Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.


 Maud Harper
 1 years ago
 Views:
Transcription
1 Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd implicit equtions of n ellipse will be generted, s will two importnt properties of the ellipse: tht the sum of the distnces from ny point to the foci is equl to the mjor dimeter, nd the Pythgoren Property of Ellipses. Mth Objectives Understnd the geometric definition of n ellipse. Generte the prmetric nd implicit equtions for n ellipse. Locte the foci, given the eqution of n ellipse. Discover reltionships between the prmeters of n ellipse. Technology Objectives Use Geometry Expressions to crete more complex locus of points. Find evidence for equivlence using Geometry Expressions. Mth Prerequisites Pythgoren Theorem Trnsltions Prmetric functions nd implicit equtions Sine nd Cosine Technology Prerequisites Knowledge of Geometry Expressions from previous lessons. Mterils Computers, with Geometry Expressions Sltire Softwre Incorported Pge 1 of 10
2 Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes Overview for the Techer 1. Digrm 1 represents typicl result for question 1. If students re getting semicircles with center t point F1, they re creting locus in terms of t insted of d. Only hlf n ellipse is shown becuse the entire ellipse cnnot be generted s function of d. Points below the foci will hve the sme distnces s points bove. An ellipse is like circle in tht it is curve bsed on distnces from fixed points. It is different in tht it hs different rdii. Digrm 1 d F1 Digrm 2 P d+t F2 2. An pproprite result would be X = cosθ X= cos(t) Y = bsinθ. Trnsposing the sine nd Y=b sin(t) cosine functions will hve no effect on the finl curve. Note tht the trnsposed version is lso the smple prmetric function given by the softwre. Using the trnsposed version yields the sme results, grphiclly. It just chnges the strting plce nd direction tht the ellipse is grphed. Encourge students to chnge vlues for nd b to get n ellipse tht is not just circle. A smple is shown in Digrm 2 3. Some ssumptions re mde here bout the symmetricl nture of n ellipse. You my wish to explore these ssumptions with the clss t this time. Desired solutions:. The distnce from F1 to P is 2 m or 2c + m b. The distnce from F2 to P is m c. The sum is therefore 2 or 2c + 2m. d. The width of the ellipse is 2 e. t = 2. Remind students tht they need to type 2*. 4. The constrint from F2 to P is 2 d. Digrm 3 shows expected results. Digrm 3 d F1 O 2 P 2 d F 4 X= cos(t) Y=b sin(t) 2008 Sltire Softwre Incorported Pge 2 of 10
3 5. Desired solutions:. The sum of the distnces is 2. b. The distnce from F2 to P is equl to, since the three points form n isosceles tringle. c. Using the Pythgoren theorem, 2 = b 2 + c 2, so c = b d. Point P will now pper to be on the ellipse., s shown in Digrm In both instnces, the implicit eqution will be Y + X b b = 0 Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes Digrm 4 F1 d 2 b 2 O 2 P 2 b 2 2 d F2 2 4 X= cos(t) Y=b sin(t) 7. The generl prmetric function tht is X = u0 + cos( T ) generted is Y = v0 + bsin( T ) Digrm 5 u 0 A v B The implicit formul is Y + X b b 2Xb u + b u 2Y v + v = 0 8. Steps re s follows: 4 X= cos(t) Y=b sin(t) X=u 0 + cos(t) z 0 Y=v 0 +b sin(t) z 1 Y 2 2 +X 2 b 22 b 2 X b 2 u 0 +b 2 u 2 0 Y 2 v v 2 0 =0 Y + X b b 2Xb u + b u 2Y v + v = ( ) ( ) ( ) ( ) X b Xb u + b u + Y Y v + v = b b X Xu + u + Y Yv + v = b ( ) ( ) = b X u Y v b ( ) ( ) = b X u Y v b b b b ( X u ) ( Y v ) = 1 b 9. Results s follows:. If = b, then the result is circle. b. If < b, then the ellipse is tller thn it is wide. The foci lie on verticl line rther thn 2 horizontl line. The Pythgoren Property would then be b = + c 2008 Sltire Softwre Incorported Pge 3 of 10
4 Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes 10. Summry: X = u0 + cos( T ) The generl prmetric form of the eqution of n ellipse is Y = v0 + bsin( T ) where (u0, v0) is the center of the ellipse nd nd b re the rdii of the ellipse. + = 1 ( X u ) ( ) 0 Y v0 The generl implicit form ot the eqution of n ellipse is where (u0, v0) is the center of the ellipse. If > b,then 2 is the mjor dimeter nd 2b is the minor dimeter. If b <, then 2b is the mjor dimeter nd 2 is the minor dimeter. The sum of the distnces from ny point on the ellipse to the two foci is 2 b The distnce from the center of the ellipse to either focus follows the eqution 2 c = + b 2008 Sltire Softwre Incorported Pge 4 of 10
5 Nme: Dte: The Ellipse In the lst lesson, you found equtions for circle: the locus of points equidistnt from fixed point. An ellipse is defined s ll the points such tht the sum of the distnce from two fixed points is constnt.. Ech of the two points is clled focus (the plurl of focus is foci ). 1. Crete n ellipse using the definition bove. Open new Geometry Expressions drwing. Crete two points, nd nme them F1 nd F2. Constrin the coordintes of these points. Digrm 1 P d t d F1 D + (t d) = constnt F2 Crete third point, nd nme it P. Constrin the distnce from P to F1 to be d. Constrin the distnce from P to F2 to be t d (see Digrm 1 to understnd why!) Lock the vlue of t in the Vrible Pnel, but keep d unlocked. Find the locus of P with prmeter d. If you drg P round, you cn see tht the locus forms prt of n ellipse. To get more of the ellipse: Double click on the curve. Chnge the Strt Vlue nd End Vlue for d The most you cn get is hlf of the ellipse, becuse the softwre ssumes you know which side P is on you drew it there! To get the rest of the ellipse: Drw line segment from F1 to F2. Select the locus curve. Click on construct reflection nd then click on the segment. Some of the ellipse my still be missing. How is n ellipse like circle? How is it different? Sketch of the ellipse 2008 Sltire Softwre Incorported
6 Before continuing, mke sure Geometry Express is set to Rdins. In the Edit Menu Select preferences. Click on the Mth icon t the left. Under Mth, chnge Angle Mode to rdins. 2. Recll tht the generl prmetric eqution for circle with the center t the origin is X = rcos( T ). Predict the generl prmetric eqution for n ellipse. Y = rsin( T ) Test your prediction with Geometry Expressions Open new Geometry Expressions drwing. Click on the Function tool in the Drw tool pnel. Type in your prediction to see if you re right. Mke dditionl guesses if you need to. 3. The curve you creted in prt 2 looks like n ellipse, but is it relly n ellipse? If it is, we will be ble to find its foci, nd the constnt sum of distnces from the foci. Digrm 2. In Digrm 2, how fr is it from focus F1 to point P? b. How fr is it from focus F2 to point P? c. Wht is the sum of distnces from P to the two foci? m F1 F2 P c c m d. Wht is the horizontl width of the ellipse? e. Write n expression for your nswer to prt c, in terms of distnce. 4. Open new Geometry Expressions drwing, nd crete this prmetric function: X = *cos( T) Y = b*sin( T) Use the Vrible Tool Pnel to chnge the vlues of nd b so tht is greter thn b. Lock vrible nd b Sltire Softwre Incorported
7 Add three points to your Geometry Expressions drwing. First, turn on the xes. Drw F1 nd F2 on the xxis. Drw P so tht it is not on either xis, nor is it on the curve. Constrin the distnce from F1 to P to be d. Wht should the constrint from F2 to P be? Review the results from prt 3 to help you decide. 5. Refer to Digrm 3 to find the positions of F1 nd F2. The tringle shown is n isosceles tringle, with P t the vertex. Digrm 3 P. If P is on the ellipse, wht is the sum of the distnces from F1 to P nd from F2 to P (your solution to 3c)? F1 b F2 b. Given tht the tringle is isosceles, wht is the distnce from F1 to point P? c. Use the Pythgoren Theorem to write n expression for the distnce from the origin to point F2. d. In your Geometry Expressions drwing, constrin the distnce from F1 to the origin to your nswer to 5c. Do the sme for the distnce from F2 to the origin. (You will need to drw point t the origin first). NOTE: If you wnt to type squre root in to Geometry Expressions, use sqrt, nd if you wnt to type in n exponent, use ^. For exmple, + b cn be typed: sqrt(^2 + b^2) e. Does P pper to fll on the ellipse? Drg it round. Does it sty on the ellipse? 2008 Sltire Softwre Incorported
8 6. If the curve in your Geometry Expressions drwing is truly n ellipse, then its implicit eqution will mtch the locus of point P. Select the curve, nd click on the Clculte Implicit Eqution icon. Now, hide the curve. Select the curve. Right click on the curve. Choose hide. Crete the locus of point P with respect to d, nd clculte its implicit eqution. Restore the originl curve by clicking on Show All in the View menu. Are the two implicit equtions the sme? How do they differ, if t ll? 7. How does trnsltion ffect the eqution of n ellipse? Open new drwing nd use Drw Function to crete new ellipse. X = cos( T ) Choose Prmetric for the type nd enter. Y = bsin( T ) u0 Crete vector, nd constrin it to its defult vlues, v 0. Trnslte the ellipse. Select the ellipse Click on Construct Trnsltion Click on the vector. Clculte the prmetric eqution of the new ellipse, nd record it in the box. Generl Prmetric Eqution of n Ellipse Clculte the implicit eqution of the new ellipse Sltire Softwre Incorported
9 ( x u ) ( ) 0 y v0 8. The Generl form for the implicit eqution of n ellipse is tht your implicit eqution is equivlent to the generl form. + =. Verify b 1 9. In prt 6, you found reltionship known s The Pythgoren Property for Ellipses 2 = b + c is hlf the horizontl xis of the ellipse b is hlf the verticl xis of the ellipse c is the distnce from the center of the ellipse to ech focus Digrm 4 b. Wht hppens if = b? b. Is it possible for < b? How would you need to modify the Pythgoren Property for the ellipse in Digrm 4? In ny ellipse, the lrger of 2 nd 2b is clled the mjor xis. The smller of 2 nd 2b is clled the minor xis. If > b, then the foci lie on horizontl line. If < b, then the foci lie on verticl line. If = b, then the ellipse is ctully circle Sltire Softwre Incorported
10 10. Summry: The generl prmetric form of the eqution of n ellipse is: where is the center of the ellipse, is the horizontl rdius of the ellipse, nd nd re the rdii of the ellipse. The generl implicit form of the eqution of n ellipse is: where is the center of the ellipse. If, then is the mjor dimeter nd is the minor dimeter. If, then is the mjor dimeter nd is the minor dimeter. The sum of the distnces from ny point on the ellipse to the two foci is. The distnce from the center of the ellipse to either focus follows the eqution. (, ) 2008 Sltire Softwre Incorported
Section 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationSect 8.3 Triangles and Hexagons
13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed twodimensionl geometric figure consisting of t lest three line segments for its
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More information6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine soclled volumes of
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More information5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous relvlued
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationLesson 10. Parametric Curves
Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find
More informationQuadrilaterals Here are some examples using quadrilaterals
Qudrilterls Here re some exmples using qudrilterls Exmple 30: igonls of rhomus rhomus hs sides length nd one digonl length, wht is the length of the other digonl? 4  Exmple 31: igonls of prllelogrm Given
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationMathematics Higher Level
Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:
More information10.5 Graphing Quadratic Functions
0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions
More informationAREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More informationCONIC SECTIONS. Chapter 11
CONIC SECTIONS Chpter 11 11.1 Overview 11.1.1 Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig. 11.1). Fig. 11.1 Suppose we
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationAnswer, Key Homework 8 David McIntyre 1
Answer, Key Homework 8 Dvid McIntyre 1 This printout should hve 17 questions, check tht it is complete. Multiplechoice questions my continue on the net column or pge: find ll choices before mking your
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More informationLet us recall some facts you have learnt in previous grades under the topic Area.
6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us
More informationPythagoras theorem and trigonometry (2)
HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in rightngled tringles. These
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More informationGeometry 71 Geometric Mean and the Pythagorean Theorem
Geometry 71 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationVolumes of solids of revolution
Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the xxis. There is strightforwrd technique which enbles this to be done, using
More informationaddition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.
APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The
More informationSection 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables
The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationDouble Integrals over General Regions
Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationm, where m = m 1 + m m n.
Lecture 7 : Moments nd Centers of Mss If we hve msses m, m 2,..., m n t points x, x 2,..., x n long the xxis, the moment of the system round the origin is M 0 = m x + m 2 x 2 + + m n x n. The center of
More informationReview guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More informationRIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
More information1 Numerical Solution to Quadratic Equations
cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll
More informationReview Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationBasic Analysis of Autarky and Free Trade Models
Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationTreatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the ttest is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the ttest cn be used to compre the mens of only
More informationQuadratic Equations. Math 99 N1 Chapter 8
Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationLectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
More informationBasic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }
ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More information1+(dy/dx) 2 dx. We get dy dx = 3x1/2 = 3 x, = 9x. Hence 1 +
Mth.9 Em Solutions NAME: #.) / #.) / #.) /5 #.) / #5.) / #6.) /5 #7.) / Totl: / Instructions: There re 5 pges nd totl of points on the em. You must show ll necessr work to get credit. You m not use our
More informationMechanics Cycle 1 Chapter 5. Chapter 5
Chpter 5 Contct orces: ree Body Digrms nd Idel Ropes Pushes nd Pulls in 1D, nd Newton s Second Lw Neglecting riction ree Body Digrms Tension Along Idel Ropes (i.e., Mssless Ropes) Newton s Third Lw Bodies
More informationIntegration. 148 Chapter 7 Integration
48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but
More informationWorksheet 24: Optimization
Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I
More informationTests for One Poisson Mean
Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More informationAssuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;
B26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndomnumer genertor supplied s stndrd with ll computer systems Stn KellyBootle,
More informationCurve Sketching. 96 Chapter 5 Curve Sketching
96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of
More informationTheory of Forces. Forces and Motion
his eek extbook  Red Chpter 4, 5 Competent roblem Solver  Chpter 4 relb Computer Quiz ht s on the next Quiz? Check out smple quiz on web by hurs. ht you missed on first quiz Kinemtics  Everything
More informationExample A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
More informationThe Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center
Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,
More informationDiffraction and Interference of Light
rev 12/2016 Diffrction nd Interference of Light Equipment Qty Items Prt Number 1 Light Sensor CI6504 1 Rotry Motion Sensor CI6538 1 Single Slit Set OS8523 1 Multiple Slit Set OS8523 1 Liner Trnsltor
More informationProving the Pythagorean Theorem
Proving the Pythgoren Theorem Proposition 47 of Book I of Eulid s Elements is the most fmous of ll Eulid s propositions. Disovered long efore Eulid, the Pythgoren Theorem is known y every high shool geometry
More informationPlotting and Graphing
Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured
More informationto the area of the region bounded by the graph of the function y = f(x), the xaxis y = 0 and two vertical lines x = a and x = b.
5.9 Are in rectngulr coordintes If f() on the intervl [; ], then the definite integrl f()d equls to the re of the region ounded the grph of the function = f(), the is = nd two verticl lines = nd =. =
More informationFor a solid S for which the cross sections vary, we can approximate the volume using a Riemann sum. A(x i ) x. i=1.
Volumes by Disks nd Wshers Volume of cylinder A cylinder is solid where ll cross sections re the sme. The volume of cylinder is A h where A is the re of cross section nd h is the height of the cylinder.
More informationArc Length. P i 1 P i (1) L = lim. i=1
Arc Length Suppose tht curve C is defined by the eqution y = f(x), where f is continuous nd x b. We obtin polygonl pproximtion to C by dividing the intervl [, b] into n subintervls with endpoints x, x,...,x
More information4.0 5Minute Review: Rational Functions
mth 130 dy 4: working with limits 1 40 5Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two
More informationMATLAB: Mfiles; Numerical Integration Last revised : March, 2003
MATLAB: Mfiles; Numericl Integrtion Lst revised : Mrch, 00 Introduction to Mfiles In this tutoril we lern the bsics of working with Mfiles in MATLAB, so clled becuse they must use.m for their filenme
More information4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A
Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter
More informationGeometry and Measure. 12am 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm
Reding Scles There re two things to do when reding scle. 1. Mke sure you know wht ech division on the scle represents. 2. Mke sure you red in the right direction. Mesure Length metres (m), kilometres (km),
More informationA.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
More informationLecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationLECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.
LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 6483.
More informationUsing Definite Integrals
Chpter 6 Using Definite Integrls 6. Using Definite Integrls to Find Are nd Length Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: How
More informationQuadratic Equations  1
Alger Module A60 Qudrtic Equtions  1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions  1 Sttement of Prerequisite
More informationLines and angles. Name. Use a ruler and pencil to draw: a 2 parallel lines. c 2 perpendicular lines. b 2 intersecting lines. Complete the following:
Lines nd s 1 Use ruler nd pencil to drw: 2 prllel lines 2 intersecting lines c 2 perpendiculr lines 2 Complete the following: drw in the digonls on this shpe mrk the interior s on this shpe c mrk equl
More informationOn the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding
Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl
More informationContent Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem
Pythgors Theorem S Topic 1 Level: Key Stge 3 Dimension: Mesures, Shpe nd Spce Module: Lerning Geometry through Deductive Approch Unit: Pythgors Theorem Student ility: Averge Content Ojectives: After completing
More informationAP QUIZ #2 GRAPHING MOTION 1) POSITION TIME GRAPHS DISPLACEMENT Each graph below shows the position of an object as a function of time.
AP QUIZ # GRAPHING MOTION ) POSITION TIME GRAPHS DISPLAEMENT Ech grph below shows the position of n object s function of time. A, B,, D, Rnk these grphs on the gretest mgnitude displcement during the time
More informationCypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:
Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A
More informationNotes for Thurs 8 Sept Calculus II Fall 2005 New York University Instructor: Tyler Neylon Scribe: Kelsey Williams
Notes for Thurs 8 Sept Clculus II Fll 00 New York University Instructor: Tyler Neylon Scribe: Kelsey Willims 8. Integrtion by Prts This section is primrily bout the formul u dv = uv v ( ) which is essentilly
More informationAntiderivatives/Indefinite Integrals of Basic Functions
Antiderivtives/Indefinite Integrls of Bsic Functions Power Rule: x n+ x n n + + C, dx = ln x + C, if n if n = In prticulr, this mens tht dx = ln x + C x nd x 0 dx = dx = dx = x + C Integrl of Constnt:
More informationUniform convergence and its consequences
Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationRadius of the Earth  Radii Used in Geodesy James R. Clynch February 2006
dius of the Erth  dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.
More informationModule Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials
MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic
More informationwww.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
More informationChapter 6 Solving equations
Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign
More informationHomework #6: Answers. a. If both goods are produced, what must be their prices?
Text questions, hpter 7, problems 12. Homework #6: Answers 1. Suppose there is only one technique tht cn be used in clothing production. To produce one unit of clothing requires four lborhours nd one
More informationNet Change and Displacement
mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the
More informationHelicopter Theme and Variations
Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the
More information9.1 PYTHAGOREAN THEOREM (right triangles)
Simplifying Rdicls: ) 1 b) 60 c) 11 d) 3 e) 7 Solve: ) x 4 9 b) 16 80 c) 9 16 9.1 PYTHAGOREAN THEOREM (right tringles) c If tringle is right tringle then b, b re the legs * c is clled the hypotenuse (side
More informationMath 22B Solutions Homework 1 Spring 2008
Mth 22B Solutions Homework 1 Spring 2008 Section 1.1 22. A sphericl rindrop evportes t rte proportionl to its surfce re. Write differentil eqution for the volume of the rindrop s function of time. Solution
More informationP.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn
33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of
More information