Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
|
|
- Laurence Lee
- 4 years ago
- Views:
Transcription
1 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this type require numbers like 1. In generl, numbers of the form where nd b re integers with b 0 2 b re solutions to the eqution bx =. The set of ll such numbers is the set of rtionl numbers, denoted by Q : Q = { b :, b Z, b 0}. Tht is, the set of rtionl numbers consists of ll frctions with their opposites. In the nottion we cll the numertor nd b the denomintor. b Note tht every frction is rtionl number. Also, every integer is rtionl number for if is n integer then we cn write =. Thus, Z Q. 1 Exmple 2.1 Drw Venn digrm to show the reltionship between counting numbers, whole numbers, integers, nd rtionl numbers. The reltionship is shown in Figure 2.1 Figure 2.1 All properties tht hold for frctions pply s well for rtionl numbers. Equlity of Rtionl Numbers: Let nd c be ny two rtionl numbers. Then = c if nd only if d = bc (Cross-multipliction). 1
2 Exmple 2.2 Determine if the following pirs re equl. () 12 (b) nd nd. 215 () Since (144) = ( 12)( 6) then = (b) Since ( 21)(215) (86)( 51) then The Fundmentl Lw of Frctions: Let b nd n be nonzero integer then b = n bn = n b n. be ny rtionl number As n importnt ppliction of the Fundmentl Lw of Frctions we hve b = ( 1) ( 1)( b) = b. We lso use the nottion for either or. b b b Exmple 2. Write three rtionl numbers equl to 2. 5 By the Fundmentl Lw of Frctions we hve 2 5 = 4 10 = 6 15 = 8 20 Rtionl Numbers in Simplest Form: A rtionl number is in simplest form if nd b hve no common fctors greter thn 1. b The methods of reducing frctions into simplest form pply s well with rtionl numbers. Exmple 2.4 Find the simplest form of the rtionl number Using the prime fctoriztions of 294 nd 84 we find = 2 2 ( 2) 2 = 2 = 2 2
3 Prctice Problems Problem 2.1 Show tht ech of the following numbers is rtionl number. () (b) (c) 5.6 (d) 25% Problem 2.2 Which of the following re equl to? 1, 1, 1, 1, 1, 1, 1. Problem 2. Determine which of the following pirs of rtionl numbers re equl. () 5 (b) nd nd. 60 Problem 2.4 Rewrite ech of the following rtionl numbers in simplest form. () 5 (b) 21 (c) 8 (d) Problem 2.5 How mny different rtionl numbers re given in the following list? 2 4,, 5 10, 9 1, 4 Problem 2.6 Find the vlue of x to mke the sttement true one. () = x (b) 18 = x Problem 2. Find the prime fctoriztions of the numertor nd the denomintor nd use them to express the frction 24 in simplest form. Problem 2.8 () If =, wht must be true? b c (b) If = b, wht must be true? c c
4 Addition of Rtionl Numbers The definition of dding frctions extends to rtionl numbers. b + c b = + c b Exmple 2.5 Find ech of the following sums. () (b) (c) b + c d = d + bc bd () = 5 2 ( 5) + 1 = 10 + = ( 10)+ = ( ) ( 5) (b) = ( 2) ( 5) ( 5) ( ) = = ( 14)+( 20) 5 = 4 5. (c) + 5 = +( 5) = 2 Rtionl numbers hve the following properties for ddition. Theorem 2.1 Closure: + c is unique rtionl number. Commuttive: + c = c + d b Associtive: ( + ) ( ) c + e = + c + e f f Identity Element: + 0 = b b Additive inverse: + ( ) b b = 0 Exmple 2.6 Find the dditive inverse for ech of the following: () (b) 5 (c) 2 (d) () 5 = 5 = 5 (b) 5 11 (c) 2 (d) 2 5 4
5 Subtrction of Rtionl Numbers Subtrction of rtionl numbers like subtrction of frctions cn be defined in terms of ddition s follows. b c d = b + ( c d ). Using the bove result we obtin the following: ) Exmple 2. Compute Prctice Problems c = + ( c = + c = d+b( c) bd d bc = bd = = 206 ( 105) 48 = = Problem 2.9 Use number line model to illustrte ech of the following sums. () + 2 (b) + 2 (c) Problem 2.10 Perform the following dditions. Express your nswer in simplest form. () 6 25 (b) Problem 2.11 Perform the following subtrctions. Express your nswer in simplest form. () 1 1 (b) Problem 2.12 Compute the following differences. () 2 9 (b) ( )
6 Multipliction of Rtionl Numbers The multipliction of frctions is extended to rtionl numbers. Tht is, if re ny two rtionl numbers then b nd c d b c d = c bd. Multipliction of rtionl numbers hs properties nlogous to the properties of multipliction of frctions. These properties re summrized in the following theorem. Theorem 2.2 Let, c, nd e be ny rtionl numbers. Then we hve the following: f Closure: The product of two rtionl numbers is unique rtionl number. Commuttivity: c b ( = c d ). d b Associtivity: c e = ( ) c f e. f Identity: 1 = = 1. b b b Inverse: b = 1. We cll b the reciprocl of or the multiplictive b b inverse of. b ( ) Distributivity: c + e = c + e. f b f Exmple 2.8 Perform ech of the following multiplictions. Express your nswer in simplest form. () 5 (b) () We hve (b) 5 6 = ( 5) 6 = = = ( 1)( 5) 2(9) = 5 18 Exmple 2.9 Use the properties of multipliction of rtionl numbers to compute the following. 6
7 () ( 11 ) (b) 2 ( + ) 5 2 (c) () ( 11 ) = 11 5 = 55 = 1 11 = (b) 2 ( + ) 5 2 = 2 1 = 1 1 = (c) = = ( 5 + ) = 2 Division of Rtionl Numbers We define the division of rtionl numbers s n extension of the division of frctions. Let nd c be ny rtionl numbers with c 0. Then d b c d = b d c. Using words, to find b c d multiply b by the reciprocl of c d. By the bove definition one gets the following two results. nd b c b = c b c d = c b d. Remrk 2.1 After inverting, it is often simplest to cncel before doing the multipliction. Cncelling is dividing one fctor of the numertor nd one fctor of the 2 denomintor by the sme number. For exmple: = 2 12 = 2 12 = = 8. 9 Remrk 2.2 Exponents nd their properties re extended to rtionl numbers in nturl wy. For exmple, if is ny rtionl number nd n is positive integer then n = } {{ } n fctors nd n = 1 n
8 Exmple 2.10 Compute the following nd express the nswers in simplest form. () 2 (b) 1 4 (c) () 4 2 = 4 2 = ( )() (4)(2) = (b) = = ( 4) = (c) = = = Prctice Problems Problem 2.1 Multiply the following rtionl numbers. form. Write your nswers in simplest () 10 (b) 6 (c) Problem 2.14 Find the following quotients. Write your nswers in simplest form. () 8 2 (b) 12 4 (c) Problem 2.15 Stte the property tht justifies ech sttement. () ( 5 ) 8 8 = 5 ( ) ( 8 8 (b) ) = Problem 2.16 Compute the following nd write your nswers in simplest form. () (b) 21 (c) Problem 2.1 Find the reciprocls of the following rtionl numbers. () 4 (b) 0 (c) (d)
9 Problem 2.18 Compute: ( 4 ) Problem 2.19 If b 4 = 2 wht is b? Problem 2.20 Compute Problem 2.21 Compute Problem 2.22 Compute ech of the following: () ( 2 4) (b) ( ) 2 (c) ( 2 ( 4 4) ) 4 Compring nd Ordering Rtionl Numbers In this section we extend the notion of less thn to the set of ll rtionls. We describe two equivlent wys for viewing the mening of less thn: number line pproch nd n ddition (or lgebric) pproch. In wht follows, nd c denote ny two rtionls. Number-Line Approch We sy tht is less thn c, nd we write < c, if the point representing on the number-line is to the left of c. For exmple, Figure 2.2 shows tht 1 < 2. 2 Figure 2.2 Exmple 2.11 Use the number line pproch to order the pir of numbers nd 5 2. When the two numbers hve unlike denomintors then we find the lest common denomintor nd then we order the numbers. Thus, = 6 nd 5 =
10 Hence, on number line, is to the left of 5 2. Addition Approch As in the cse of ordering integers, we sy tht b frction e such tht + e = c. f b f d Exmple 2.12 Use the ddition pproch to show tht < 5 2. Since 5 = then < 5 2 < c d if there is unique Notions similr to less thn re included in the following tble. Inequlity Symbol Mening < less thn > greter thn less thn or equl greter thn or equl The following rules re vlid for ny of the inequlity listed in the bove tble. Rules for Inequlities Trichotomy Lw: For ny rtionls nd c exctly one of the following is true: b < c d, b > c d, b = c d. Trnsitivity: For ny rtionls, c, nd e if < c nd c < e then < e. f d f b f Addition Property: For ny rtionls, c, nd e if < c then + e < f b f c + e. d f Multipliction Property: For ny rtionls, c, nd e if < c then f e < c e if e > 0 nd e > c e if e < 0 b f d f f b f d f f Density Property: For ny rtionls nd c, if < c then Prctice Problems b < 1 ( 2 b + c ) < c d d. Problem 2.2 True or flse: () 2 < (b)
11 Problem 2.24 Show tht < Problem 2.25 Show tht < using the ddition pproch. by using number line. Problem 2.26 Put the pproprite symbol, <, =, > between ech pir of numbers to mke true sttement. () (b) 1 (c) (d) Problem 2.2 Find three rtionl numbers between 1 4 nd 2 5. Problem 2.28 The properties of rtionl numbers re used to solve inequlities. For exmple, x + < 5 10 x + + ( 5 5) < + ( ) 10 5 Solve the inequlity x < x > 1. Problem 2.29 Solve ech of the following inequlities. () x 6 5 < 12 (b) 2 5 x < 8 (c) x >
12 Problem 2.0 Verify the following inequlities. () 4 < (b) 1 < 1 (c) 19 > Problem 2.1 Use the number-line pproch to rrnge the following rtionl numbers in incresing order: () 4, 1, (b), 2, 12 4 Problem 2.2 Find rtionl number between 5 12 nd 8. Problem 2. Complete the following, nd nme the property tht is used s justifiction. () If 2 < 4 nd 4 < 5 then 2. 5 (b) If < 6 then ( ) ( ) ( 6 ) ( 11 2 ) (c) If 4 < 4 then < 4 + (d) If > 11 then ( ) ( ) ( 11 ) ( 5 ) (e) There is rtionl number ny two unequl rtionl numbers. 12
PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
Algebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation
FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does
SPECIAL PRODUCTS AND FACTORIZATION
MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come
MATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
Binary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy
4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
Math 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
and thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
Factoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
Vectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
Operations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
1.2 The Integers and Rational Numbers
.2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl
Unit 6: Exponents and Radicals
Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued
9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors
Integration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
Homework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
Reasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS
CHAPTER ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS Although people tody re mking greter use of deciml frctions s they work with clcultors, computers, nd the metric system, common
Experiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
MODULE 3. 0, y = 0 for all y
Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)
Lecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
Lecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
COMPONENTS: COMBINED LOADING
LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of
Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.
Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction
Chapter 2 The Number System (Integers and Rational Numbers)
Chpter 2 The Number System (Integers nd Rtionl Numbers) In this second chpter, students extend nd formlize their understnding of the number system, including negtive rtionl numbers. Students first develop
5.6 POSITIVE INTEGRAL EXPONENTS
54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section
PHY 140A: Solid State Physics. Solution to Homework #2
PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.
AA1H Calculus Notes Math1115, Honours 1 1998. John Hutchinson
AA1H Clculus Notes Mth1115, Honours 1 1998 John Hutchinson Author ddress: Deprtment of Mthemtics, School of Mthemticl Sciences, Austrlin Ntionl University E-mil ddress: John.Hutchinson@nu.edu.u Contents
Repeated multiplication is represented using exponential notation, for example:
Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you
9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
19. The Fermat-Euler Prime Number Theorem
19. The Fermt-Euler Prime Number Theorem Every prime number of the form 4n 1 cn be written s sum of two squres in only one wy (side from the order of the summnds). This fmous theorem ws discovered bout
Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials
MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
Chapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006
dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.
Basic Analysis of Autarky and Free Trade Models
Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently
Physics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x
0.1 Basic Set Theory and Interval Notation
0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is well-defined
Section 5-4 Trigonometric Functions
5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
Regular Sets and Expressions
Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite
Helicopter Theme and Variations
Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the
Words Symbols Diagram. abcde. a + b + c + d + e
Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To
The Riemann Integral. Chapter 1
Chpter The Riemnn Integrl now of some universities in Englnd where the Lebesgue integrl is tught in the first yer of mthemtics degree insted of the Riemnn integrl, but now of no universities in Englnd
Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm
Bibhudendr chry, Girij Snkr Rth, Srt Kumr Ptr, nd Sroj Kumr Pnigrhy Novel Methods of Generting Self-Invertible Mtrix for Hill Cipher lgorithm Bibhudendr chry Deprtment of Electronics & Communiction Engineering
Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity
Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University
Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only
1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
Pure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
Solving BAMO Problems
Solving BAMO Problems Tom Dvis tomrdvis@erthlink.net http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only
Distributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
CHAPTER 11 Numerical Differentiation and Integration
CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods
MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
EQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint
LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.
LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.
CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
Integration. 148 Chapter 7 Integration
48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but
2 DIODE CLIPPING and CLAMPING CIRCUITS
2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of
Review guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn
33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of
A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
Section 7-4 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
3 The Utility Maximization Problem
3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best
COMPLEX FRACTIONS. section. Simplifying Complex Fractions
58 (6-6) Chpter 6 Rtionl Epressions undles tht they cn ttch while working together for 0 hours. 00 600 6 FIGURE FOR EXERCISE 9 95. Selling. George sells one gzine suscription every 0 inutes, wheres Theres
Unit 29: Inference for Two-Way Tables
Unit 29: Inference for Two-Wy Tbles Prerequisites Unit 13, Two-Wy Tbles is prerequisite for this unit. In ddition, students need some bckground in significnce tests, which ws introduced in Unit 25. Additionl
6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of
Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra
Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to
Econ 4721 Money and Banking Problem Set 2 Answer Key
Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in
NQF Level: 2 US No: 7480
NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................
AREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives
Or more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.
. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry
2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
Lectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
Exponential and Logarithmic Functions
Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define
DIFFERENTIATING UNDER THE INTEGRAL SIGN
DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I hd lerned to do integrls by vrious methods shown in book tht my high school physics techer Mr. Bder hd given me. [It] showed how to differentite prmeters
All pay auctions with certain and uncertain prizes a comment
CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin
Rotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the
One Minute To Learn Programming: Finite Automata
Gret Theoreticl Ides In Computer Science Steven Rudich CS 15-251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge
Brillouin Zones. Physics 3P41 Chris Wiebe
Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction
Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00
COMP20212 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Digitl Design Techniques Dte: Fridy 16 th My 2008 Time: 14:00 16:00 Plese nswer ny THREE Questions from the FOUR questions provided
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
Linear Equations in Two Variables
Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Applications to Physics and Engineering
Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics
Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
Project 6 Aircraft static stability and control
Project 6 Aircrft sttic stbility nd control The min objective of the project No. 6 is to compute the chrcteristics of the ircrft sttic stbility nd control chrcteristics in the pitch nd roll chnnel. The