Skills Needed for Success in Calculus 1


 Corey Carter
 2 years ago
 Views:
Transcription
1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell ou that the eason that students ae not successful in Calculus is not because of the Calculus, it's because thei algeba and tigonomet skills ae weak. You see, Calculus is eall just one additional step beond algeba and tig. Calculus is algeba and tigonomet with limits and limits aen't eall that had once ou figue them out. Thee is often onl one step in the poblem that actuall involves calculus, the est is simplifing using algeba and tigonomet. That's wh it is cucial that ou have a good backgound in those subjects to be successful in calculus. Moe good news about calculus is that we live in the eal wold, we don't deal with imagina numbes (ecept fo section 9.4, which isn't in Calculus ). Also, in Calculus, we don't deal with logaithmic o eponential functions, which seem to give some people geat difficult. The pupose of this document is to help identif some of those aeas whee ou will need good algeba and tigonomet skills so that ou calculus epeience can be successful, pleasant, and ewading. Algeba Skills Needed Factoing You need to be able to facto epessions and equations like it was second natue to ou. Man of the poblems in calculus will involve finding the oots of a function and fo the most pat that means factoing. Don't just concentate on polnomial factoing, eithe; ou need to be able to facto epessions with ational eponents. Hee is an eample of factoing out the geatest common facto, which is involves taking the smallest eponent on all of the common tems. ( ) ( + ) + ( ) ( + ) ( / / ) ( ) ( ) 8( ) ( / / ) ( ) / / / / / / ( ) ( ) ( 0 9 6) Know how to ecognize and facto the special pattens of the diffeence of two squaes,
2 the diffeence of two cubes, and the sum of two cubes. Know that the sum of two squaes usuall doesn't facto in the eal wold. Diffeence of two squaes: ( )( + ) Sum / diffeence of two cubes: ± ( ± )( + ) Completing the Squae Anothe task that ou will be called on to pefom occasionall is completing the squae. You need to be able to do this with both an equation and an epession. Eamples of both ae shown below. Completing the squae b adding to both sides of the equation ( ) ( ) ( ) ( ) ( ) ( ) Completing the squae b adding and subtacting on the same side ( ) f f ( ) ( ) f ( ) f ( ) + 4 Basic Functions and Tansfomations Algeba (and calculus) can be simplified if ou undestand that thee ae basic functions and that man of the othe functions ae tansfomations of those basic building blocks. You should be able to sketch the gaph and know the domain and ange of the basic functions upon sight. You should also be able to ecognize and appl tansfomations to the basic functions. Conside ( ) quadatic function. You should be able to ecognize that the basic shape is the. To that basic shape, ou have eflected it about the ais, shifted it up two units, and shifted it ight thee units ( ).
3 Constant k Linea Quadatic Range: { k} Range: (, + ) Cubic Squae Root Absolute Value Range: (, + ) Domain: [ 0, ) Simplifing Epessions Much of ou time in this couse will be spent simplifing the esults of an epession that ou obtained. Know how to combine simila o like tems and know the popeties of eponents like adding eponents when multipling factos that have the same base o multipling eponents when aising to a powe. Fomula Manipulation You need to be able to wok with fomulas as well as have a good ecall of basic geomet fomulas fo aea and volume fo common figues. Thee ae geometic fomulas on the inside font cove of ou tet as a esouce. Fomula manipulation is much moe than just memoizing fomulas and plugging the values into them, howeve. You will need to solve fo diffeent vaiables and ou will need to combine fomulas togethe to come up with new fomulas. Eample: A ight cicula clinde has a volume of 0 cm and its height is twice its cicumfeence. Find the adius and height of the clinde. The fomula fo the volume of
4 an clinde with paallel bases is V Bh B π, whee B is the aea of the base. Since the base is a cicle, the aea of the base is. The cicumfeence of a cicle is and in this clinde, the height is twice the cicumfeence, so the height is C π h C π 4π ( ) ( )( ) V π 4π 4π. The volume becomes. Since V 0 0 4π we know that the volume is, we get. Solving that fo gives π π o cm. The height is cm, but that h 4π 4π simplifies to be π h 64π 0π cm. π Using You Calculato This ma sound like a given condition b the time ou get to calculus, but ou need to be able to gaph functions and get a pope viewing window. You should be able to use the Calc menu on ou calculato to find oots, minimums, maimums, and intesections. You should also know how to use the table mode on ou calculato. You should also know how to change the mode on ou calculato and leave it in Radian mode fo most of this couse. Tigonomet Skills Needed Appendi A in the tetbook contains a eview of Tigonomet. You eall need to know evething in it with the eception of the poduct to sum and sum to poduct fomulas (fomulas 47). Most of this will need to be memoized so that it is available fo instant ecall. Othe things can be deived b undestanding the elationships between the tigonometic functions and the diffeent quadants. You should be able to sketch the basic tigonometic functions and be able to appl tansfomations to them. Fo eample, conside the function. You should be able to pick out that the basic gaph is the sine function sin ( ) sin + sin, that π π sin ( ) the amplitude is because of, the peiod is fom, sin ( ) sin ( ) + the phase shift is unit to the ight, and the entie gaph has been shift up five units.
5 Sine sin Cosine cos Tangent tan Range: [,] Peiod: π Range: [,] Peiod: π Domain: π ± kπ, + Range: ( ) Peiod: π Memoize the values of the thee tigonometic functions fo the special angles! In this class, ou will be epected to give eact answes in most cases. That means + 7 π witing instead of.44 o and not The good news is that ou will not usuall have to ationalize ou denominatos and witing is oka.
UNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More information2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More information92.131 Calculus 1 Optimization Problems
9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle
More informationCHAT PreCalculus Section 10.7. Polar Coordinates
CHAT PeCalculus Pola Coodinates Familia: Repesenting gaphs of equations as collections of points (, ) on the ectangula coodinate sstem, whee and epesent the diected distances fom the coodinate aes to
More information4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first nonzero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
More information4.1  Trigonometric Functions of Acute Angles
4.1  Tigonometic Functions of cute ngles a is a halfline that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one
More informationTrigonometry in the Cartesian Plane
Tigonomet in the Catesian Plane CHAT Algeba sec. 0. to 0.5 *Tigonomet comes fom the Geek wod meaning measuement of tiangles. It pimail dealt with angles and tiangles as it petained to navigation astonom
More informationChapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationAlgebra and Trig. I. A point is a location or position that has no size or dimension.
Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite
More informationIn the lecture on double integrals over nonrectangular domains we used to demonstrate the basic idea
Double Integals in Pola Coodinates In the lectue on double integals ove nonectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example
More informationQuantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w
1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a
More informationLINES AND TANGENTS IN POLAR COORDINATES
LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Polacoodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and
More informationTransformations in Homogeneous Coordinates
Tansfomations in Homogeneous Coodinates (Com S 4/ Notes) YanBin Jia Aug, 6 Homogeneous Tansfomations A pojective tansfomation of the pojective plane is a mapping L : P P defined as u a b c u au + bv +
More informationest using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.
9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,
More information2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationSpirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
More informationSTUDENT RESPONSE TO ANNUITY FORMULA DERIVATION
Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts
More informationHour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and
Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon
More informationPower and Sample Size Calculations for the 2Sample ZStatistic
Powe and Sample Size Calculations fo the Sample ZStatistic James H. Steige ovembe 4, 004 Topics fo this Module. Reviewing Results fo the Sample Z (a) Powe and Sample Size in Tems of a oncentality Paamete.
More informationGraphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.
Gaphs of Equations CHAT PeCalculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such
More informationSemipartial (Part) and Partial Correlation
Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated
More informationCh. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth
Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate
More informationThe LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.
Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the
More information9.5 Volume of Pyramids
Page of 7 9.5 Volume of Pyamids and Cones Goal Find the volumes of pyamids and cones. Key Wods pyamid p. 49 cone p. 49 volume p. 500 In the puzzle below, you can see that the squae pism can be made using
More informationOn Correlation Coefficient. The correlation coefficient indicates the degree of linear dependence of two random variables.
C.Candan EE3/53METU On Coelation Coefficient The coelation coefficient indicates the degee of linea dependence of two andom vaiables. It is defined as ( )( )} σ σ Popeties: 1. 1. (See appendi fo the poof
More informationGravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationCHAPTER 10 Aggregate Demand I
CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More informationRevision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More informationLesson 7 Gauss s Law and Electric Fields
Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationTrigonometric Identities & Formulas Tutorial Services Mission del Paso Campus
Tigonometic Identities & Fomulas Tutoial Sevices Mission del Paso Campus Recipocal Identities csc csc Ratio o Quotient Identities cos cot cos cos sec sec cos = cos cos = cot cot cot Pthagoean Identities
More informationThank you for participating in Teach It First!
Thank you fo paticipating in Teach It Fist! This Teach It Fist Kit contains a Common Coe Suppot Coach, Foundational Mathematics teache lesson followed by the coesponding student lesson. We ae confident
More informationGauss Law. Physics 231 Lecture 21
Gauss Law Physics 31 Lectue 1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
More informationConverting knowledge Into Practice
Conveting knowledge Into Pactice Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 2 0 1 0 C o p y i g h t s V l a d i m i R i b a k o v 1 Disclaime and Risk Wanings Tading
More informationEconomics 326: Input Demands. Ethan Kaplan
Economics 326: Input Demands Ethan Kaplan Octobe 24, 202 Outline. Tems 2. Input Demands Tems Labo Poductivity: Output pe unit of labo. Y (K; L) L What is the labo poductivity of the US? Output is ouhgly
More informationUnit Vectors. the unit vector rˆ. Thus, in the case at hand, 5.00 rˆ, means 5.00 m/s at 36.0.
Unit Vectos What is pobabl the most common mistake involving unit vectos is simpl leaving thei hats off. While leaving the hat off a unit vecto is a nast communication eo in its own ight, it also leads
More informationMagnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew  electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
More informationThomas J. Osler, Mathematics Department and Tirupathi R. Chandrupatla, Mechanical Engineering. Rowan University Glassboro, NJ
/9/04 SOME UNUSUAL EXPRESSIONS FOR THE INRADIUS OF A TRIANGLE Tomas J. Osle, Matematics Depatment and Tiupati R. Candupatla, Mecanical Engineeing Rowan Univesity Glassboo, NJ 0808 Osle@owan.edu Candupatla@owan.edu
More informationBINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand
BINOMIAL THEOREM Itoductio Whe we epad ( + ) ad ( + ), we get ad ( + ) = ( + )( + ) = + + + = + + ( + ) = ( + )( + ) = ( + )( + + ) = + + + + + = + + + 4 5 espectively Howeve, whe we ty to epad ( + ) ad
More informationCore Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
More informationMechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More informationPhysics 505 Homework No. 5 Solutions S51. 1. Angular momentum uncertainty relations. A system is in the lm eigenstate of L 2, L z.
Physics 55 Homewok No. 5 s S5. Angula momentum uncetainty elations. A system is in the lm eigenstate of L 2, L z. a Show that the expectation values of L ± = L x ± il y, L x, and L y all vanish. ψ lm
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More informationVISCOSITY OF BIODIESEL FUELS
VISCOSITY OF BIODIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use
More informationNURBS Drawing Week 5, Lecture 10
CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationA r. (Can you see that this just gives the formula we had above?)
241 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down  you can pedict (o contol) motion
More informationCLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC
CLASS XI Anneue I CHAPTER.6. Poofs and Simple Applications of sine and cosine fomulae Let ABC be a tiangle. By angle A we mean te angle between te sides AB and AC wic lies between 0 and 80. Te angles B
More informationValuation of Floating Rate Bonds 1
Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned
More informationDefine What Type of Trader Are you?
Define What Type of Tade Ae you? Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 1 Disclaime and Risk Wanings Tading any financial maket involves isk. The content of this
More informationLesson 8 Ampère s Law and Differential Operators
Lesson 8 Ampèe s Law and Diffeential Opeatos Lawence Rees 7 You ma make a single cop of this document fo pesonal use without witten pemission 8 Intoduction Thee ae significant diffeences between the electic
More informationLeft and RightBrain Preferences Profile
Left and RightBain Pefeences Pofile God gave man a total bain, and He expects us to pesent both sides of ou bains back to Him so that He can use them unde the diection of His Holy Spiit as He so desies
More informationContinuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
More informationModel Question Paper Mathematics Class XII
Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat
More informationChapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6
Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe
More informationMultiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
More informationChapter 5 Review  Part I
Math 17 Chate Review Pat I Page 1 Chate Review  Pat I I. Tyes of Polynomials A. Basic Definitions 1. In the tem b m, b is called the coefficient, is called the vaiable, and m is called the eonent on the
More informationThe Binomial Distribution
The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between
More informationFigure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
More informationLecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3
Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each
More informationChapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43
Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.
More informationPY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ighthand end. If H 6.0 m and h 2.0 m, what
More informationSymmetric polynomials and partitions Eugene Mukhin
Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More informationLab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 14 Intoduction: Pehaps one of the most unusual
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More informationWeek 34: Permutations and Combinations
Week 34: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationINITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS
INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS Vesion:.0 Date: June 0 Disclaime This document is solely intended as infomation fo cleaing membes and othes who ae inteested in
More informationIn order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.
Radians mctyadians20091 Atschoolweusuallyleantomeasueanangleindegees. Howeve,theeaeothewaysof measuinganangle. Onethatweaegoingtohavealookatheeismeasuinganglesinunits called adians. In many scientific
More informationVoltage ( = Electric Potential )
V1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
More informationFinancing Terms in the EOQ Model
Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad
More informationA discus thrower spins around in a circle one and a half times, then releases the discus. The discus forms a path tangent to the circle.
Page 1 of 6 11.2 Popeties of Tangents Goal Use popeties of a tangent to a cicle. Key Wods point of tangency p. 589 pependicula p. 108 tangent segment discus thowe spins aound in a cicle one and a half
More informationrotation  Conservation of mechanical energy for rotation  Angular momentum  Conservation of angular momentum
Final Exam Duing class (13:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday
More informationGravitational Mechanics of the MarsPhobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning
Gavitational Mechanics of the MasPhobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More informationCHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS
9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and
More informationAbout the SAT Math Test
Capte 18 About te SAT Mat Test Focus on Mat Tat Mattes Most A goup of select matematics skills and abilities contibutes te most to eadiness fo a college education and caee taining. Tese skills and abilities
More informationIgnorance is not bliss when it comes to knowing credit score
NET GAIN Scoing points fo you financial futue AS SEEN IN USA TODAY SEPTEMBER 28, 2004 Ignoance is not bliss when it comes to knowing cedit scoe By Sanda Block USA TODAY Fom Alabama comes eassuing news
More informationESCAPE VELOCITY EXAMPLES
ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs
More informationAnalytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
More informationAP Physics Electromagnetic Wrap Up
AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle
More informationRadian Measure and Dynamic Trigonometry
cob980_ch0_089.qd 0//09 7:0 Page 89 Debd MHDQNew:MHDQ:MHDQ.: CHAPTER CONNECTIONS Radian Measue and Dnamic Tigonomet CHAPTER OUTLINE. Angle Measue in Radians 90. Ac Length, Velocit, and the Aea of a
More information81 Newton s Law of Universal Gravitation
81 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,
More informationMechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
More informationDisplacement, Velocity And Acceleration
Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,
More informationSummary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
More informationCarterPenrose diagrams and black holes
CatePenose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
More informationPerformance Analysis of an Inverse Notch Filter and Its Application to F 0 Estimation
Cicuits and Systems, 013, 4, 1171 http://dx.doi.og/10.436/cs.013.41017 Published Online Januay 013 (http://www.scip.og/jounal/cs) Pefomance Analysis of an Invese Notch Filte and Its Application to F 0
More informationCRRC1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer
CRRC Method #: Standad Pactice fo Measuing Sola Reflectance of a Flat, Opaque, and Heteogeneous Suface Using a Potable Sola Reflectomete Scope This standad pactice coves a technique fo estimating the
More informationD.3. Angles and Degree Measure. Review of Trigonometric Functions
APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric
More informationCHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL
CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The
More informationReview Graph based Online Store Review Spammer Detection
Review Gaph based Online Stoe Review Spamme Detection Guan Wang, Sihong Xie, Bing Liu, Philip S. Yu Univesity of Illinois at Chicago Chicago, USA gwang26@uic.edu sxie6@uic.edu liub@uic.edu psyu@uic.edu
More informationAn Introduction to Omega
An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei iskewad chaacteistics? The Finance Development Cente 2002 1 Fom
More informationGRADE 5 TEXAS. Multiplication and Division WORKSHEETS
GRADE 5 TEXAS Multiplication and Division WORKSHEETS Multidigit multiplication Multiplying lage numbes is a pocess of multiple steps. Fist, you multiply: 542 6 =,252 2 You have now used up all you ones.
More information