AREA OF A SURFACE OF REVOLUTION

Size: px
Start display at page:

Download "AREA OF A SURFACE OF REVOLUTION"

Transcription

1 AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7. nd 7.. We wnt to define the re of surfce of revolution in such w tht it corresponds to our intuition. If the surfce re is A, we cn imgine tht pinting the surfce would require the sme mount of pint s does flt region with re A. Let s strt with some simple surfces. The lterl surfce re of circulr clinder with rdius r nd height h is tken to be A rh becuse we cn imgine cutting the clinder nd unrolling it (s in Figure ) to obtin rectngle with dimensions r nd h. Likewise, we cn tke circulr cone with bse rdius r nd slnt height l, cut it long the dshed line in Figure, nd fltten it to form sector of circle with rdius l nd centrl ngle. We know tht, in generl, the re of sector of circle with rdius l nd ngle is l (see Eercise 67 in Section 6.) nd so in this cse it is rl A l l r l rl FIGURE Therefore, we define the lterl surfce re of cone to be A rl. πr cut l r l FIGURE l Wht bout more complicted surfces of revolution? If we follow the strteg we used with rc length, we cn pproimte the originl curve b polgon. When this polgon is rotted bout n is, it cretes simpler surfce whose surfce re pproimtes the ctul surfce re. B tking limit, we cn determine the ect surfce re. The pproimting surfce, then, consists of number of bnds, ech formed b rotting line segment bout n is. To find the surfce re, ech of these bnds cn be considered portion of circulr cone, s shown in Figure. The re of the bnd (or frustum of cone) with slnt height l nd upper nd lower rdii r nd r is found b subtrcting the res of two cones: r A r l l r l r r l r l r l From similr tringles we hve l l l r r FIGURE which gives r l r l r l or r r l r l Putting this in Eqution, we get or A r l r l Thomson Brooks-Cole copright 7 A rl where r r r is the verge rdius of the bnd.

2 AREA OF A SURFACE OF REVOLUTION =ƒ b () Surfce of revolution Now we ppl this formul to our strteg. Consider the surfce shown in Figure, which is obtined b rotting the curve f, b, bout the -is, where f is positive nd hs continuous derivtive. In order to define its surfce re, we divide the intervl, b into n subintervls with endpoints,,..., n nd equl width, s we did in determining rc length. If i f i, then the point P i i, i lies on the curve. The prt of the surfce between i nd i is pproimted b tking the line segment P i P i nd rotting it bout the -is. The result is bnd with slnt height l P ip i nd verge rdius r i i so, b Formul, its surfce re is P i P i- P i P n i i P ip i b (b) Approimting bnd FIGURE As in the proof of Theorem 7.., we hve P ip i s f i* where i * is some number in i, i. When is smll, we hve i f i f i * nd lso i f i f i *, since f is continuous. Therefore i i P ip i f i * s f i * nd so n pproimtion to wht we think of s the re of the complete surfce of revolution is n i f i * s f i * This pproimtion ppers to become better s n l nd, recognizing () s Riemnn sum for the function t f s f, we hve lim n l n i f i * s f i * b Therefore, in the cse where f is positive nd hs continuous derivtive, we define the surfce re of the surfce obtined b rotting the curve f, b, bout the -is s f s f S b f s f With the Leibniz nottion for derivtives, this formul becomes 5 S b d If the curve is described s t, c d, then the formul for surfce re becomes Thomson Brooks-Cole copright 7 6 S d c d d nd both Formuls 5 nd 6 cn be summrized smbolicll, using the nottion for rc

3 AREA OF A SURFACE OF REVOLUTION length given in Section 7., s 7 S ds For rottion bout the -is, the surfce re formul becomes 8 S ds where, s before, we cn use either ds d or ds d d These formuls cn be remembered b thinking of or s the circumference of circle trced out b the point, on the curve s it is rotted bout the -is or -is, respectivel (see Figure 5). (, ) (, ) FIGURE 5 circumference=π () Rottion bout -is: S=j π ds circumference=π (b) Rottion bout -is: S=j π ds EXAMPLE The curve s,, is n rc of the circle. Find the re of the surfce obtined b rotting this rc bout the -is. (The surfce is portion of sphere of rdius. See Figure 6.) SOLUTION We hve d s nd so, b Formul 5, the surfce re is S d Thomson Brooks-Cole copright 7 FIGURE 6 Figure 6 shows the portion of the sphere whose surfce re is computed in Emple. s s s 8

4 AREA OF A SURFACE OF REVOLUTION Figure 7 shows the surfce of revolution whose re is computed in Emple. EXAMPLE The rc of the prbol from, to, is rotted bout the -is. Find the re of the resulting surfce. SOLUTION Using (, ) = we hve, from Formul 8, nd d FIGURE 7 S ds d s Substituting u, we hve du 8. Remembering to chnge the limits of integrtion, we hve S 7 5 su du [ u ] 5 7 As check on our nswer to Emple, notice from Figure 7 tht the surfce re should be close to tht of circulr clinder with the sme height nd rdius hlfw between the upper nd lower rdius of the surfce:. We computed tht the surfce re ws (7s7 5s5).85 6 which seems resonble. Alterntivel, the surfce re should be slightl lrger thn the re of frustum of cone with the sme top nd bottom edges. From Eqution, this is..5(s) 9.8 SOLUTION we hve Using S ds 6 s (7s7 5s5) nd d d d s s d s d su du (7s7 5s5) (where u ) (s in Solution ) Thomson Brooks-Cole copright 7 Another method: Use Formul 6 with ln. EXAMPLE Find the re of the surfce generted b rotting the curve e,,bout the -is. SOLUTION Using Formul 5 with e nd d e

5 AREA OF A SURFACE OF REVOLUTION 5 we hve S d e s e e s u du sec d (where u e ) tn e (where u tn nd ) Or use Formul in the Tble of Integrls. [sec tn ln sec tn ] (b Emple 8 in Section 6.) [sec tn lnsec tn s ln(s )] Since tn e, we hve sec tn e nd S [es e ln(e s e ) s ln(s )] EXERCISES A Click here for nswers. Set up, but do not evlute, n integrl for the re of the surfce obtined b rotting the curve bout the given is.. ln, ; -is. sin, ; -is. sec, ; -is. e, ; -is S Click here for solutions. 7 Use Simpson s Rule with n to pproimte the re of the surfce obtined b rotting the curve bout the -is. Compre our nswer with the vlue of the integrl produced b our clcultor. 7. ln, 8. s, 9. sec,. s e, 5 Find the re of the surfce obtined b rotting the curve bout the -is. 5., , 7. s, 8. cos, 9. cosh,., ,., CAS CAS Use either CAS or tble of integrls to find the ect re of the surfce obtined b rotting the given curve bout the -is..,. s, Use CAS to find the ect re of the surfce obtined b rotting the curve bout the -is. If our CAS hs trouble evluting the integrl, epress the surfce re s n integrl in the other vrible..,. ln, Thomson Brooks-Cole copright 7 6 The given curve is rotted bout the -is. Find the re of the resulting surfce.. s,., 5. s, 6. cosh, 5. () If, find the re of the surfce generted b rotting the loop of the curve bout the -is. (b) Find the surfce re if the loop is rotted bout the -is. 6. A group of engineers is building prbolic stellite dish whose shpe will be formed b rotting the curve bout the -is. If the dish is to hve -ft dimeter nd mimum depth of ft, find the vlue of nd the surfce re of the dish.

6 6 AREA OF A SURFACE OF REVOLUTION CAS 7. The ellipse b b is rotted bout the -is to form surfce clled n ellipsoid. Find the surfce re of this ellipsoid. 8. Find the surfce re of the torus in Eercise in Section If the curve f, b, is rotted bout the horizontl line c, where f c, find formul for the re of the resulting surfce.. Use the result of Eercise 9 to set up n integrl to find the re of the surfce generted b rotting the curve s,,bout the line. Then use CAS to evlute the integrl.. Find the re of the surfce obtined b rotting the circle r bout the line r.. Show tht the surfce re of zone of sphere tht lies between two prllel plnes is S dh, where d is the dimeter of the sphere nd h is the distnce between the plnes. (Notice tht S depends onl on the distnce between the plnes nd not on their loction, provided tht both plnes intersect the sphere.). Formul is vlid onl when f. Show tht when f is not necessril positive, the formul for surfce re becomes S b. Let L be the length of the curve f, b, where f is positive nd hs continuous derivtive. Let S f be the surfce re generted b rotting the curve bout the -is. If c is positive constnt, define t f c nd let S t be the corresponding surfce re generted b the curve t, b. Epress in terms of nd L. S t f s f S f Thomson Brooks-Cole copright 7

7 AREA OF A SURFACE OF REVOLUTION 7 ANSWERS.. S ln s Click here for solutions. s sec tn 5. (5s5 )7 7. (7s7 7s7)6 9. [ e e ].. (5s5 s) [ ln(s7 ) ln(s ) s7 s] 6[ln(s ) s]. 5. () (b) 56s 5 7. [b b sin (s b )s b ] 9. b f s f. r Thomson Brooks-Cole copright 7

8 8 AREA OF A SURFACE OF REVOLUTION SOLUTIONS. =ln ds = +(d/) = +(/) S = π(ln ) +(/) [b (7)]. =sec ds = +(d/) = +(sec tn ) S = π/ π +(sec tn ) [b (8)] 5. = =.So S = π +( ) =π = π 6 5 udu= π 8 +9 [u =+9, du =6 ] 5 u/ = π = +(d/) =+[/( )] =+/(). So S = 9 =π π + d + / 9 = π 9 = π 8 ( +)/ 9 + =π = π =cosh +(d/) =+sinh =cosh.so S =π cosh cosh =π ( + cosh ) = π + sinh = π + sinh or π + e e. = + / /d = + / () = + +(/d) =+ + = +.So S =π + d =π + =π + = π. = = +(/d) =+9.So S =π +(/d) d =π +9 d = π +9 6 d 6 +9 / 5 5 = π 8 = π 7 5. = /d = ( ) / ( ) = / +(/d) =+ S = / = + = π / d =π d =π / =π = π. Note tht this is Thomson Brooks-Cole copright 7 the surfce re of sphere of rdius, nd the length of the intervl =to = / is the length of the intervl = to =.

9 AREA OF A SURFACE OF REVOLUTION 9 7. =ln d/ =/ +(d/) =+/ S = π ln +/. Let f() =ln +/.Sincen =, = = 5. Then S S =π /5 [f() + f(.) + f(.) + +f(.6) + f(.8) + f()] The vlue of the integrl produced b clcultor is 9.6 (to si deciml plces). 9. =sec d/ =sec tn +(d/) =+sec tn S = π/ π sec +sec tn.letf() =sec +sec tn. Since n =, = π/ = π.then S S =π π/ π f() + f +f π + +f 8π +f The vlue of the integrl produced b clcultor is (to si deciml plces). 9π π + f =/ ds = +(d/) = +( / ) = +/ S = π + =π + u + =π u du [u =, du =] +u = π du +u = π +ln u + +u u u = π 7 +ln ln = π 7 +ln = nd = nd. S = π +( ) =π +u du [u 6 =, du =6] = π +u du π = [or use CAS] u +u + ln u + +u = π + ln + = π 6 + ln + 5. Since >,thecurve = ( ) onl hs points with. ( ( ).) The curve is smmetric bout the -is (since the eqution is unchnged when is replced b ). =when =or, so the curve s loop etends from =to =. Thomson Brooks-Cole copright 7 d ( )= d [( ) ] 6 d = ( )( ) + ( ) d ( )[ + ] = 6 d = ( ) ( ) = ( ) ( ) 6 6 ( ) the lst frction is / = ( )

10 AREA OF A SURFACE OF REVOLUTION + d = = = ( +) = for 6=. () S = = π = π ds =π ( + ) = π ( ) + ( )( +) =π 6 + = π ( + )= π = π. Note tht we hve rotted the top hlf of the loop bout the -is. This genertes the full surfce. (b) We must rotte the full loop bout the -is, so we get double the re obtined b rotting the top hlf of the loop: S = π ds=π = + = π / ( +) = π ( / + / ) = π / / = π 5/ / = π + 6 = π 5 8 = 56π (d/) = = d b b = b + d =+ b = b + = b + b / = b + b b b ( / ) b b = + b = b ( ) The ellipsoid s surfce re is twice the re generted b rotting the first qudrnt portion of the ellipse bout the -is. Thus, S = π + d b ( =π b ) = πb ( b ) = πb b u du b [u = b ] = πb b u u + u b sin πb b = b ( b )+ b sin =π b + b sin b b Thomson Brooks-Cole copright 7 9. The nlogue of f( i ) in the derivtion of () is now c f( i ), so S = lim n n i= π[c f( i )] +[f ( i )] = b π[c f()] +[f ()].

11 AREA OF A SURFACE OF REVOLUTION. For the upper semicircle, f() = r, f () = / r. The surfce re generted is r S = π r r + =π r r =π r r r r For the lower semicircle, f() = r nd f () = Thus, the totl re is S = S + S =8π r r r r r,sos =π r r =8π r sin r r r r r r r + r. =8πr π =π r.. In the derivtion of (), we computed tpicl contribution to the surfce re to be π i + i P i P i, the re of frustum of cone. When f() is not necessril positive, the pproimtions i = f( i ) f( i ) nd i = f( i ) f( i ) must be replced b i = f( i ) f( i ) nd i = f( i ) f( i ). Thus, π i + i P i P i π f( i ) +[f ( i )]. Continuing with the rest of the derivtion s before, we obtin S = b π f() +[f ()]. Thomson Brooks-Cole copright 7

Double Integrals over General Regions

Double Integrals over General Regions Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

Introduction to Integration Part 2: The Definite Integral

Introduction to Integration Part 2: The Definite Integral Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix. APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Surface Area and Volume

Surface Area and Volume Surfce Are nd Volume Student Book - Series J- Mthletics Instnt Workooks Copyright Surfce re nd volume Student Book - Series J Contents Topics Topic - Surfce re of right prism Topic 2 - Surfce re of right

More information

The Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx

The Chain Rule. rf dx. t t lim  (x) dt  (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the single-vrible chin rule extends to n inner

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function. Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

Numerical Methods of Approximating Definite Integrals

Numerical Methods of Approximating Definite Integrals 6 C H A P T E R Numericl Methods o Approimting Deinite Integrls 6. APPROXIMATING SUMS: L n, R n, T n, AND M n Introduction Not only cn we dierentite ll the bsic unctions we ve encountered, polynomils,

More information

SUBSTITUTION I.. f(ax + b)

SUBSTITUTION I.. f(ax + b) Integrtion SUBSTITUTION I.. f(x + b) Grhm S McDonld nd Silvi C Dll A Tutoril Module for prctising the integrtion of expressions of the form f(x + b) Tble of contents Begin Tutoril c 004 g.s.mcdonld@slford.c.uk

More information

Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1)

Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1) Volumes s integrls of cross-sections (ect. 6.1) Te volume of simple regions in spce Volumes integrting cross-sections: Te generl cse. Certin regions wit oles. Volumes s integrls of cross-sections (ect.

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Lesson 12.1 Trigonometric Ratios

Lesson 12.1 Trigonometric Ratios Lesson 12.1 rigonometric Rtios Nme eriod Dte In Eercises 1 6, give ech nswer s frction in terms of p, q, nd r. 1. sin 2. cos 3. tn 4. sin Q 5. cos Q 6. tn Q p In Eercises 7 12, give ech nswer s deciml

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

10.6 Applications of Quadratic Equations

10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems Euler Euler Everywhere Using the Euler-Lgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

Section A-4 Rational Expressions: Basic Operations

Section A-4 Rational Expressions: Basic Operations A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus Section 5.4 Te Funmentl Teorem of Clculus Kiryl Tsiscnk Te Funmentl Teorem of Clculus EXAMPLE: If f is function wose grp is sown below n g() = f(t)t, fin te vlues of g(), g(), g(), g(3), g(4), n g(5).

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Thinking out of the Box... Problem It s a richer problem than we ever imagined

Thinking out of the Box... Problem It s a richer problem than we ever imagined From the Mthemtics Techer, Vol. 95, No. 8, pges 568-574 Wlter Dodge (not pictured) nd Steve Viktor Thinking out of the Bo... Problem It s richer problem thn we ever imgined The bo problem hs been stndrd

More information

Answer, Key Homework 4 David McIntyre Mar 25,

Answer, Key Homework 4 David McIntyre Mar 25, Answer, Key Homework 4 Dvid McIntyre 45123 Mr 25, 2004 1 his print-out should hve 18 questions. Multiple-choice questions my continue on the next column or pe find ll choices before mkin your selection.

More information

CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

More information

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I Exm Stuy Guie Mth 2020 - Clculus II, Winter 204 The following is list of importnt concepts from ech section tht will be teste on exm. This is not complete list of the mteril tht you shoul know for the

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

2012 Mathematics. Higher. Finalised Marking Instructions

2012 Mathematics. Higher. Finalised Marking Instructions 0 Mthemts Higher Finlised Mrking Instructions Scottish Quliftions Authority 0 The informtion in this publtion my be reproduced to support SQA quliftions only on non-commercil bsis. If it is to be used

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2010

AAPT UNITED STATES PHYSICS TEAM AIP 2010 2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

6.5 - Areas of Surfaces of Revolution and the Theorems of Pappus

6.5 - Areas of Surfaces of Revolution and the Theorems of Pappus Lecture_06_05.n 1 6.5 - Ares of Surfces of Revolution n the Theorems of Pppus Introuction Suppose we rotte some curve out line to otin surfce, we cn use efinite integrl to clculte the re of the surfce.

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Section 1: Crystal Structure

Section 1: Crystal Structure Phsics 927 Section 1: Crstl Structure A solid is sid to be crstl if toms re rrnged in such w tht their positions re ectl periodic. This concept is illustrted in Fig.1 using two-dimensionl (2D) structure.

More information

Factoring Trinomials of the Form. x 2 b x c. Example 1 Factoring Trinomials. The product of 4 and 2 is 8. The sum of 3 and 2 is 5.

Factoring Trinomials of the Form. x 2 b x c. Example 1 Factoring Trinomials. The product of 4 and 2 is 8. The sum of 3 and 2 is 5. Section P.6 Fctoring Trinomils 6 P.6 Fctoring Trinomils Wht you should lern: Fctor trinomils of the form 2 c Fctor trinomils of the form 2 c Fctor trinomils y grouping Fctor perfect squre trinomils Select

More information

6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Waves MATH 22C 6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1

B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1 Appendi B. Conic Sections B B Conic Sections B. Conic Sections Recognize the four bsic conics: circles, prbols, ellipses, nd hperbols. Recognize, grph, nd write equtions of prbols (verte t origin). Recognize,

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

More information

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929  Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

Plotting and Graphing

Plotting and Graphing Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured

More information

10 AREA AND VOLUME 1. Before you start. Objectives

10 AREA AND VOLUME 1. Before you start. Objectives 10 AREA AND VOLUME 1 The Tower of Pis is circulr bell tower. Construction begn in the 1170s, nd the tower strted lening lmost immeditely becuse of poor foundtion nd loose soil. It is 56.7 metres tll, with

More information

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism. Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte

More information

The Definite Integral

The Definite Integral Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Physics 6010, Fall 2010 Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum Relevant Sections in Text: 2.6, 2.

Physics 6010, Fall 2010 Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum Relevant Sections in Text: 2.6, 2. Physics 6010, Fll 2010 Symmetries nd Conservtion Lws: Energy, Momentum nd Angulr Momentum Relevnt Sections in Text: 2.6, 2.7 Symmetries nd Conservtion Lws By conservtion lw we men quntity constructed from

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Section 2.1 Derivtives nd Rtes of Cnge 2010 Kiryl Tsiscnk Derivtives nd Rtes of Cnge Te Tngent Problem EXAMPLE: Grp te prbol y = x 2 nd te tngent line t te point P(1,1). Solution: We ve: DEFINITION: Te

More information

Curve Sketching. 96 Chapter 5 Curve Sketching

Curve Sketching. 96 Chapter 5 Curve Sketching 96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

More information

DIFFERENTIATING UNDER THE INTEGRAL SIGN

DIFFERENTIATING UNDER THE INTEGRAL SIGN DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I hd lerned to do integrls by vrious methods shown in book tht my high school physics techer Mr. Bder hd given me. [It] showed how to differentite prmeters

More information

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel

More information

Slow roll inflation. 1 What is inflation? 2 Equations of motions for a homogeneous scalar field in an FRW metric

Slow roll inflation. 1 What is inflation? 2 Equations of motions for a homogeneous scalar field in an FRW metric Slow roll infltion Pscl udrevnge pscl@vudrevnge.com October 6, 00 Wht is infltion? Infltion is period of ccelerted expnsion of the universe. Historiclly, it ws invented to solve severl problems: Homogeneity:

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information