Words Symbols Diagram. abcde. a + b + c + d + e


 Meghan Francis
 1 years ago
 Views:
Transcription
1 Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To help visulize these networks, we ll use digrms to represent eh opertion. For the logil opertion AND, we ll use the following digrm, lled n AND gte: For the logil opertion OR, we use n OR gte: + Finlly, for the logil opertion NOT, we use NOT gte: Now we n digrm omplited logil expressions s logi networks. For exmple, the logil expression + n e digrmmed like so: + This logi network indites tht we tke AND, then NOT the result nd omine with using n OR. Here re some more exmples
2 Logil expression Logi network + d d To uild omplited logi network we hook the outputs of some logi gtes to the inputs of other logi gtes. We n extend this digrmmti nottion y llowing more inputs for AND nd OR: Words Symols Digrm AND AND AND d AND e de d e OR OR OR d OR e d + e d e
3 We n now exmine some si properties of logil opertions nd how these properties pper when digrmmed. First, rell the tle of omintions for AND: AND From this tle we see tht 0 AND 1 gives the sme truth vlue s 1 AND 0, so the order in whih we write the piees of the omintion doesn t mtter. Tht is, for sttements nd the truth vlue of AND will e the sme s the truth vlue for AND. In symols, this is Lw of Commuttivity for AND: Similrly, the tle of omintions for OR: OR Indites tht 0 OR 1 hs the sme truth vlue s 1 OR 0, so generlly for sttements nd we hve the Lw of Commuttivity for OR:. + + For logi gtes, these Lws of Commuttivity sy tht it doesn t mtter wht order we use to drw the inputs into the AND nd OR gtes:
4 These properties re similr to wht we hve seen for numers. For numers, we lso hd Lw of Identity whih sid tht multiplition y 1 doesn t hnge numer. In logi, there is lso n identity for AND: Lw of Identity for AND: 1 Even though this Lw looks fmilir from numers, we hve to e reful to hek tht it is still true for logi (where is sttement nd 1 mens AND 1 ). To see tht the Lw of Identity holds for AND, look t the truth tle for AND 1. Here 1 mens vrile tht is lwys true, so to nlyze 1 we only need to see wht hppens when we hnge. With only one vrile, the truth tle for 1 hs rows: Sine the two olumns re the sme, 1. Digrmmtilly, we drw 1 this wy 1 Another wy to think of this is tht if we hve logi network with gte tht looks like the one ove, we n remove tht gte. We lso hve the Lw of Identity for OR: + 0 This follows from the truth tle for + 0 (here 0 mens vrile tht is lwys flse). Anlyzing OR FALSE, we hve And gin the two olumns re the sme, so + 0.
5 We lso hve nother property tht is similr to wht we hd for numers: Distriutive Lw for AND nd OR: ( + ) + To see tht the Distriutive Lw holds, we ompre the lst olumns of the following truth tles; noting tht the truth vlues of the lst two olumns re the sme. + (+) Digrmmtilly, this looks like So fr we hve seen lws tht re similr to wht we hd for numers. Even though our ojets re not numers ut rther sttements, this similrity is helpful when mnipulting logil expressions; we n use our intuition for the lger of numers to work with the lger of sttements. This is the gret power of Boole s nottion. But there re other properties of logi whih not like the properties of numers. For exmple, in logi (this sys tht two true sttements ORed together mke true sttement). We lso hve the following property: Lw of Doule Negtion for NOT:
6 Whih sys tht doing two NOTs in row is the sme s doing nothing. This should e ler euse if the first NOT hnges 0 to 1 then the seond NOT will hnge tht 1 k to 0 (nd vie vers). Digrmmtilly, this sys We hve different sort of nelltion for AND. Cnelltion Lw for AND: 0 This sys tht AND NOT is flse, whih is intuitively ler (you n t elieve sttement nd its negtion t the sme time!) nd whih we n lso hek using the truth tle Finlly, we hve property whih we will soon find to e very useful when simplifying logi networks: Cnelltion Lw for OR: + 1 Intuitively, this just sys tht either sttement is true or its negtion is true; tht is, either or NOT hs to e true, so when we OR these two piees together to get + it hs to e true. We n write this out with truth tle
7 Digrmmtilly this sys 1 This mens tht if we hve logi network tht hs portion like the little network on the left, we n remove the little network, repling the vrile with onstnt vlue of 1.
Simple Electric Circuits
Simple Eletri Ciruits Gol: To uild nd oserve the opertion of simple eletri iruits nd to lern mesurement methods for eletri urrent nd voltge using mmeters nd voltmeters. L Preprtion Eletri hrges move through
More informationCS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
More information1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.
. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry
More information10.3 Systems of Linear Equations: Determinants
758 CHAPTER 10 Systems of Equtions nd Inequlities 10.3 Systems of Liner Equtions: Determinnts OBJECTIVES 1 Evlute 2 y 2 Determinnts 2 Use Crmer s Rule to Solve System of Two Equtions Contining Two Vriles
More informationThe area of the larger square is: IF it s a right triangle, THEN + =
8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht
More informationBasics of Logic Design: Boolean Algebra, Logic Gates. Administrative
Bsics of Logic Design: Boolen Alger, Logic Gtes Computer Science 104 Administrtive Homework #3 Due Sundy Midterm I Mondy in clss, closed ook, closed notes Ø Will provide IA32 instruction set hndout Ø Lst
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationFractions: Arithmetic Review
Frtions: Arithmeti Review Frtions n e interprete s rtios omprisons of two quntities. For given numer expresse in frtion nottion suh s we ll the numertor n the enomintor n it is helpful to interpret this
More informationLearning Outcomes. Computer Systems  Architecture Lecture 4  Boolean Logic. What is Logic? Boolean Logic 10/28/2010
/28/2 Lerning Outcomes At the end of this lecture you should: Computer Systems  Architecture Lecture 4  Boolen Logic Eddie Edwrds eedwrds@doc.ic.c.uk http://www.doc.ic.c.uk/~eedwrds/compsys (Hevily sed
More informationexcenters and excircles
21 onurrene IIi 2 lesson 21 exenters nd exirles In the first lesson on onurrene, we sw tht the isetors of the interior ngles of tringle onur t the inenter. If you did the exerise in the lst lesson deling
More informationQuick Guide to Lisp Implementation
isp Implementtion Hndout Pge 1 o 10 Quik Guide to isp Implementtion Representtion o si dt strutures isp dt strutures re lled Sepressions. The representtion o n Sepression n e roken into two piees, the
More informationProving the Pythagorean Theorem
Proving the Pythgoren Theorem Proposition 47 of Book I of Eulid s Elements is the most fmous of ll Eulid s propositions. Disovered long efore Eulid, the Pythgoren Theorem is known y every high shool geometry
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More information1 Fractions from an advanced point of view
1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning
More informationChapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
More informationDigital Electronics Basics: Combinational Logic
Digitl Eletronis Bsis: for Bsi Eletronis http://ktse.eie.polyu.edu.hk/eie29 by Prof. Mihel Tse Jnury 25 Digitl versus nlog So fr, our disussion bout eletronis hs been predominntly nlog, whih is onerned
More informationKnow the sum of angles at a point, on a straight line and in a triangle
2.1 ngle sums Know the sum of ngles t point, on stright line n in tringle Key wors ngle egree ngle sum n ngle is mesure of turn. ngles re usully mesure in egrees, or for short. ngles tht meet t point mke
More informationLesson 18.2: Right Triangle Trigonometry
Lesson 8.: Right Tringle Trigonometry lthough Trigonometry is used to solve mny prolems, historilly it ws first pplied to prolems tht involve right tringle. This n e extended to nonright tringles (hpter
More information0.1 Basic Set Theory and Interval Notation
0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is welldefined
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More informationRight Triangle Trigonometry
CONDENSED LESSON 1.1 Right Tringle Trigonometr In this lesson ou will lern out the trigonometri rtios ssoited with right tringle use trigonometri rtios to find unknown side lengths in right tringle use
More informationBayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the
More informationThree squares with sides 3, 4, and 5 units are used to form the right triangle shown. In a right triangle, the sides have special names.
1 The Pythgoren Theorem MAIN IDEA Find length using the Pythgoren Theorem. New Voulry leg hypotenuse Pythgoren Theorem Mth Online glenoe.om Extr Exmples Personl Tutor SelfChek Quiz Three squres with
More informationRight Triangle Trigonometry 8.7
304470_Bello_h08_se7_we 11/8/06 7:08 PM Pge R1 8.7 Right Tringle Trigonometry R1 8.7 Right Tringle Trigonometry T E G T I N G S T R T E D The origins of trigonometry, from the Greek trigonon (ngle) nd
More informationFunctions A B C D E F G H I J K L. Contents:
Funtions Contents: A reltion is n set of points whih onnet two vriles. A funtion, sometimes lled mpping, is reltion in whih no two different ordered pirs hve the sme oordinte or first omponent. Algeri
More informationISTM206: Lecture 3 Class Notes
IST06: Leture 3 Clss otes ikhil Bo nd John Frik 9905 Simple ethod. Outline Liner Progrmming so fr Stndrd Form Equlity Constrints Solutions, Etreme Points, nd Bses The Representtion Theorem Proof of the
More informationState the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127
ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not
More informationEssential Question What are the Law of Sines and the Law of Cosines?
9.7 TEXS ESSENTIL KNOWLEDGE ND SKILLS G.6.D Lw of Sines nd Lw of osines Essentil Question Wht re the Lw of Sines nd the Lw of osines? Disovering the Lw of Sines Work with prtner.. opy nd omplete the tle
More informationThe AVL Tree Rotations Tutorial
The AVL Tree Rottions Tutoril By John Hrgrove Version 1.0.1, Updted Mr222007 Astrt I wrote this doument in n effort to over wht I onsider to e drk re of the AVL Tree onept. When presented with the tsk
More information81. The Pythagorean Theorem and Its Converse. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary
81 The Pythgoren Theorem nd Its Converse Voulry Review 1. Write the squre nd the positive squre root of eh numer. Numer Squre Positive Squre Root 9 81 3 1 4 1 16 1 2 Voulry Builder leg (noun) leg Relted
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More information1.2 The Integers and Rational Numbers
.2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl
More informationD e c i m a l s DECIMALS.
D e i m l s DECIMALS www.mthletis.om.u Deimls DECIMALS A deiml numer is sed on ple vlue. 214.84 hs 2 hundreds, 1 ten, 4 units, 8 tenths nd 4 hundredths. Sometimes different 'levels' of ple vlue re needed
More informationNUMBER SYSTEMS CHAPTER 1. (A) Main Concepts and Results
CHAPTER NUMBER SYSTEMS Min Concepts nd Results Rtionl numbers Irrtionl numbers Locting irrtionl numbers on the number line Rel numbers nd their deciml expnsions Representing rel numbers on the number line
More informationUniform convergence and its consequences
Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,
More information11.1 Conic sections (conics)
. Coni setions onis Coni setions re formed the intersetion of plne with right irulr one. The tpe of the urve depends on the ngle t whih the plne intersets the surfe A irle ws studied in lger in se.. We
More informationTHE PYTHAGOREAN THEOREM
THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most wellknown nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this
More informationPROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions
PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * hllenge questions e The ll will strike the ground 1.0 s fter it is struk. Then v x = 20 m s 1 nd v y = 0 + (9.8 m s 2 )(1.0 s) = 9.8 m s 1 The speed
More informationGRADE 4. Fractions WORKSHEETS
GRADE Frtions WORKSHEETS Types of frtions equivlent frtions This frtion wll shows frtions tht re equivlent. Equivlent frtions re frtions tht re the sme mount. How mny equivlent frtions n you fin? Lel eh
More information4.5 The Converse of the
Pge 1 of. The onverse of the Pythgoren Theorem Gol Use the onverse of Pythgoren Theorem. Use side lengths to lssify tringles. Key Words onverse p. 13 grdener n use the onverse of the Pythgoren Theorem
More informationHomework 3 Solution Chapter 3.
Homework 3 Solution Chpter 3 2 Let Q e the group of rtionl numers under ddition nd let Q e the group of nonzero rtionl numers under multiplition In Q, list the elements in 1 2 In Q, list the elements in
More informationc b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00
Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume
More informationRatio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
More information8.2 Trigonometric Ratios
8.2 Trigonometri Rtios Ojetives: G.SRT.6: Understnd tht y similrity, side rtios in right tringles re properties of the ngles in the tringle, leding to definitions of trigonometri rtios for ute ngles. For
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationAssuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;
B26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndomnumer genertor supplied s stndrd with ll computer systems Stn KellyBootle,
More informationSOLVING EQUATIONS BY FACTORING
316 (560) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationChapter 6 Solving equations
Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationChapter 9: Quadratic Equations
Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.
More informationExponents base exponent power exponentiation
Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More informationRegular Sets and Expressions
Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite
More informationSirindhorn International Institute of Technology Thammasat University at Rangsit
Sirindhorn Interntionl Institute of Technology Thmmst University t Rngsit School of Informtion, Computer nd Communiction Technology COURSE : ECS 204 Bsic Electricl Engineering L INSTRUCTOR : Asst. Prof.
More informationThank you for participating in Teach It First!
Thnk you for prtiipting in Teh It First! This Teh It First Kit ontins Common Core Coh, Mthemtis teher lesson followed y the orresponding student lesson. We re onfident tht using this lesson will help you
More information11. PYTHAGORAS THEOREM
11. PYTHAGORAS THEOREM 111 Along the Nile 2 112 Proofs of Pythgors theorem 3 113 Finding sides nd ngles 5 114 Semiirles 7 115 Surds 8 116 Chlking hndll ourt 9 117 Pythgors prolems 10 118 Designing
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More informationAppendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationOVERVIEW Prove & Use the Laws of Sines & Cosines G.SRT.10HONORS
OVERVIEW Prove & Use te Lws of Sines & osines G.SRT.10HONORS G.SRT.10 (HONORS ONLY) Prove te Lws of Sines nd osines nd use tem to solve prolems. No interprettion needed  prove te Lw of Sines nd te Lw
More informationAddition and subtraction of rational expressions
Lecture 5. Addition nd subtrction of rtionl expressions Two rtionl expressions in generl hve different denomintors, therefore if you wnt to dd or subtrct them you need to equte the denomintors first. The
More informationVariable Dry Run (for Python)
Vrile Dr Run (for Pthon) Age group: Ailities ssumed: Time: Size of group: Focus Vriles Assignment Sequencing Progrmming 7 dult Ver simple progrmming, sic understnding of ssignment nd vriles 2050 minutes
More informationCS 316: Gates and Logic
CS 36: Gtes nd Logi Kvit Bl Fll 27 Computer Siene Cornell University Announements Clss newsgroup reted Posted on wepge Use it for prtner finding First ssignment is to find prtners P nd N Trnsistors PNP
More informationNapoleon and Pythagoras with Geometry Expressions
Npoleon nd Pythgors with eometry xpressions NPOLON N PYTORS WIT OMTRY XPRSSIONS... 1 INTROUTION... xmple 1: Npoleon s Theorem... 3 xmple : n unexpeted tringle from Pythgorslike digrm... 5 xmple 3: Penequilterl
More informationIt may be helpful to review some right triangle trigonometry. Given the right triangle: C = 90º
Ryn Lenet Pge 1 Chemistry 511 Experiment: The Hydrogen Emission Spetrum Introdution When we view white light through diffrtion grting, we n see ll of the omponents of the visible spetr. (ROYGBIV) The diffrtion
More informationFinal Exam covers: Homework 0 9, Activities 1 20 and GSP 1 6 with an emphasis on the material covered after the midterm exam.
MTH 494.594 / FINL EXM REVIEW Finl Exm overs: Homework 0 9, tivities 1 0 nd GSP 1 6 with n emphsis on the mteril overed fter the midterm exm. You my use oth sides of one 3 5 rd of notes on the exm onepts
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationBasic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }
ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All
More informationSolving Linear Equations  Formulas
1. Solving Liner Equtions  Formuls Ojective: Solve liner formuls for given vrile. Solving formuls is much like solving generl liner equtions. The only difference is we will hve severl vriles in the prolem
More informationII. SOLUTIONS TO HOMEWORK PROBLEMS Unit 1 Problem Solutions
II. SOLUTIONS TO HOMEWORK PROLEMS Unit Prolem Solutions 757.25. (). () 23.7 6 757.25 6 47 r5 6 6 2 r5= 6 (4). r2 757.25 = 25.4 6 =. 2 2 5 4 6 23.7 6 7 r 6 r7 (2).72 6 ().52 6 (8).32. () 6 356.89 6 22 r4
More informationHow to Graphically Interpret the Complex Roots of a Quadratic Equation
Universit of Nersk  Linoln DigitlCommons@Universit of Nersk  Linoln MAT Em Epositor Ppers Mth in the Middle Institute Prtnership 7007 How to Grphill Interpret the Comple Roots of Qudrti Eqution Crmen
More informationMath Review for Algebra and Precalculus
Copyrigt Jnury 00 y Stnley Oken. No prt of tis doument my e opied or reprodued in ny form wtsoever witout epress permission of te utor. Mt Review for Alger nd Prelulus Stnley Oken Deprtment of Mtemtis
More informationUnit 6 Solving Oblique Triangles  Classwork
Unit 6 Solving Oblique Tringles  Clsswork A. The Lw of Sines ASA nd AAS In geometry, we lerned to prove congruence of tringles tht is when two tringles re exctly the sme. We used severl rules to prove
More informationWorksheet 24: Optimization
Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More informationAn Insight into Quadratic Equations and Cubic Equations with Real Coefficients
An Insight into Qurti Equtions n Cubi Equtions with Rel Coeffiients Qurti Equtions A qurti eqution is n eqution of the form x + bx + =, where o It n be solve quikly if we n ftorize the expression x + bx
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationSECTION 72 Law of Cosines
516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished
More information2 If a branch is prime, no other factors
Chpter 2 Multiples, nd primes 59 Find the prime of 50 by drwing fctor tree. b Write 50 s product of its prime. 1 Find fctor pir of the given 50 number nd begin the fctor tree (50 = 5 10). 5 10 2 If brnch
More informationOUTLINE SYSTEMONCHIP DESIGN. GETTING STARTED WITH VHDL August 31, 2015 GAJSKI S YCHART (1983) TOPDOWN DESIGN (1)
August 31, 2015 GETTING STARTED WITH VHDL 2 Topdown design VHDL history Min elements of VHDL Entities nd rhitetures Signls nd proesses Dt types Configurtions Simultor sis The testenh onept OUTLINE 3 GAJSKI
More informationGeometry Notes SIMILAR TRIANGLES
Similr Tringles Pge 1 of 6 SIMILAR TRIANGLES Objectives: After completing this section, you shoul be ble to o the following: Clculte the lengths of sies of similr tringles. Solve wor problems involving
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationTRENDS IN THE PERIODIC TABLE
MODULE WORKSHEET0 TRENDS IN THE PERIODIC TABLE Syllus reference.. Complete the following with word or phrse to check your understnding. In the nineteenth century, s more elements ecme known, chemists serched
More informationSimple Nonlinear Graphs
Simple Nonliner Grphs Curriulum Re www.mthletis.om Simple SIMPLE Nonliner NONLINEAR Grphs GRAPHS Liner equtions hve the form = m+ where the power of (n ) is lws. The re lle Liner euse their grphs re stright
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationRational Numbers  Grade 10 [CAPS]
OpenStxCNX module: m848 Rtionl Numers  Grde 0 [CAPS] Free High School Science Texts Project Bsed on Rtionl Numers y Rory Adms Free High School Science Texts Project Mrk Horner Hether Willims This work
More informationChapter. Radicals (Surds) Contents: A Radicals on a number line. B Operations with radicals C Expansions with radicals D Division by radicals
Chter 4 Rdils (Surds) Contents: A Rdils on numer line B Oertions with rdils C Exnsions with rdils D Division y rdils 88 RADICALS (SURDS) (Chter 4) INTRODUCTION In revious yers we used the Theorem of Pythgors
More information4.0 5Minute Review: Rational Functions
mth 130 dy 4: working with limits 1 40 5Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two
More informationChapter15 SAMPLE. Simultaneous equations. Contents: A B C D. Graphical solution Solution by substitution Solution by elimination Problem solving
Chpter15 Simultneous equtions Contents: A B C D Grphil solution Solution y sustitution Solution y elimintion Prolem solving 308 SIMULTANEOUS EQUATIONS (Chpter 15) Opening prolem Ewen wnts to uy pie, ut
More information1 GSW IPv4 Addressing
1 For s long s I ve een working with the Internet protools, people hve een sying tht IPv6 will e repling IPv4 in ouple of yers time. While this remins true, it s worth knowing out IPv4 ddresses. Even when
More information50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS
0 MATHCOUNTS LECTURES (0) RATIOS, RATES, AND PROPORTIONS BASIC KNOWLEDGE () RATIOS: Rtios re use to ompre two or more numers For n two numers n ( 0), the rtio is written s : = / Emple : If 4 stuents in
More informationMatrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA
CHAPTER 1 Mtrix Algebr PREAMBLE Tody, the importnce of mtrix lgebr is of utmost importnce in the field of physics nd engineering in more thn one wy, wheres before 1925, the mtrices were rrely used by the
More informationCourtesy of Mehran Sahami, Computer Science Department, Stanford University. Relations. G = { Zeus, Apollo, Kronos, Poseidon }
Key topis: Reltions * Introdution nd Definitions * Grphs nd Reltions * Properties of Reltions * Equivlene Reltions * Prtil Orderings * Composition of Reltions * Mtrix Representtion * Closures * Topologil
More informationThe remaining two sides of the right triangle are called the legs of the right triangle.
10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right
More informationEnd of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.
End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte Complete the missing numers in the sequenes elow. 8 30 3 28 2 9 25 00 75 25 2 Put irle round ll of the following shpes whih hve 3 shded.
More informationModule 5. Threephase AC Circuits. Version 2 EE IIT, Kharagpur
Module 5 Threehse A iruits Version EE IIT, Khrgur esson 8 Threehse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (7), the study of iruits, onsisting of the liner elements resistne,
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationA.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
More information