Orbits and Kepler s Laws

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Orbits and Kepler s Laws"

Transcription

1 Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how velocity chnge ( V, ponounced delt-vee ) is used to initite mnoeuves, nd looks t souces of velocity chnge. Hving estblished these bsic ides it then looks t inteplnety mnoeuves, stting with simple Eth-Moon tnsfe nd moving on to moe complex inteplnety mnoeuves. By the end of this section edes should be in we of the guys t JPL who do this fo living! Gvittionl Foce Thee is much discussion mong physicists bout the ntue of gvity. Fo the pupose of this website we ll use Newtonin mechnics nd ignoe notions of gvity wves o ny othe cuent theoies. In the Newtonin wold ny two lumps of mtte will exet gvittionl foce on ech othe. Imgine we hve two msses m1 nd m, nd they e distnce pt (msses in kg, distnce in metes). F F m 1 m The ttctive foce between the two msses cn be clculted fom: Gm1m F = whee G is the univesl gvittionl constnt, G = m 3 /kg sec. If one of the msses is fixed nd vey much gete thn the othe, fo exmple plnet nd spcecft, then it is sometimes witten: GMm F = whee M is the mss of the plne n m is the mss of the spcecft. The poduct GM is clled the gvittionl pmete, witten s the Geek lette. The vlue of is diffeent fo ech plnet, so emembe to chnge vlue when woking on inteplnety mnoeuves. Some useful gvittionl pmetes e: Body (m 3 /s ) (km 3 /s ) Sun Eth

2 Moon Ms If spcecft ws sttiony bove the plnet it would simply fll out the sky due to gvity. In ode to sty in obit it needs to move in n obit. Bsic obits Let s debunk one myth stight wy spcecft is not kept in obit by centifugl foce. Let s conside Newton s fist lw: A body will emin t est o unifom motion in stight line unless cted on by foce If spcecft is tvelling in empty spce with its motos off. Thee e no foces on the spcecft so it will tvel in stight line, s pedicted by Newton s fist lw. Imgine tht plnet suddenly ppes beneth the spcecft. The only foce intoduced is gvity, nd the effect of this is to deflect the pth of the spcecft towds the plnet. If the spcecft is tvelling vey fst its pth will bend, but it will escpe the gvittionl foce of the plnet. If it is tvelling vey slowly it will spil into the plnet nd csh. Ove now nge of speeds it will fll towds the plnet, but it will neve lnd. It is in obit. Spcecft No plnet Low velocity (spils into plnet) High velocity (fly-by) Optimum velocity (entes obit) One wy of thinking bout this is tht the cuvtue of the plnet is such tht it flls wy t the sme te s gvity is pulling the spcecft towds it. The spcecft is in fee fll ound the plnet. If the spcecft is tvelling with velocity v m/s t distnce of metes fom the cente of the plnet, then cicul obit will occu only when the following eqution is tue:

3 If the spcecft is tvelling slightly fste thn this it will just fil to escpe the gvittionl pull nd emin in n obit which is not cicul but ellipticl. It cn be shown tht, if the velocity is equl to: then it will just escpe fom the plnet s gvittionl pull. The shpe of the obit will be pbolic. If we exceed this velocity the shpe of the obit becomes hypebolic nd the spcecft escpes fom the plnet s gvittionl pull t highe velocity. We cn summise the shpe of obits in the following tble: Spcecft Velocity Obitl shpe Comments v< < v v > Unsustinble Cicul Ellipticl Pbolic Hypebolic Spcecft spils into plnet Closed obit Closed obit Open obit, minimum escpe velocity Open obit, escpe velocity The shpes of obits e eithe cicles, ellipses, pbole o hypebole. These shpes my ppe to be vey diffeent but mthemticlly they ll hve something in common: they e deived fom the cuts of cone. The obitl shpes e thus efeed to s conic sections.

4 Hypebol Pbol Cicle Ellipse Cicle Ellipse Hypebol Pbol Lte on we ll see tht these conic section obit shpes hve mthemticl eltionship to ech othe, but fo now we ll just ccept this s fct. Keples lws Between 1609 nd 1619 Johnnes Keple published his fmous 3 lws of plnety motion, bsed on obsevtions mde by the stonome Tycho Bhe. Keple s lws descibed the obits of bodies to emkble ccucy, nd stted tht ll obits would be ellipticl o cicul. In 1687 Si Isc Newton supplied the theoeticl explntion fo why the obits wee this shpe nd llowed clcultion of the velocities which stellite would need to ech if it ws to sustin n obit. Keple s lws stte: 1. A body obiting ound plnet will descibe n obit tht is n ellipse with the plnet t one of the foci.. If we dw line fom the plnet to the body in obit ound it, the line will sweeps out equl es in equl intevls of time. 3. The sque of the time tken fo body to complete one obit is popotionl to the cube of the mjo xis of the obit. Wht do these men in pctice? Keple s Fist Lw Keple s fist lw descibes the shpe of n obit, bsed on obsevtions of the motions of plnets.

5 Stellite (t some point on obit) b θ (t focus) b (1+e) (1-e) The geomety of n ellipse tells us tht it is n eccentic cicle, whee the degee of eccenticity is denoted by the lette e. The vlue of e is defined fom the dimensions of the ellipse nd b, by the eqution: b = (1-e ) Fom the geomety of n obit it cn be shown tht, fo stellite t ny point on the obit t distnce fom the plnet, the following eltionship is lwys tue: (1 e ) = 1+ ecos( θ ) Let s think bout these equtions bit. If the eccenticity is zeo, then wht do we get? Substituting e=0 into the fist eqution we find tht =b. Fom the second eqution we find tht =. Both of these cses indicte tht we hve cicle when e=0, so cicul obit is just specil cse of n ellipticl obit whee the eccenticity is zeo. Keple s Second Lw Imgine ou stellite is t point ❶ in its obit ound plnet. A time t seconds lte it hs moved on to point❷. The line between the plnet nd the stellite will sweep out n e A in tht time. Lte on in its obit it moves fom point ❸ to point ❹ in time t, sweeping out n e B.

6 Time = t seconds 4 3 B A Time =t seconds 1 Keple s second lw tells us tht e A will lwys equl e B, egdless of whee we stt to mesue the time t. Keple s Thid Lw The digm below shows n ellipticl obit with mjo xis. It tkes time, which we ll cll T seconds, to complete one obit of the plnet. Instinct sys tht if we mke the obit bigge, in othe wods incese, the stellite will tke longe to complete one obit. Time = T seconds metes 1 Stellite Keple s thid lw tells us how T vies s we chnge : T = π 3

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5 Mth 5: Clculus II Mth/Sci mjos) MWF m / pm, Cmpion 35 Witten homewok 5 6.6, p. 458 3,33), 6.7, p. 467 8,3), 6.875), 7.58,6,6), 7.44,48) Fo pctice not to tun in): 6.6, p. 458,8,,3,4), 6.7, p. 467 4,6,8),

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Cuvtue Com S 477/577 Notes Yn-Bin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.

More information

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 60-69] Asteios Pntoktos Associte Pofesso

More information

N V V L. R a L I. Transformer Equation Notes

N V V L. R a L I. Transformer Equation Notes Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions

More information

Random Variables and Distribution Functions

Random Variables and Distribution Functions Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using

More information

GRAVITATION 1. BASIC FORCES IN NATURE

GRAVITATION 1. BASIC FORCES IN NATURE GRAVITATION. BASIC ORCES IN NATURE POINTS TO REMEMBER. Bsing on the ntue nd eltive stength the bsic foces in ntue e clssified into fou ctegoies. They e ) Gvittionl foce ) Electomgnetic foce 3) Stong Nucle

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

MAGNETIC FIELD AROUND CURRENT-CARRYING WIRES. point in space due to the current in a small segment ds. a for field around long wire

MAGNETIC FIELD AROUND CURRENT-CARRYING WIRES. point in space due to the current in a small segment ds. a for field around long wire MAGNETC FELD AROUND CURRENT-CARRYNG WRES How will we tckle this? Pln: 1 st : Will look t contibution d to the totl mgnetic field t some point in spce due to the cuent in smll segment of wie iot-svt Lw

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Intro to Circle Geometry By Raymond Cheong

Intro to Circle Geometry By Raymond Cheong Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

r Curl is associated w/rotation X F

r Curl is associated w/rotation X F 13.5 ul nd ivegence ul is ssocited w/ottion X F ivegence is F Tody we define two opetions tht cn e pefomed on vecto fields tht ply sic ole in the pplictions of vecto clculus to fluid flow, electicity,

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Answer, Key Homework 4 David McIntyre Mar 25,

Answer, Key Homework 4 David McIntyre Mar 25, Answer, Key Homework 4 Dvid McIntyre 45123 Mr 25, 2004 1 his print-out should hve 18 questions. Multiple-choice questions my continue on the next column or pe find ll choices before mkin your selection.

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Double Integrals over General Regions

Double Integrals over General Regions Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

More information

Version 001 Summer Review #03 tubman (IBII20142015) 1

Version 001 Summer Review #03 tubman (IBII20142015) 1 Version 001 Summer Reiew #03 tubmn (IBII20142015) 1 This print-out should he 35 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Concept 20 P03

More information

Exam in physics, El-grunder (Electromagnetism), 2014-03-26, kl 9.00-15.00

Exam in physics, El-grunder (Electromagnetism), 2014-03-26, kl 9.00-15.00 Umeå Univesitet, Fysik 1 Vitly Bychkov Em in physics, El-gunde (Electomgnetism, 14--6, kl 9.-15. Hjälpmedel: Students my use ny book(s. Mino notes in the books e lso llowed. Students my not use thei lectue

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

Laplace s Equation on a Disc

Laplace s Equation on a Disc LECTURE 15 Lplce s Eqution on Disc Lst time we solved the Diichlet poblem fo Lplce s eqution on ectngul egion. Tody we ll look t the coesponding Diichlet poblem fo disc. Thus, we conside disc of dius 1

More information

Circles and Tangents with Geometry Expressions

Circles and Tangents with Geometry Expressions icles nd Tngents with eomety xpessions IRLS N TNNTS WITH OMTRY XPRSSIONS... INTROUTION... 2 icle common tngents... 3 xmple : Loction of intesection of common tngents... 4 xmple 2: yclic Tpezium defined

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Formulas and Units. Transmission technical calculations Main Formulas. Size designations and units according to the SI-units.

Formulas and Units. Transmission technical calculations Main Formulas. Size designations and units according to the SI-units. Fomuls nd Units Tnsmission technicl clcultions Min Fomuls Size designtions nd units ccoding to the SI-units Line movement: s v = m/s t s = v t m s = t m v = m/s t P = F v W F = m N Rottion ω = π f d/s

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

AP Physics Gravity and Circular Motion

AP Physics Gravity and Circular Motion AP Phyic Gity nd icul Motion Newton theoy i ey iple. Gity i foce of ttction between ny two object tht he. Two object itting on dektop ttct ech othe with foce tht we cll gity. They don t go flying togethe

More information

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics LALACE S EQUATION IN SHERICAL COORDINATES With Appitions to Eetodynmis We hve seen tht Lpe s eqution is one of the most signifint equtions in physis. It is the soution to pobems in wide viety of fieds

More information

Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates

Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates Int J of Mthemtic Sciences nd Appictions, Vo, No 3, Septembe Copyight Mind Rede Pubictions wwwjounshubcom Adptive Conto of Poduction nd Mintennce System with Unknown Deteiotion nd Obsoescence Rtes Fwzy

More information

Screentrade Car Insurance Policy Summary

Screentrade Car Insurance Policy Summary Sceentde C Insunce Policy Summy This is summy of the policy nd does not contin the full tems nd conditions of the cove, which cn be found in the policy booklet nd schedule. It is impotnt tht you ed the

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

32. The Tangency Problem of Apollonius.

32. The Tangency Problem of Apollonius. . The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 60-70 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok

More information

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates 13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. Vecto-Valued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along

More information

Let us recall some facts you have learnt in previous grades under the topic Area.

Let us recall some facts you have learnt in previous grades under the topic Area. 6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

v o a y = = * Since H < 1m, the electron does not reach to the top plate.

v o a y = = * Since H < 1m, the electron does not reach to the top plate. . The uniom electic ield between two conducting chged pltes shown in the igue hs mgnitude o.40 N/C. The plte seption is m, nd we lunch n electon om the bottom plte diectl upwd with v o 6 m/s. Will the

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep. Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Exponents base exponent power exponentiation

Exponents base exponent power exponentiation Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W02D3_0 Group Problem: Pulleys and Ropes Constraint Conditions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W02D3_0 Group Problem: Pulleys and Ropes Constraint Conditions MSSCHUSES INSIUE OF ECHNOLOGY Deprtment of hysics 8.0 W02D3_0 Group roblem: ulleys nd Ropes Constrint Conditions Consider the rrngement of pulleys nd blocks shown in the figure. he pulleys re ssumed mssless

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

Matrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA

Matrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA CHAPTER 1 Mtrix Algebr PREAMBLE Tody, the importnce of mtrix lgebr is of utmost importnce in the field of physics nd engineering in more thn one wy, wheres before 1925, the mtrices were rrely used by the

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2010

AAPT UNITED STATES PHYSICS TEAM AIP 2010 2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS

G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS Regul polygon e of inteet to u becue we begin looking t the volume of hexgonl pim o Tethedl nd to do thee type of clcultion we need to be ble to olve fit

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Curve Sketching. 96 Chapter 5 Curve Sketching

Curve Sketching. 96 Chapter 5 Curve Sketching 96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

More information

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones. Physics 3P41 Chris Wiebe Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

More information

Newton s Three Laws. d dt F = If the mass is constant, this relationship becomes the familiar form of Newton s Second Law: dv dt

Newton s Three Laws. d dt F = If the mass is constant, this relationship becomes the familiar form of Newton s Second Law: dv dt Newton s Three Lws For couple centuries before Einstein, Newton s Lws were the bsic principles of Physics. These lws re still vlid nd they re the bsis for much engineering nlysis tody. Forml sttements

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

More information

The Casino Experience. Let us entertain you

The Casino Experience. Let us entertain you The Csio Expeiee Let us eteti you The Csio Expeiee If you e lookig fo get ight out, Csio Expeiee is just fo you. 10 The Stight Flush Expeiee 25 pe peso This is get itodutio to gmig tht sves you moey Kik

More information

2.016 Hydrodynamics Prof. A.H. Techet

2.016 Hydrodynamics Prof. A.H. Techet .016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

Vector differentiation. Chapters 6, 7

Vector differentiation. Chapters 6, 7 Chpter 2 Vectors Courtesy NASA/JPL-Cltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higher-dimensionl counterprts

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

Volumes of solids of revolution

Volumes of solids of revolution Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the x-xis. There is strightforwrd technique which enbles this to be done, using

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

c. Values in statements are broken down by fiscal years; many projects are

c. Values in statements are broken down by fiscal years; many projects are Lecture 18: Finncil Mngement (Continued)/Csh Flow CEE 498 Construction Project Mngement L Schedules A. Schedule.of Contrcts Completed See Attchment # 1 ll. 1. Revenues Erned 2. Cost of Revenues 3. Gross

More information