N V V L. R a L I. Transformer Equation Notes


 Erika Logan
 1 years ago
 Views:
Transcription
1 Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 witeup. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions we use. To o the eivtion, we will use the figue pictue below: figue 1 As seen figue 1, the tnsfome hs two uctos: souce o pimy ucto n lo o secony ucto. Ech ucto loop is seies n hs some esistnce. The esistnce of the souce loop is epesente by n the esistnce of the lo loop is epesente by. The souce hs n put voltge of. The voltge the lo loop is mesue coss n is uce the lo ucto by the souce ucto. The cuent though the souce loop is given by. The cuent though the lo loop is. When you o ny eivtion, it is best to know wht esult you e tyg to chieve. The iel equtions fo tnsfome tems of the figue bove e: whee is constnt n is the numbe of tuns on ech ucto the tnsfome. Theefoe, is the tuns on the souce ucto n is the numbe of tuns on the lo ucto. is the put impence. t is the stey stte impence o esistnce of the souce ucto coil when it is couple with the lo coil the tnsfome.
2 nucto mpence figue We e gog to use the loop equtions fo the cicuit to eive ou fl esult. f the two cicuits e septe, s epicte figue, the stey stte loop equtions e simply: n 0 0. ote:. Wht effect oes puttg them togethe tnsfome hve? We will ssume tht the effect of the tnsfome is to cete some mutul uctnce,. The mutul uctnce is the net mount tht the souce ucto pushes on the lo ucto n vis ves. We o not know wht is, but we o know it is n uctnce n tht it woks gst the pimy n lo uctnces. We cn see tht becuse the cuents e gog opposite iections. This ie is pictue figue 3 below: figue 3 ow we cn wite ou loop equtions g: 1 ] n ] We will use these equtions to eive ll the eltionships bout tnsfomes, but fist, we nee to futhe efe. We know epens on both n. We lso know tht el tnsfome, thee will be some fluence of one ucto on the othe, but thee will lso be some losses ue to the fct tht they e connecte though meium such s i o ion. Theefoe, we will efe tems of constnt, k, the couplg
3 coefficient. We will let k tke on numbe fom 0 to 1. When k is 1, the fluence of one ucto the tnsfome on the othe is unelisticlly iel. This mens tht ll of the uctnce fom one pulls own on the othe. We cll this pefect tnsfome. themticlly, we will efe by the followg expession: k. The eson fo this exct choice will become evient lte when we o the eivtion. Fg the nput mpence Fist we wnt to f n expession fo, the net impence of the souce ucto the tnsfome. This impence is the combe fluence of n. We know tht whteve is, it must be the esistnce of the souce ucto the cicuit. Theefoe, we know the totl impence of the cicuit must be. T T T f we cn f n expession fo, then we will hve the put impence. We cn use the souce loop eqution to f this: ow we hve n expession fo tems of the souce uctnce n the mutul uctnce, but it is still tems of complex impences. We cn use the secon loop eqution n few ssumptions to simplify thgs. 1 ] ow ou efition fo begs to mke sense. ecll tht we efe with the expession: k. Befoe we contue, we must mke out fist ssumption. Assumption 1: Assume the tnsfome is pefectly couple. k1 ow we cn substitute fo n simplify.
4 ow we nee to mke ou next ssumption: Assumption : Assume tht is smll compe to the vlue of n. We coul lso mke the followg ssumption with the sme conclusion: Assumption b: Assume we e t high fequencies. ote tht genel uctnce gets bigge t high fequencies. We nee one of these conitions to be tue, so we cn elimte the tem n simplify the eqution.. We next efe constnt n cll it. We now hve the esie eltionship fo n. Cuent eltion Deivg the emg eltionships is fily stight fow. Fom loop eqution n the efition of, we hve: k Ag ssumg tht hs miml contibution n tht the tnsfome is pefectly couple k1, this becomes: 1. We now hve the cuent eltion. ote it is the vese of the othes.
5 oltge eltion The voltge eltion cn pply eithe to the souce voltge o to the put voltge epeng upon the size of the souce esistnce. Cse 1 : is smll figue 4 When is smll, we cn use the souce voltge s the voltge the eltionship. Fist we use the loop equtions fo the two cicuits. f is smll, we cn ignoe the voltge op coss the esisto n this becomes: n ow we cn substitute ou eltionships fo n the cuent tio: This is ou voltge eltionship.
6 Cse : is lge figue 5 When is lge, we nee to use to f the voltge eltionship ste of. n this cse we cn use iectly. umbe of Tuns eltionship The tuns eltionship epens moe on the physicl ttibutes of the tnsfome thn on the cicuit itself. We will ssume tht ou tnsfomes uctnce is eteme by the eqution given expeiment 3. c n f we ssume tht both coils hve the sme ius, e wppe oun the sme coe, n hve bout the sme length, then this euces to: c c
7 Conclusion The iel tnsfome equtions we use e sufficient to esign tnsfome tht woks une cet constts. You lo esistnce shoul be smll eltive to the impences of the uctos the tnsfome, t lest t the fequency you wnt it to wok t. Also, you shoul expect the tnsfome to hve losses fom the iel vlue tht you clculte. You cn quntify those losses by expeimentlly etemg couplg coefficient fo you tnsfome. Also, thee e physicl constts on tnsfome esign which fluence whethe o not it will behve like the equtions ictte. These clue the coe size, the length of the coil n the coe mteil. To check if tnsfome cicuit you esign is wokg popely, you nee to hve consistent esults fo these thee eltionships:
Section 3.3: Geometric Sequences and Series
ectio 3.3: Geometic equeces d eies Geometic equeces Let s stt out with defiitio: geometic sequece: sequece i which the ext tem is foud by multiplyig the pevious tem by costt (the commo tio ) Hee e some
More informationMath 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5
Mth 5: Clculus II Mth/Sci mjos) MWF m / pm, Cmpion 35 Witten homewok 5 6.6, p. 458 3,33), 6.7, p. 467 8,3), 6.875), 7.58,6,6), 7.44,48) Fo pctice not to tun in): 6.6, p. 458,8,,3,4), 6.7, p. 467 4,6,8),
More informationOrbits and Kepler s Laws
Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how
More informationGeometric Sequences. Definition: A geometric sequence is a sequence of the form
Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece
More informationUniversity Physics AI No. 1 Rectilinear Motion
Uniesity Physics AI No. Rectiline Motion Clss Numbe Nme I.Choose the Coect Answe. An object is moing long the is with position s function of time gien by (. Point O is t. The object is efinitely moing
More information(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?
Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the
More informationr (1+cos(θ)) sin(θ) C θ 2 r cos θ 2
icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:
More informationLaplace s Equation on a Disc
LECTURE 15 Lplce s Eqution on Disc Lst time we solved the Diichlet poblem fo Lplce s eqution on ectngul egion. Tody we ll look t the coesponding Diichlet poblem fo disc. Thus, we conside disc of dius 1
More informationSummary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
More informationChapter 6 Solving equations
Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign
More informationCircles and Tangents with Geometry Expressions
icles nd Tngents with eomety xpessions IRLS N TNNTS WITH OMTRY XPRSSIONS... INTROUTION... 2 icle common tngents... 3 xmple : Loction of intesection of common tngents... 4 xmple 2: yclic Tpezium defined
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationCurvature. (Com S 477/577 Notes) YanBin Jia. Oct 8, 2015
Cuvtue Com S 477/577 Notes YnBin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.
More informationExam in physics, Elgrunder (Electromagnetism), 20140326, kl 9.0015.00
Umeå Univesitet, Fysik 1 Vitly Bychkov Em in physics, Elgunde (Electomgnetism, 146, kl 9.15. Hjälpmedel: Students my use ny book(s. Mino notes in the books e lso llowed. Students my not use thei lectue
More informationWritten Homework 6 Solutions
Written Homework 6 Solutions Section.10 0. Explin in terms of liner pproximtions or differentils why the pproximtion is resonble: 1.01) 6 1.06 Solution: First strt by finding the liner pproximtion of f
More information(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a
Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 6069] Asteios Pntoktos Associte Pofesso
More informationPHYS1231 Higher Physics 1B Solutions Tutorial 2
PHYS3 Higher Physics Solutions Tutoril sic info: lthough the term voltge is use every y, in physics it is mesure of firly bstrct quntity clle Electric Potentil. It s importnt to istinguish electric potentil
More informationTests for One Poisson Mean
Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution
More informationnot to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions
POLYNOMIALS (A) Min Concepts nd Results Geometricl mening of zeroes of polynomil: The zeroes of polynomil p(x) re precisely the xcoordintes of the points where the grph of y = p(x) intersects the xxis.
More informationA Simple Method for Generating Rational Triangles
A Simple Method fo Geneting Rtionl Tingles Konstntine Zelto Deptment Of Mthemtics College Of Ats And Sciences Mil Stop 94 Univesity Of Toledo Toledo,OH 436063390 U.S.A. Intoduction The pupose of this
More informationIntro to Circle Geometry By Raymond Cheong
Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.
More informationLecture 3 Basic Probability and Statistics
Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationRotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationMAGNETIC FIELD AROUND CURRENTCARRYING WIRES. point in space due to the current in a small segment ds. a for field around long wire
MAGNETC FELD AROUND CURRENTCARRYNG WRES How will we tckle this? Pln: 1 st : Will look t contibution d to the totl mgnetic field t some point in spce due to the cuent in smll segment of wie iotsvt Lw
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationSequences and Series
Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic
More informationAlgorithms Chapter 4 Recurrences
Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering
More informationSECTION 54 Trigonometric Functions
Tigonometic Functions 78. Engineeing. In Polem 77, though wht ngle in dins will the ck wheel tun if the font wheel tuns though dins? The c length on cicle is esy to compute if the coesponding centl ngle
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationExponents base exponent power exponentiation
Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationr Curl is associated w/rotation X F
13.5 ul nd ivegence ul is ssocited w/ottion X F ivegence is F Tody we define two opetions tht cn e pefomed on vecto fields tht ply sic ole in the pplictions of vecto clculus to fluid flow, electicity,
More informationDouble Integrals over General Regions
Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More informationCypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:
Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A
More informationOn the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding
Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl
More informationQuadratic Equations. Math 99 N1 Chapter 8
Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree
More informationScreentrade Car Insurance Policy Summary
Sceentde C Insunce Policy Summy This is summy of the policy nd does not contin the full tems nd conditions of the cove, which cn be found in the policy booklet nd schedule. It is impotnt tht you ed the
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationWell say we were dealing with a weak acid K a = 1x10, and had a formal concentration of.1m. What is the % dissociation of the acid?
Chpter 9 Buffers Problems 2, 5, 7, 8, 9, 12, 15, 17,19 A Buffer is solution tht resists chnges in ph when cids or bses re dded or when the solution is diluted. Buffers re importnt in Biochemistry becuse
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationTHE GEOMETRIC SERIES
Mthemtics Revisio Guides The Geometic eies Pge of M.K. HOME TUITION Mthemtics Revisio Guides Level: A / A Level AQA : C Edexcel: C OCR: C OCR MEI: C THE GEOMETRIC ERIE Vesio :. Dte: 8060 Exmples 7 d
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationPoynting Vector and Energy Flow in a Capacitor Challenge Problem Solutions
Poynting Vecto an Enegy Flow in a Capacito Challenge Poblem Solutions Poblem 1: A paallelplate capacito consists of two cicula plates, each with aius R, sepaate by a istance. A steay cuent I is flowing
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More informationRandom Variables and Distribution Functions
Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using
More informationCURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.
CURVES ANDRÉ NEVES 1. Problems (1) (Ex 1 of 1.3 of Do Crmo) Show tht the tngent line to the curve α(t) (3t, 3t 2, 2t 3 ) mkes constnt ngle with the line z x, y. (2) (Ex 6 of 1.3 of Do Crmo) Let α(t) (e
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationAnswer, Key Homework 8 David McIntyre 1
Answer, Key Homework 8 Dvid McIntyre 1 This printout should hve 17 questions, check tht it is complete. Multiplechoice questions my continue on the net column or pge: find ll choices before mking your
More information10.5 Graphing Quadratic Functions
0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More information2.016 Hydrodynamics Prof. A.H. Techet
.016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting
More informationChapter L  Problems
Chpter L  Problems Blinn College  Physics 46  Terry Honn Problem L.1 Young's ouble slit experiment is performe by shooting HeNe lser bem (l 63.8 nm) through two slits seprte by 0.15 mm onto screen
More information2 DIODE CLIPPING and CLAMPING CIRCUITS
2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of
More informationNet Change and Displacement
mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationPhysics 111 Fall 2007 Electrostatic Forces and the Electric Field  Solutions
Physics 111 Fall 007 Electostatic Foces an the Electic Fiel  Solutions 1. Two point chages, 5 µc an 8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the
More information14.2. The Mean Value and the RootMeanSquare Value. Introduction. Prerequisites. Learning Outcomes
he Men Vlue nd the RootMenSqure Vlue 4. Introduction Currents nd voltges often vry with time nd engineers my wish to know the men vlue of such current or voltge over some prticulr time intervl. he men
More informationStrong acids and bases
Monoprotic AcidBse Equiliri (CH ) ϒ Chpter monoprotic cids A monoprotic cid cn donte one proton. This chpter includes uffers; wy to fi the ph. ϒ Chpter 11 polyprotic cids A polyprotic cid cn donte multiple
More informationProblem Set 2 Solutions
University of Cliforni, Berkeley Spring 2012 EE 42/100 Prof. A. Niknej Prolem Set 2 Solutions Plese note tht these re merely suggeste solutions. Mny of these prolems n e pprohe in ifferent wys. 1. In prolems
More informationOnline Homework 12 Solution
Online Homewok Solution Electic nd Mgnetic Field Vectos Conceptul Question Pt A The electic nd mgnetic field vectos t specific point in spce nd time e illustted. Bsed on this infomtion, in wht diection
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More informationVersion 001 CIRCUITS holland (1290) 1
Version CRCUTS hollnd (9) This printout should hve questions Multiplechoice questions my continue on the next column or pge find ll choices efore nswering AP M 99 MC points The power dissipted in wire
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More information1 Numerical Solution to Quadratic Equations
cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll
More informationHomework #6: Answers. a. If both goods are produced, what must be their prices?
Text questions, hpter 7, problems 12. Homework #6: Answers 1. Suppose there is only one technique tht cn be used in clothing production. To produce one unit of clothing requires four lborhours nd one
More information16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
More informationRadius of the Earth  Radii Used in Geodesy James R. Clynch February 2006
dius of the Erth  dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationThe Casino Experience. Let us entertain you
The Csio Expeiee Let us eteti you The Csio Expeiee If you e lookig fo get ight out, Csio Expeiee is just fo you. 10 The Stight Flush Expeiee 25 pe peso This is get itodutio to gmig tht sves you moey Kik
More informationSect 8.3 Triangles and Hexagons
13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed twodimensionl geometric figure consisting of t lest three line segments for its
More informationSirindhorn International Institute of Technology Thammasat University at Rangsit
Sirindhorn Interntionl Institute of Technology Thmmst University t Rngsit School of Informtion, Computer nd Communiction Technology COURSE : ECS 204 Bsic Electricl Engineering L INSTRUCTOR : Asst. Prof.
More informationLinear Equations in Two Variables
Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then
More informationChapter 9: Quadratic Equations
Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.
More informationGeneralized Inverses: How to Invert a NonInvertible Matrix
Generlized Inverses: How to Invert NonInvertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax
More informationWeek 11  Inductance
Week  Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n
More informationAn OffCenter Coaxial Cable
1 Problem An OffCenter Coxil Cble Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Nov. 21, 1999 A coxil trnsmission line hs inner conductor of rdius nd outer conductor
More information, and the number of electrons is 19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.
Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge
More informationPHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS
PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,
More informationShowing Recursive Sequences Converge
Showig Recursive Sequeces Coverge Itroductio My studets hve sked me bout how to prove tht recursively defied sequece coverges. Hopefully, fter redig these otes, you will be ble to tckle y such problem.
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W02D3_0 Group Problem: Pulleys and Ropes Constraint Conditions
MSSCHUSES INSIUE OF ECHNOLOGY Deprtment of hysics 8.0 W02D3_0 Group roblem: ulleys nd Ropes Constrint Conditions Consider the rrngement of pulleys nd blocks shown in the figure. he pulleys re ssumed mssless
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationChapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6
Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More informationLAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics
LALACE S EQUATION IN SHERICAL COORDINATES With Appitions to Eetodynmis We hve seen tht Lpe s eqution is one of the most signifint equtions in physis. It is the soution to pobems in wide viety of fieds
More informationUniform convergence and its consequences
Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,
More informationExperiment MF Magnetic Force
Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuentcaying conducto is basic to evey electic moto  tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationLesson 10. Parametric Curves
Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find
More information