted sstem: c c 13 c 13 Thus, the coordintes in the trnslted sstem re F ( 13, 0) nd F( 13, 0) Now, use h 2 k 3 to obtin F ( 13 2, 3) nd F( 13 2, 3) FIGURE ; s the coordintes of the foci in the originl sstem. To check the grph in Figure, we return to the originl eqution nd use the qudrtic formul to solve for : ( ) 0 Write in the form 2 b c (4) ( ) The two functions determined b eqution (6) re grphed in Figure 6. (6) MATCHED PROBLEM 3 Trnsform into one of the stndrd forms in Tble 1. Identif the conic nd grph it. Find the coordintes of n foci reltive to the originl sstem. Eplore/Discuss 1 D If A 0 nd C 0, show tht the trnsltion of es, 2A E trnsforms the eqution A 2 C 2 D E F 0 2C into n eqution of the form A 2 C 2 K.

8 Finding Equtions of Conics 7-4 Trnsltion of Aes 69 We now reverse the problem: Given certin informtion bout conic in rectngulr coordinte sstem, find its eqution. EXAMPLE 4 Solution FIGURE 7 Finding the Eqution of Trnslted Conic Find the eqution of hperbol with vertices on the line 4, conjugte is on the line 3, length of the trnsverse is 4, nd length of the conjugte is 6. Locte the vertices, smptote rectngle, nd smptotes in the originl coordinte sstem [Fig. 7()], then sketch the hperbol nd trnslte the origin to the center of the hperbol [Fig. 7(b)]. 4 2 b 3 3 () Asmptote rectngle (b) Hperbol Net write the eqution of the hperbol in the trnslted sstem: The origin in the trnslted sstem is t (h, k) ( 4, 3), nd the trnsltion formuls re h ( 4) 4 k 3 Thus, the eqution of the hperbol in the originl sstem is ( 3) 2 4 ( 4)2 9 1 or, fter simplifing nd writing in the form of eqution (1), MATCHED PROBLEM 4 Find the eqution of n ellipse with foci on the line 4, minor is on the line 3, length of the mjor is 8, nd length of the minor is 4.

9 70 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Eplore/Discuss 2 Use the strteg of completing the squre to trnsform ech eqution to n eqution in n coordinte sstem. Note tht the eqution ou obtin is not one of the stndrd forms in Tble 1; insted, it is either the eqution of degenerte conic or the eqution hs no solution. If the solution set of the eqution is not empt, grph it nd identif the grph ( point, line, two prllel lines, or two interesting lines). (A) (B) (C) (D) (E) Answers to Mtched Problems ; prbol 2. ( 2) 2 4( 4); prbol ( 2, 4) ( 2) 2 ( 1)2 3. ; ellipse Foci: F ( 7 2, 1), F( 7 2, 1) 16 9 F F ( 4) 2 ( 3)2 4., or EXERCISE 7-4 A In Problems 1 8: (A) Find trnsltion formuls tht trnslte the origin to the indicted point (h, k). (B) Write the eqution of the curve for the trnslted sstem. (C) Identif the curve. 1. ( 3) 2 ( ) 2 81; (3, ) 2. ( 3) 2 8( 2); (3, 2) ( 7) 2 ( 4)2 3. ; ( 7, 4) 9 16

10 7-4 Trnsltion of Aes ( 2) 2 ( 6) 2 36; ( 2, 6). ( 9) 2 16( 4); (4, 9) ( 9) 2 ( )2 6. ; (, 9) 10 6 ( 8) 2 ( 3)2 7. ; ( 8, 3) 12 8 ( 7) 2 ( 8)2 8. ; ( 7, 8) 2 0 In Problems 9 14: (A) Write ech eqution in one of the stndrd forms listed in Tble 1. (B) Identif the curve ( 3) 2 9( 2) ( 2) 2 12( 3) ( ) 2 ( 7) ( ) 2 8( 3) ( 6) 2 24( 4) ( 7) 2 7( 3) 2 28 B In Problems 1 22, trnsform ech eqution into one of the stndrd forms in Tble 1. Identif the curve nd grph it If A 0, C 0, nd E 0, find h nd k so tht the trnsltion of es h, k trnsforms the eqution A 2 C 2 D E F 0 into one of the stndrd forms of Tble If A 0, C 0, nd D 0, find h nd k so tht the trnsltion of es h, k trnsforms the eqution A 2 C 2 D E F 0 into one of the stndrd forms of Tble 1. In Problems 2 36, use the given informtion to find the eqution of ech conic. Epress the nswer in the form A 2 C 2 D E F 0 with integer coefficients nd A A prbol with verte t (2, ), is the line 2, nd pssing through the point ( 2, 1). 26. A prbol with verte t (4, 1), is the line 1, nd pssing through the point (2, 3). 27. An ellipse with mjor is on the line 3, minor is on the line 2, length of mjor is 8, nd length of minor is An ellipse with mjor is on the line 4, minor is on the line 1, length of mjor is 4, nd length of minor is An ellipse with vertices (4, 7) nd (4, 3) nd foci (4, 6) nd (4, 2). 30. An ellipse with vertices ( 3, 1) nd (7, 1) nd foci ( 1, 1) nd (, 1). 31. A hperbol with trnsverse is on the line 2, length of trnsverse is 4, conjugte is on the line 3, nd length of conjugte is A hperbol with trnsverse is on the line, length of trnsverse is 6, conjugte is on the line 2, nd length of conjugte is An ellipse with the following grph: ( 3, 1) ( 2, 4) ( 2, 2) 34. An ellipse with the following grph: (, 2) ( 3, 1) ( 1, 1) ( 3, 3) ( 1, 2)

11 72 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY 3. A hperbol with the following grph: ( 2, 4) (0, 2) 36. A hperbol with the following grph: (4, 4) (2, 2) C In Problems 37 42, find the coordintes of n foci reltive to the originl coordinte sstem. 37. Problem Problem Problem Problem Problem Problem 22 (2, 0) In Problems 43 46, find the coordintes of ll points of intersection to two deciml plces. (3, 1) (3, 3) (2, 2) , , , , Section 7- Prmetric Equtions Prmetric Equtions nd Plne Curves Projectile Motion FIGURE 1 Grph of t 1, t 2 2t, t. 10 Prmetric Equtions nd Plne Curves Consider the two equtions t 1 t 2 2t t (1) Ech vlue of t determines vlue of, vlue of, nd hence, n ordered pir (, ). To grph the set of ordered pirs (, ) determined b letting t ssume ll rel vlues, we construct Tble 1 listing selected vlues of t nd the corresponding vlues of nd. Then we plot the ordered pirs (, ) nd connect them with continuous curve, s shown in Figure 1. The vrible t is clled prmeter nd does not pper on the grph. Equtions (1) re clled prmetric equtions becuse both nd re epressed in terms of the prmeter t. The grph of the ordered pirs (, ) is clled plne curve.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1

B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1 Appendi B. Conic Sections B B Conic Sections B. Conic Sections Recognize the four bsic conics: circles, prbols, ellipses, nd hperbols. Recognize, grph, nd write equtions of prbols (verte t origin). Recognize,

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep. Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Section A-4 Rational Expressions: Basic Operations

Section A-4 Rational Expressions: Basic Operations A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Let us recall some facts you have learnt in previous grades under the topic Area.

Let us recall some facts you have learnt in previous grades under the topic Area. 6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us

More information

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix. APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Mathematics Higher Level

Mathematics Higher Level Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function. Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

1 Numerical Solution to Quadratic Equations

1 Numerical Solution to Quadratic Equations cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

2.4 Circular Waveguide

2.4 Circular Waveguide .4 Circulr Wveguide y x Figure.5: A circulr wveguide of rdius. For circulr wveguide of rdius (Fig..5, we cn perform the sme sequence of steps in cylindricl coordintes s we did in rectngulr coordintes to

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1)

Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1) Volumes s integrls of cross-sections (ect. 6.1) Te volume of simple regions in spce Volumes integrting cross-sections: Te generl cse. Certin regions wit oles. Volumes s integrls of cross-sections (ect.

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Exponents base exponent power exponentiation

Exponents base exponent power exponentiation Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Section 1: Crystal Structure

Section 1: Crystal Structure Phsics 927 Section 1: Crstl Structure A solid is sid to be crstl if toms re rrnged in such w tht their positions re ectl periodic. This concept is illustrted in Fig.1 using two-dimensionl (2D) structure.

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

Plotting and Graphing

Plotting and Graphing Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

Volumes of solids of revolution

Volumes of solids of revolution Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the x-xis. There is strightforwrd technique which enbles this to be done, using

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

Double Integrals over General Regions

Double Integrals over General Regions Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Curve Sketching. 96 Chapter 5 Curve Sketching

Curve Sketching. 96 Chapter 5 Curve Sketching 96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

19. The Fermat-Euler Prime Number Theorem

19. The Fermat-Euler Prime Number Theorem 19. The Fermt-Euler Prime Number Theorem Every prime number of the form 4n 1 cn be written s sum of two squres in only one wy (side from the order of the summnds). This fmous theorem ws discovered bout

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Strong acids and bases

Strong acids and bases Monoprotic Acid-Bse Equiliri (CH ) ϒ Chpter monoprotic cids A monoprotic cid cn donte one proton. This chpter includes uffers; wy to fi the ph. ϒ Chpter 11 polyprotic cids A polyprotic cid cn donte multiple

More information

Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929  Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

10.6 Applications of Quadratic Equations

10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Thinking out of the Box... Problem It s a richer problem than we ever imagined

Thinking out of the Box... Problem It s a richer problem than we ever imagined From the Mthemtics Techer, Vol. 95, No. 8, pges 568-574 Wlter Dodge (not pictured) nd Steve Viktor Thinking out of the Bo... Problem It s richer problem thn we ever imgined The bo problem hs been stndrd

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

MATLAB Workshop 13 - Linear Systems of Equations

MATLAB Workshop 13 - Linear Systems of Equations MATLAB: Workshop - Liner Systems of Equtions pge MATLAB Workshop - Liner Systems of Equtions Objectives: Crete script to solve commonly occurring problem in engineering: liner systems of equtions. MATLAB

More information

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones. Physics 3P41 Chris Wiebe Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then

More information

Solution: Let x be the larger number and y the smaller number.

Solution: Let x be the larger number and y the smaller number. Problem The sum of two numbers is 00 The lrger number minus the smller number is Find the numbers [Problem submitted by Vin Lee, LACC Professor of Mthemtics Source: Vin Lee] Solution: Let be the lrger

More information

THE RATIONAL NUMBERS CHAPTER

THE RATIONAL NUMBERS CHAPTER CHAPTER THE RATIONAL NUMBERS When divided by b is not n integer, the quotient is frction.the Bbylonins, who used number system bsed on 60, epressed the quotients: 0 8 s 0 60 insted of 8 s 7 60,600 0 insted

More information

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

More information

69. The Shortest Distance Between Skew Lines

69. The Shortest Distance Between Skew Lines 69. The Shortest Distnce Between Skew Lines Find the ngle nd distnce between two given skew lines. (Skew lines re non-prllel non-intersecting lines.) This importnt problem is usully encountered in one

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems Euler Euler Everywhere Using the Euler-Lgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 25 September 2015 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

More information

Solving BAMO Problems

Solving BAMO Problems Solving BAMO Problems Tom Dvis tomrdvis@erthlink.net http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only

More information

2012 Mathematics. Higher. Finalised Marking Instructions

2012 Mathematics. Higher. Finalised Marking Instructions 0 Mthemts Higher Finlised Mrking Instructions Scottish Quliftions Authority 0 The informtion in this publtion my be reproduced to support SQA quliftions only on non-commercil bsis. If it is to be used

More information

Generalized Inverses: How to Invert a Non-Invertible Matrix

Generalized Inverses: How to Invert a Non-Invertible Matrix Generlized Inverses: How to Invert Non-Invertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax

More information

4.5 Signal Flow Graphs

4.5 Signal Flow Graphs 3/9/009 4_5 ignl Flow Grphs.doc / 4.5 ignl Flow Grphs Reding Assignment: pp. 89-97 Q: Using individul device scttering prmeters to nlze comple microwve network results in lot of mess mth! Isn t there n

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W02D3_0 Group Problem: Pulleys and Ropes Constraint Conditions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W02D3_0 Group Problem: Pulleys and Ropes Constraint Conditions MSSCHUSES INSIUE OF ECHNOLOGY Deprtment of hysics 8.0 W02D3_0 Group roblem: ulleys nd Ropes Constrint Conditions Consider the rrngement of pulleys nd blocks shown in the figure. he pulleys re ssumed mssless

More information