Lecture 5. Inner Product

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 5. Inner Product"

Transcription

1 Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right ngle. Then, the point of intersection is the point on the line closest to P. Let us now tke plne L R 3 nd point outside the plne. How cn we find the point u L closest to P? The nswer is the sme s before, go from P so tht you meet the plne in right ngle. Observtion In ech of the bove exmples we needed two things: A1 We hve to be ble to sy wht the length of vector is. B1 Sy wht right ngle is. Both of these things cn be done by using the dot-product (or inner product) in R n. Definition. Let (x 1, x,..., x n ), (y 1, x,..., y n ) R n. Then, the dot-product of these vectors is given by the number: ((x 1, x,..., x n ), (y 1, x,..., y n )) x 1 y 1 + x y x n y n. 7

2 8 LECTURE 5. INNER PRODUCT The norm (or length) of the vector u (x 1, x,..., x n ) R n is the nonnegtive number: u (u, u) x 1 + x x n. Exmples Exmple. () ((1,, 3), (1, 1, 1)) (b) ((1,, 1), (, 1, 3)) Perpendiculr Becuse, x 1 y 1 + x y x n y n x 1 + x x n y1 + y y n or u v we hve tht (for u, v ) 1 u v 1. Hence we cn define: cos( ) u v. In prticulr, u v (u is perpendiculr to v) if nd only if. Questions Exmple. Let L be the line in R given by y x. Thus, L {r(1, ) : r R}. Let P (, 1). Consider the following questions.

3 9 Question 1: Wht is the point on L closest to P? Answer: Becuse u L, we cn write u (r, r). Furthermore, v u ( r, 1 r) is perpendiculr to L. Hence, ((1, ), ( r, 1 r)) r + 4r 4 5r. Hence, r 4 5 nd v ( 4 5, 8 5 ). Question : Wht is the distnce of P from the line? Answer: The length of the vector v u, i.e. v u. First we hve to find out wht v u is. We hve done lmost ll the work: v u (, 1) ( 4 5, 8 5 ) (6 5, 3 5 ). The distnce therefore is: Properties of the Inner Product 1. (positivity)to be ble to define the norm, we used tht (u, u).. (zero length)all non-zero vectors should hve non-zero length. Thus, (u, u) only if u. 3. (linerity)if the vector v R n is fixed, then mp u from R n to R is liner. Tht is, (ru + sw, v) r + s(w, v). 4. (symmetry) For ll u, v R n we hve: (v, u). We will use the properties bove to define n inner product on rbitrry vector spces. Definition Let V be vector spce. An inner product on V is mp (.,.) : V V R stisfying the following properties: 1. (positivity) (u, u), for ll v V.. (zero length) (u, u) only if u.

4 3 LECTURE 5. INNER PRODUCT 3. (linerity)if v V is fixed, then mp u from V to R is liner. 4. (symmetry) (v, u), for ll u, v V. Definition. We sy tht u nd v re perpendiculr if. Definition. If (.,.) is n inner product on the vector spce V, then the norm of vector v V is given by: u (u, u). Properties of the Norm Lemm. The norm stisfies the following properties: 1. u, nd u only if u.. ru r u. Proof. We hve tht ru (ru, rv) (r r r u. Exmples Exmple. Let < b, I [, b], nd V P C([, b]). Define: (f, g) Then, (.,.) is n inner product on V. Proof. Let r, s R, f, g, h V. Then: b f(t)g(t) dt 1. (f, f) b f(t) dt. As f(t), it follows tht b f(t) dt.. If (f, f), then f(t) for ll t, i.e f.

5 31 3. b (rfsg)(t)h(t) dt b rf(t)h(t) + sg(t)h(t) dt r b f(t)h(t) dt + s r(f, h) + s(g, h). b g(t)h(t) dt Hence, liner in the first fctor. 4. As f(t)g(t) g(t)f(t), it follows tht (f, g) (g, f). Notice tht the norm is: b f f(t) dt. Exmple. Let, b 1 in the previous exmple. g(t) t 3t. Then: Tht is, f(t) t nd (f, g) t (t 3t ) dt t 3 3t 4 ) dt Also, the norms re: f t 4 dt 1. 5 g (t 3t ) dt t 6t 3 + 9t 4 dt

6 3 LECTURE 5. INNER PRODUCT Exmple. Let f(t) cos πt nd g(t) sin πt. Then: (f, g) 1 4π cos πt sin πt dt [ (sin πt) ] 1. So, cos πt is perpendiculr to sin πt on the intervl [, 1]. Exmple. Let f(t) χ [,1/) χ [1/,1) nd g(t) χ [,1). Then: (f, g) / (χ [,1/) (t) χ [1/,1) (t))(χ [,1) ) dt χ [,1/) (t) dt One cn lso esily show tht f g 1. Problem χ [1/,1) (t) dt dt dt 1 1/ 1. Problem: Find polynomil f(t) + bt tht is perpendiculr to the polynomil g(t) 1 t. Answer: We re looking for numbers nd b such tht: (f, g) ( + bt)(1 t) dt + bt t bt dt + b b 3 + b 6. Thus, 3 + b. So, we cn tke f(t) 1 3t. Importnt Fcts We stte now two importnt fcts bout the inner product on vector spce V. Recll tht in R we hve: cos(θ) u v.

7 33 where u, v re two non-zero vectors in R nd θ is the ngle between u nd v. In prticulr, becuse 1 cos θ 1, we must hve: u v. We will show now tht this comes from the positivity nd linerity of the inner product. Theorem. Let V be vector spce with inner product (.,.). Then: for ll u, v V. u v Proof. We cn ssume tht u, v becuse otherwise both the LHS nd the RHS will be zero. By the positivity of the inner product we get: Thus, (v, u) (v, u) (v u, v u u u) (positivity) (v, u) (v, u) (v, u) (v, v) (v, u) + 4 (u, u) u u u (linerity) v (v, u) + u u v u. (symmetry) u v or u v. Note Notice tht: (v u, v u u u) only if v u u i.e. v u u. Thus, v nd u hve to be on the sme line through.

8 34 LECTURE 5. INNER PRODUCT A Lemm We cn therefore conclude: Lemm. u v if nd only if u nd v re on the sme line through. Theorem The following sttement is generliztion of Pythgors Theorem. Theorem. Let V be vector spce with inner product (.,.). Then: u + v u v for ll u, v V. Furthermore, u + v u + v if nd only if. Proof. If, then (*) reds: u + v (u + v, u + v) (u, u) + + (v, v) ( ) u + u v + v ( u + v ). u + v u + v On the other hnd, if u + v u + v, we see from (*) tht. Exmple. Let u (1,, 1), v (,, 4). Then: 4 4 nd u , v Also, u + v (1, 4, 3) nd finlly: u + v u + v.

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line. CURVES ANDRÉ NEVES 1. Problems (1) (Ex 1 of 1.3 of Do Crmo) Show tht the tngent line to the curve α(t) (3t, 3t 2, 2t 3 ) mkes constnt ngle with the line z x, y. (2) (Ex 6 of 1.3 of Do Crmo) Let α(t) (e

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Solving BAMO Problems

Solving BAMO Problems Solving BAMO Problems Tom Dvis tomrdvis@erthlink.net http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

INTERCHANGING TWO LIMITS. Zoran Kadelburg and Milosav M. Marjanović

INTERCHANGING TWO LIMITS. Zoran Kadelburg and Milosav M. Marjanović THE TEACHING OF MATHEMATICS 2005, Vol. VIII, 1, pp. 15 29 INTERCHANGING TWO LIMITS Zorn Kdelburg nd Milosv M. Mrjnović This pper is dedicted to the memory of our illustrious professor of nlysis Slobodn

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Vector differentiation. Chapters 6, 7

Vector differentiation. Chapters 6, 7 Chpter 2 Vectors Courtesy NASA/JPL-Cltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higher-dimensionl counterprts

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

c. Values in statements are broken down by fiscal years; many projects are

c. Values in statements are broken down by fiscal years; many projects are Lecture 18: Finncil Mngement (Continued)/Csh Flow CEE 498 Construction Project Mngement L Schedules A. Schedule.of Contrcts Completed See Attchment # 1 ll. 1. Revenues Erned 2. Cost of Revenues 3. Gross

More information

Redistributing the Gains from Trade through Non-linear. Lump-sum Transfers

Redistributing the Gains from Trade through Non-linear. Lump-sum Transfers Redistributing the Gins from Trde through Non-liner Lump-sum Trnsfers Ysukzu Ichino Fculty of Economics, Konn University April 21, 214 Abstrct I exmine lump-sum trnsfer rules to redistribute the gins from

More information

On the Robustness of Most Probable Explanations

On the Robustness of Most Probable Explanations On the Robustness of Most Probble Explntions Hei Chn School of Electricl Engineering nd Computer Science Oregon Stte University Corvllis, OR 97330 chnhe@eecs.oregonstte.edu Adnn Drwiche Computer Science

More information

trademark and symbol guidelines FOR CORPORATE STATIONARY APPLICATIONS reviewed 01.02.2007

trademark and symbol guidelines FOR CORPORATE STATIONARY APPLICATIONS reviewed 01.02.2007 trdemrk nd symbol guidelines trdemrk guidelines The trdemrk Cn be plced in either of the two usul configurtions but horizontl usge is preferble. Wherever possible the trdemrk should be plced on blck bckground.

More information

Ostrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias

Ostrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias Ostrowski Type Inequlities nd Applictions in Numericl Integrtion Edited By: Sever S Drgomir nd Themistocles M Rssis SS Drgomir) School nd Communictions nd Informtics, Victori University of Technology,

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207.

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. MIT OpenCourseWre http://ocw.mit.edu Hus, Hermnn A., nd Jmes R. Melcher. Electromgnetic Fields nd Energy. Englewood Cliffs, NJ: Prentice-Hll, 1989. ISBN: 9780132490207. Plese use the following cittion

More information

Introduction to Integration Part 2: The Definite Integral

Introduction to Integration Part 2: The Definite Integral Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the

More information

Math 215 HW #6 Solutions

Math 215 HW #6 Solutions Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

More information

Small Business Networking

Small Business Networking Why Network is n Essentil Productivity Tool for Any Smll Business TechAdvisory.org SME Reports sponsored by Effective technology is essentil for smll businesses looking to increse their productivity. Computer

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

baby on the way, quit today

baby on the way, quit today for mums-to-be bby on the wy, quit tody WHAT YOU NEED TO KNOW bout smoking nd pregnncy uitting smoking is the best thing you cn do for your bby We know tht it cn be difficult to quit smoking. But we lso

More information

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

More information

Quick Reference Guide: One-time Account Update

Quick Reference Guide: One-time Account Update Quick Reference Guide: One-time Account Updte How to complete The Quick Reference Guide shows wht existing SingPss users need to do when logging in to the enhnced SingPss service for the first time. 1)

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Orbits and Kepler s Laws

Orbits and Kepler s Laws Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how

More information

Quasi-log concavity conjecture and its applications in statistics

Quasi-log concavity conjecture and its applications in statistics Wen et l. Journl of Inequlities nd Applictions 2014, 2014:339 http://www.journlofinequlitiesndpplictions.com/content/2014/1/339 R E S E A R C H Open Access Qusi-log concvity conjecture nd its pplictions

More information

COMBINATORIAL HOPF ALGEBRAS FROM PROS

COMBINATORIAL HOPF ALGEBRAS FROM PROS COMBINATORIAL HOPF ALGEBRAS FROM PROS JEAN-PAUL BULTEL AND SAMUELE GIRAUDO Astrct. We introduce generl construction tht tkes s input so-clled stiff PRO nd tht outputs Hopf lger. Stiff PROs re prticulr

More information

Lifestyles. 1 Warm-up. 2 Conversation. Talk about the pictures with a partner. Who are these people? Where are they? Listen and read.

Lifestyles. 1 Warm-up. 2 Conversation. Talk about the pictures with a partner. Who are these people? Where are they? Listen and read. 6 Lifestyles Focus Grmmr lifestyles Vocbulry common verbs djectives simple present I/you/we/they Yes/No questions 1 Wrm-up Tlk bout the pictures with prtner. Who re these people? Where re they? 2 Converstion

More information

Small Businesses Decisions to Offer Health Insurance to Employees

Small Businesses Decisions to Offer Health Insurance to Employees Smll Businesses Decisions to Offer Helth Insurnce to Employees Ctherine McLughlin nd Adm Swinurn, June 2014 Employer-sponsored helth insurnce (ESI) is the dominnt source of coverge for nonelderly dults

More information

Enterprise Risk Management Software Buyer s Guide

Enterprise Risk Management Software Buyer s Guide Enterprise Risk Mngement Softwre Buyer s Guide 1. Wht is Enterprise Risk Mngement? 2. Gols of n ERM Progrm 3. Why Implement ERM 4. Steps to Implementing Successful ERM Progrm 5. Key Performnce Indictors

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

i=(1,0), j=(0,1) in R 2 i=(1,0,0), j=(0,1,0), k=(0,0,1) in R 3 e 1 =(1,0,..,0), e 2 =(0,1,,0),,e n =(0,0,,1) in R n.

i=(1,0), j=(0,1) in R 2 i=(1,0,0), j=(0,1,0), k=(0,0,1) in R 3 e 1 =(1,0,..,0), e 2 =(0,1,,0),,e n =(0,0,,1) in R n. Length, norm, magnitude of a vector v=(v 1,,v n ) is v = (v 12 +v 22 + +v n2 ) 1/2. Examples v=(1,1,,1) v =n 1/2. Unit vectors u=v/ v corresponds to directions. Standard unit vectors i=(1,0), j=(0,1) in

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Learning to Search Better than Your Teacher

Learning to Search Better than Your Teacher Ki-Wei Chng University of Illinois t Urbn Chmpign, IL Akshy Krishnmurthy Crnegie Mellon University, Pittsburgh, PA Alekh Agrwl Microsoft Reserch, New York, NY Hl Dumé III University of Mrylnd, College

More information

Version 001 Summer Review #03 tubman (IBII20142015) 1

Version 001 Summer Review #03 tubman (IBII20142015) 1 Version 001 Summer Reiew #03 tubmn (IBII20142015) 1 This print-out should he 35 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Concept 20 P03

More information

Lower Bound for Envy-Free and Truthful Makespan Approximation on Related Machines

Lower Bound for Envy-Free and Truthful Makespan Approximation on Related Machines Lower Bound for Envy-Free nd Truthful Mespn Approximtion on Relted Mchines Lis Fleischer Zhenghui Wng July 14, 211 Abstrct We study problems of scheduling jobs on relted mchines so s to minimize the mespn

More information

Virtual Machine. Part II: Program Control. Building a Modern Computer From First Principles. www.nand2tetris.org

Virtual Machine. Part II: Program Control. Building a Modern Computer From First Principles. www.nand2tetris.org Virtul Mchine Prt II: Progrm Control Building Modern Computer From First Principles www.nnd2tetris.org Elements of Computing Systems, Nisn & Schocken, MIT Press, www.nnd2tetris.org, Chpter 8: Virtul Mchine,

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

Numerical Methods of Approximating Definite Integrals

Numerical Methods of Approximating Definite Integrals 6 C H A P T E R Numericl Methods o Approimting Deinite Integrls 6. APPROXIMATING SUMS: L n, R n, T n, AND M n Introduction Not only cn we dierentite ll the bsic unctions we ve encountered, polynomils,

More information

The Impact of Oligopolistic Competition in Networks

The Impact of Oligopolistic Competition in Networks OPERATIONS RESEARCH Vol. 57, No. 6, November December 2009, pp. 1421 1437 issn 0030-364X eissn 1526-5463 09 5706 1421 informs doi 10.1287/opre.1080.0653 2009 INFORMS The Impct of Oligopolistic Competition

More information

Small Business Cloud Services

Small Business Cloud Services Smll Business Cloud Services Summry. We re thick in the midst of historic se-chnge in computing. Like the emergence of personl computers, grphicl user interfces, nd mobile devices, the cloud is lredy profoundly

More information

C-crcs Cognitive - Counselling Research & Conference Services (eissn: 2301-2358)

C-crcs Cognitive - Counselling Research & Conference Services (eissn: 2301-2358) C-crcs Cognitive - Counselling Reserch & Conference Services (eissn: 2301-2358) Volume I Effects of Music Composition Intervention on Elementry School Children b M. Hogenes, B. Vn Oers, R. F. W. Diekstr,

More information

Techniques for Requirements Gathering and Definition. Kristian Persson Principal Product Specialist

Techniques for Requirements Gathering and Definition. Kristian Persson Principal Product Specialist Techniques for Requirements Gthering nd Definition Kristin Persson Principl Product Specilist Requirements Lifecycle Mngement Elicit nd define business/user requirements Vlidte requirements Anlyze requirements

More information

MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

More information

STATUS OF LAND-BASED WIND ENERGY DEVELOPMENT IN GERMANY

STATUS OF LAND-BASED WIND ENERGY DEVELOPMENT IN GERMANY Yer STATUS OF LAND-BASED WIND ENERGY Deutsche WindGurd GmbH - Oldenburger Strße 65-26316 Vrel - Germny +49 (4451)/9515 - info@windgurd.de - www.windgurd.com Annul Added Cpcity [MW] Cumultive Cpcity [MW]

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Section 2.1 Derivtives nd Rtes of Cnge 2010 Kiryl Tsiscnk Derivtives nd Rtes of Cnge Te Tngent Problem EXAMPLE: Grp te prbol y = x 2 nd te tngent line t te point P(1,1). Solution: We ve: DEFINITION: Te

More information

Engineer-to-Engineer Note

Engineer-to-Engineer Note Engineer-to-Engineer Note EE-265 Technicl notes on using Anlog Devices DSPs, processors nd development tools Contct our technicl support t dsp.support@nlog.com nd t dsptools.support@nlog.com Or visit our

More information

GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES SERRET-FRENET VE BISHOP ÇATILARI

GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES SERRET-FRENET VE BISHOP ÇATILARI Sy 9, Arlk 0 GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES Erhn ATA*, Ysemin KEMER, Ali ATASOY Dumlupnr Uniersity, Fculty of Science nd Arts, Deprtment of Mthemtics, KÜTAHYA, et@dpu.edu.tr ABSTRACT

More information

A new generalized Jacobi Galerkin operational matrix of derivatives: two algorithms for solving fourth-order boundary value problems

A new generalized Jacobi Galerkin operational matrix of derivatives: two algorithms for solving fourth-order boundary value problems Abd-Elhmeed et l. Advnces in Difference Equtions (2016) 2016:22 DOI 10.1186/s13662-016-0753-2 R E S E A R C H Open Access A new generlized Jcobi Glerkin opertionl mtrix of derivtives: two lgorithms for

More information

Random Variables and Distribution Functions

Random Variables and Distribution Functions Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using

More information

Active & Retiree Plan: Trustees of the Milwaukee Roofers Health Fund Coverage Period: 06/01/2015-05/31/2016 Summary of Benefits and Coverage:

Active & Retiree Plan: Trustees of the Milwaukee Roofers Health Fund Coverage Period: 06/01/2015-05/31/2016 Summary of Benefits and Coverage: Summry of Benefits nd Coverge: Wht this Pln Covers & Wht it Costs Coverge for: Single & Fmily Pln Type: NPOS This is only summry. If you wnt more detil bout your coverge nd costs, you cn get the complete

More information

Positive Integral Operators With Analytic Kernels

Positive Integral Operators With Analytic Kernels Çnky Ünverte Fen-Edeyt Fkülte, Journl of Art nd Scence Sy : 6 / Arl k 006 Potve ntegrl Opertor Wth Anlytc Kernel Cn Murt D KMEN Atrct n th pper we contruct exmple of potve defnte ntegrl kernel whch re

More information

ITS HISTORY AND APPLICATIONS

ITS HISTORY AND APPLICATIONS NEČAS CENTER FOR MATHEMATICAL MODELING, Volume 1 HISTORY OF MATHEMATICS, Volume 29 PRODUCT INTEGRATION, ITS HISTORY AND APPLICATIONS Antonín Slvík (I+ A(x)dx)=I+ b A(x)dx+ b x2 A(x 2 )A(x 1 )dx 1 dx 2

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

Health insurance marketplace What to expect in 2014

Health insurance marketplace What to expect in 2014 Helth insurnce mrketplce Wht to expect in 2014 33096VAEENBVA 06/13 The bsics of the mrketplce As prt of the Affordble Cre Act (ACA or helth cre reform lw), strting in 2014 ALL Americns must hve minimum

More information

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m . Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion

More information

Learning Workflow Petri Nets

Learning Workflow Petri Nets Lerning Workflow Petri Nets Jvier Esprz, Mrtin Leucker, nd Mximilin Schlund Technische Universität München, Boltzmnnstr. 3, 85748 Grching, Germny {esprz,leucker,schlund}@in.tum.de Abstrct. Workflow mining

More information

THE FUNDAMENTAL GROUP AND COVERING SPACES

THE FUNDAMENTAL GROUP AND COVERING SPACES THE FUNDAMENTAL GROUP AND COVERING SPACES JESPER M. MØLLER Astrct. These notes, from first course in lgeric topology, introduce the fundmentl group nd the fundmentl groupoid of topologicl spce nd use them

More information

Fast Demand Learning for Display Advertising Revenue Management

Fast Demand Learning for Display Advertising Revenue Management Fst Demnd Lerning for Disply Advertising Revenue Mngement Drgos Florin Ciocn Vivek F Fris April 30, 2014 Abstrct The present pper is motivted by the network revenue mngement problems tht occur in online

More information

Orthogonal Projections and Orthonormal Bases

Orthogonal Projections and Orthonormal Bases CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).

More information

Solving the String Statistics Problem in Time O(n log n)

Solving the String Statistics Problem in Time O(n log n) Solving the String Sttistics Prolem in Time O(n log n) Gerth Stølting Brodl 1,,, Rune B. Lyngsø 3, Ann Östlin1,, nd Christin N. S. Pedersen 1,2, 1 BRICS, Deprtment of Computer Science, University of Arhus,

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS? WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they

More information

Unambiguous Recognizable Two-dimensional Languages

Unambiguous Recognizable Two-dimensional Languages Unmbiguous Recognizble Two-dimensionl Lnguges Mrcell Anselmo, Dor Gimmrresi, Mri Mdoni, Antonio Restivo (Univ. of Slerno, Univ. Rom Tor Vergt, Univ. of Ctni, Univ. of Plermo) W2DL, My 26 REC fmily I REC

More information

Decision Rule Extraction from Trained Neural Networks Using Rough Sets

Decision Rule Extraction from Trained Neural Networks Using Rough Sets Decision Rule Extrction from Trined Neurl Networks Using Rough Sets Alin Lzr nd Ishwr K. Sethi Vision nd Neurl Networks Lbortory Deprtment of Computer Science Wyne Stte University Detroit, MI 48 ABSTRACT

More information

Lump-Sum Distributions at Job Change, p. 2

Lump-Sum Distributions at Job Change, p. 2 Jnury 2009 Vol. 30, No. 1 Lump-Sum Distributions t Job Chnge, p. 2 E X E C U T I V E S U M M A R Y Lump-Sum Distributions t Job Chnge GROWING NUMBER OF WORKERS FACED WITH ASSET DECISIONS AT JOB CHANGE:

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Whave reviecd your childhood art and the develop

Whave reviecd your childhood art and the develop l)rwing on the Right Side o the Brin Whve reviecd your childhood rt nd the develop ment of the set of symbols tht formed your childhood lnguge of drwing. 1 his process prlleled the development of other

More information

CONSTRUCTIONOFREALALGEBRAICPLANE NODALCURVESWITHGIVENTOPOLOGY ANDGENERICALLYOPTIMALDEGREEI: theorientablecase

CONSTRUCTIONOFREALALGEBRAICPLANE NODALCURVESWITHGIVENTOPOLOGY ANDGENERICALLYOPTIMALDEGREEI: theorientablecase CONSRUCIONOFREALALGEBRAICPLANE NODALCURVESWIHGIVENOPOLOGY ANDGENERICALLYOPIMALDEGREEI: orientblecse Deprtmen de Mtemtics, Frncco Sns Universidd de Estdstic Cntbri y Computcion emil: E-3907 sns@mtsun.unicn.es

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

DAGmaps: Space Filling Visualization of Directed Acyclic Graphs

DAGmaps: Space Filling Visualization of Directed Acyclic Graphs Journl of Grph Algorithms nd Applictions http://jg.info/ vol. 13, no. 3, pp. 319 347 (2009) DAGmps: Spce Filling Visuliztion of Directed Acyclic Grphs Vssilis Tsirs 1,2 Sofi Trintfilou 1,2 Ionnis G. Tollis

More information

Research Article Competition with Online and Offline Demands considering Logistics Costs Based on the Hotelling Model

Research Article Competition with Online and Offline Demands considering Logistics Costs Based on the Hotelling Model Mthemticl Problems in Engineering Volume 4, Article ID 678, pges http://dx.doi.org/.55/4/678 Reserch Article Competition with Online nd Offline Demnds considering Logistics Costs Bsed on the Hotelling

More information

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information