Gravitation. AP Physics C

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Gravitation. AP Physics C"

Transcription

1 Gavitation AP Physics C

2 Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What the popotionality above is saying is that fo thee to be a FORCE DUE TO GRAVITY on something thee must be at least masses involved, whee one is lage than the othe.

3 N.L.o.G. As you move AWAY fom the eath, you DISTANCE inceases and you FORCE DUE TO GRAVITY decease. This is a special INVERSE elationship called an Invese- Squae. F g α 1 The stands fo SEPARATION DISTANCE and is the distance between the CENTERS OF MASS of the objects. We us the symbol as it symbolizes the adius. Gavitation is closely elated to cicula motion as you will discove late.

4 N.L.o.G Putting it all togethe m1m Fg α G = constant of popotionality G = Univesal Gavitational Constant G = 6.67x10 F g m m = G 1 7 Nm kg F F g g = mg Use this when you ae on the eath = G m m 1 Use this when you ae LEAVING the eath

5 Ty this! Let s set the equations equal to each othe since they BOTH epesent you weight o foce due to gavity F F g g = mg Use this when you ae on the eath = G m m 1 Use this when you ae LEAVING the eath Mm mg = G M g = G M = Mass of the Eath = adius of the Eath = 5.97x10 = 6.37x kg m SOLVE FOR g! 7 4 (6.67x10 )(5.97x10 ) g = = 9.81m / s 6 (6.37x10 )

6 How did Newton figue this out? Newton knew that the foce on a falling apple (due to Eath) is in diect popotion to the acceleation of that apple. He also knew that the foce on the moon is in diect popotion to the acceleation of the moon, ALSO due to Eath Newton also sumised that that SAME foce was invesely popotional to the distance fom the cente of Eath. The poblem was that he wasn t exactly sue what the exponent was.

7 How did Newton figue this out? Since both the acceleation and distance wee set up as popotionalities with the foce, he decided to set up a atio. Newton knew that the acceleation of the apple was 9.8 and that the appoximate distance was 4000 miles to the cente of Eath. Newton also knew the distance and acceleation of the Moon as it obits Eath centipetally. It was the outcome of this atio that led him to the exponent of. Theefoe ceating an invese squae elationship.

8 Newton s Law of Gavitation (in moe detail) To make the expession moe mathematically acceptable we also look at this fomula this way: The NEW "" that you see is simply a unit vecto like I,j, & k-hat. A unit vecto, emembe, tells you the diection the foce is going. In this case it means that it is between the two bodies is RADIAL in natue. The NEGATIVE SIGN is meant to denote that a foce poduces "bound" obits. It is only used when you ae sue you need it elative to whateve efeence fame you ae using...so BE CAREFUL! It may be wise to use this expession to find magnitudes only.

9 Example What is the gavitational foce between the eath and a 100 kg man standing on the eath's suface? M F = Mass of = adius of g = G m man the Eath = 5.97x10 the Eath = 6.37x10 M Eath = 6.67x kg m 11 (100)(5.97 x10 6 (6.37x10 ) 4 ) = 9.81 x 10 N Because the foce nea the suface of Eath is constant, we can define this foce easie by ealizing that this foce of gavitation is in diect popotional to the man s mass. A constant of popotionality must dive this elationship. Fg α mman Fg = mmang We see that this constant is in fact the gavitational 9.81x10 = 100g acceleation located nea g = 9.8 m / s / s the Eath s suface.

10 Example How fa fom the eath's suface must an astonaut in space be if she is to feel a gavitational acceleation that is half what she would feel on the eath's suface? Mm mg = G M g = G M = Mass of = adius of g = = G ( M + eath (6.67x10 the Eath = 5.97x10 the Eath = 6.37x ) 4 kg m = )(5.97x GM g 4 ) Eath Eath 6.37x10 6 = This value is fou tenths the adius of Eath..64x10 6 m

11 A couple of things to conside about Eath You can teat the eath as a point mass with its mass being at the cente if an object is on its suface The eath is actually not unifom The eath is not a sphee The eath is otating Let's assume the eath is a unifom sphee. What would happen to a mass (man) that is dopped down a hole that goes completely though the eath? Digging a hole at the Fobidden City in Beijing will cause you to end up somewhee in Agentina. But don t be supised if you dig somewhee else and wate stats to pou in!

12 Digging a hole When you jump down and ae at a adius fom the cente, the potion of Eath that lies OUTSIDE a sphee a adius does NOT poduce a NET gavitational foce on you! The potion that lies INSIDE the sphee does. This implies that as you fall the sphee changes in volume, mass, and density ( due to diffeent types of ocks) M = Vsphee = 4 3 ρ, π M V 3 Mm G4πmρ Fg = G Fg = 3 F = k g inside 3 4π = ρ 3 G4πmρ k = 3 This tells us that you weight actually DECREASES as you appoach the cente of Eath fom within the INSIDE of the sphee and that it behaves like Hook s Law. YOU WILL OSCILLATE.

13 Enegy Consideations Wok is the integal of a Foce function with espect to displacement. Putting in the basic expession fo gavitational foce Pulling out the constants and binging the denominato to the numeato. The negative sign should not supise you as we aleady knew that Wok was equal to the negative change in U o mgh.

14 Escape Speed Conside a ocket leaving the eath. It usually goes up, slows down, and then etuns to eath. Thee exists an initial minimum speed that when eached the ockets will continue on foeve. Let's use consevation of enegy to analyze this situation! We know that ENERGY will neve change. As the ocket leaves the eath it's kinetic is lage and its potential is small. As it ascends, thee is a tansfe of enegy such that the diffeence between the kinetic and potential will always equal to ZERO.

15 Escape Speed This expession is called the escape speed! Due to the otation of the eath, we can take advantage of the fact that we ae otating at a speed of 1500 km/h at the Cape! NOTE: THIS IS ONLY FOR A SYSTEM WHERE YOU ARE TRYING TO GET THE OBJECT IN ORBIT!!!!!

16 Keple'sLaws Thee ae thee laws that Johannes Keple fomulated when he was studying the heavens THE LAW OF ORBITS - "All planets move in elliptical obits, with the Sun at one focus. THE LAW OF AREAS - "A line that connects a planet to the sun sweeps out equal aeas in the plane of the planet's obit in equal times, that is, the ate da/dt at which it sweeps out aea A is constant. THE LAW OF PERIODS - "The squae of the peiod of any planet is popotional to the cube of the semi majo axis of its obit."

17 Keple s 1 st law The Law of Obits "All planets move in elliptical obits, with the Sun at one focus.

18 Keple s nd Law The Law of Aeas "A line that connects a planet to the sun sweeps out equal aeas in the plane of the planet's obit in equal times, that is, the ate da/dt at which it sweeps out aea A is constant.

19 Keple s nd Law How do we know that the ate at which the aea is swept is constant? Angula momentum is conseved and thus constant! We see that both ae popotional to the same two vaiables, thus Keple's second law holds tue to fom.

20 Keple s 3 d Law The Law of Peiods "The squae of the peiod of any planet is popotional to the cube of the semi majo axis of its obit." Gavitational foces ae centipetal, thus we can set them equal to each othe! Since we ae moving in a cicle we can substitute the appopiate velocity fomula! The expession in the RED cicle deived by setting the centipetal foce equal to the gavitational foce is called ORBITAL SPEED. Using algeba, you can see that eveything in the paenthesis is CONSTANT. Thus the popotionality holds tue!

21 Kinetic Enegy in Obit Using ou ORBITAL SPEED deived fom K.T.L and the fomula fo kinetic enegy we can define the kinetic enegy of an object in a bit moe detail when it is in obit aound a body. The question is WHY? Why do we need a new equation fo kinetic enegy? Well, the answe is that geatly simplifies the math. If we use egula kinetic enegy along with potential, we will need both the obital velocity AND the obital adius. In this case, we need only the obital adius.

22 Total Enegy of an obiting body Notice the lack of velocities in this expession as mentioned in the last slide. So by inspection we see that the kinetic enegy function is always positive, the potential is negative and the total enegy function is negative. In fact the total enegy equation is the negative invese of the kinetic. The negative is symbolic because it means that the mass m is BOUND to the mass of M and can neve escape fom it. It is called a BINDING ENERGY.

23 Enegy fom a gaphical pespective As the adius of motion gets lage. The obiting body s kinetic enegy must decease ( slows down) and its potential enegy must incease ( become less negative). By saying become less negative means that we have defined ou ZERO position fo ou potential enegy at INFINITY.

24 Please make you selection... How do you move into a highe velocity obit? Question: If we have an obiting Eath satellite and we want to put it in a highe velocity obit, how can we use the satellite s thustes to make the adjustment? a) Fie Backwads b) Fie Fowads 50% 50% Backwads = speed up Fowads = slow down 1 Fie Backwads 3 Fie Fowads

25 Fastest Respondes (in seconds) Paticipant 1 Paticipant Paticipant 3 Paticipant 4 Paticipant 5

26 How do you move into a highe velocity obit? 1) If you fie backwads thinking you will speed up the satellite you put it into a lage obital adius which ultimately SLOWS DOWN the satellite as the KE deceases. ) By thusting backwads you ae ADDING enegy to the system moving the total enegy close to ZERO, this esults in a lage adius which also causes the KE to decease. 3) Fie fowads gently so that you do NEGATIVE WORK. This will cause the satellite to fall into a smalle obit inceasing the KE and inceasing the speed. It also makes the potential enegy incease negatively because you ae moving fathe fom infinity. As the potential incease the KE again deceases.

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2  2 = GM . Combining the results we get ! Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

ESCAPE VELOCITY EXAMPLES

ESCAPE VELOCITY EXAMPLES ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Resources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics

Resources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics 3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gap-system.og/~histoy/mathematicians/ Newton.html http://www.fg-a.com http://www.clke.com/clipat

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum Final Exam Duing class (1-3:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

14. Gravitation Universal Law of Gravitation (Newton):

14. Gravitation Universal Law of Gravitation (Newton): 14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

8-1 Newton s Law of Universal Gravitation

8-1 Newton s Law of Universal Gravitation 8-1 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013 PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80-kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,

More information

Problem Set 6: Solutions

Problem Set 6: Solutions UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 16-4 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Introduction to Electric Potential

Introduction to Electric Potential Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapte 5. Foce and Motion In this chapte we study causes of motion: Why does the windsufe blast acoss the wate in the way he does? The combined foces of the wind, wate, and gavity acceleate him accoding

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions Physics 111 Fall 007 Electostatic Foces an the Electic Fiel - Solutions 1. Two point chages, 5 µc an -8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

Algebra and Trig. I. A point is a location or position that has no size or dimension.

Algebra and Trig. I. A point is a location or position that has no size or dimension. Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Orbital Motion & Gravity

Orbital Motion & Gravity Astonomy: Planetay Motion 1 Obital Motion D. Bill Pezzaglia A. Galileo & Fee Fall Obital Motion & Gavity B. Obits C. Newton s Laws Updated: 013Ma05 D. Einstein A. Galileo & Fee Fall 3 1. Pojectile Motion

More information

6.2 Orbits and Kepler s Laws

6.2 Orbits and Kepler s Laws Eath satellite in unstable obit 6. Obits and Keple s Laws satellite in stable obit Figue 1 Compaing stable and unstable obits of an atificial satellite. If a satellite is fa enough fom Eath s suface that

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions Name St.No. - Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100-minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1

2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page. Line Integal of Electic Field If a unit positive chage is displaced by `given by dw E. dl dl in an electic field of intensity E, wok done is Line integation

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates 13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. Vecto-Valued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Theory and measurement

Theory and measurement Gavity: Theoy and measuement Reading: Today: p11 - Theoy of gavity Use two of Newton s laws: 1) Univesal law of gavitation: ) Second law of motion: Gm1m F = F = mg We can combine them to obtain the gavitational

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Ch. 14: Gravitation (Beta Version 7/01) 14 Gravitation

Ch. 14: Gravitation (Beta Version 7/01) 14 Gravitation Ch. 14: Gavitation (Beta Vesion 7/01) 14 Gavitation The Milky Way galaxy is a disk-shaped collection of dust, planets, and billions of stas, including ou Sun and sola system. The foce that binds it o any

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Chapter 13 Newton s Theory of Gravity

Chapter 13 Newton s Theory of Gravity Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 13-2 Chapter 13 Preview Slide 13-3 Chapter 13 Preview Slide

More information

Psychology 282 Lecture #2 Outline. Review of Pearson correlation coefficient:

Psychology 282 Lecture #2 Outline. Review of Pearson correlation coefficient: Psychology 282 Lectue #2 Outline Review of Peason coelation coefficient: z z ( n 1) Measue of linea elationship. Magnitude Stength Sign Diection Bounded by +1.0 and -1.0. Independent of scales of measuement.

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Semipartial (Part) and Partial Correlation

Semipartial (Part) and Partial Correlation Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

On the Relativistic Forms of Newton's Second Law and Gravitation

On the Relativistic Forms of Newton's Second Law and Gravitation On the Relativistic Foms of Newton's Second Law and avitation Mohammad Bahami,*, Mehdi Zaeie 3 and Davood Hashemian Depatment of physics, College of Science, Univesity of Tehan,Tehan, Islamic Republic

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Your Comments. did not understand any of this wtf. so over my head I have no idea what I am doing :(

Your Comments. did not understand any of this wtf. so over my head I have no idea what I am doing :( You Comments Llamas, and why it is so difficult to get someone to buy me one as a pet. All ask is that it beathes fie. have simple needs people. Seiously. p.s. this lectue was had. did not undestand any

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Newton s Shell Theorem

Newton s Shell Theorem Newton Shell Theoem Abtact One of the pincipal eaon Iaac Newton wa motivated to invent the Calculu wa to how that in applying hi Law of Univeal Gavitation to pheically-ymmetic maive bodie (like planet,

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

In this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION

In this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION MOTION IN FIELDS MOTION IN FIELDS 9 9. Pojectile motion 9. Gavitational field, potential and enegy 9.3 Electic field, potential and enegy 9. PROJECTILE MOTION 9.. State the independence of the vetical

More information

Learning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds.

Learning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds. Lectue #0 Chapte Atomic Bonding Leaning Objectives Descibe ionic, covalent, and metallic, hydogen, and van de Waals bonds. Which mateials exhibit each of these bonding types? What is coulombic foce of

More information

Chapter 4. Electric Potential

Chapter 4. Electric Potential Chapte 4 Electic Potential 4.1 Potential and Potential Enegy... 4-3 4.2 Electic Potential in a Unifom Field... 4-7 4.3 Electic Potential due to Point Chages... 4-8 4.3.1 Potential Enegy in a System of

More information

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance, d. F A F B (= -F A

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance, d. F A F B (= -F A 5 Moment of a Couple Ref: Hibbele 4.6, edfod & Fowle: Statics 4.4 couple is a pai of foces, equal in magnitude, oppositely diected, and displaced by pependicula distance, d. d (= - ) Since the foces ae

More information

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD 260 16-1. THEORY EXPERMENT 16 THE MAGNETC MOMENT OF A BAR MAGNET AND THE HORZONTAL COMPONENT OF THE EARTH S MAGNETC FELD The uose of this exeiment is to measue the magnetic moment μ of a ba magnet and

More information

Physics 107 HOMEWORK ASSIGNMENT #14

Physics 107 HOMEWORK ASSIGNMENT #14 Physics 107 HOMEWORK ASSIGNMENT #14 Cutnell & Johnson, 7 th edition Chapte 17: Poblem 44, 60 Chapte 18: Poblems 14, 18, 8 **44 A tube, open at only one end, is cut into two shote (nonequal) lengths. The

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

XIIth PHYSICS (C2, G2, C, G) Solution

XIIth PHYSICS (C2, G2, C, G) Solution XIIth PHYSICS (C, G, C, G) -6- Solution. A 5 W, 0 V bulb and a 00 W, 0 V bulb ae connected in paallel acoss a 0 V line nly 00 watt bulb will fuse nly 5 watt bulb will fuse Both bulbs will fuse None of

More information

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS 9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

10. Collisions. Before During After

10. Collisions. Before During After 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

LINES AND TANGENTS IN POLAR COORDINATES

LINES AND TANGENTS IN POLAR COORDINATES LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Pola-coodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and

More information

CHAT Pre-Calculus Section 10.7. Polar Coordinates

CHAT Pre-Calculus Section 10.7. Polar Coordinates CHAT Pe-Calculus Pola Coodinates Familia: Repesenting gaphs of equations as collections of points (, ) on the ectangula coodinate sstem, whee and epesent the diected distances fom the coodinate aes to

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67

More information

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above

More information