Graphs on Logarithmic and Semilogarithmic Paper


 Jeremy Jenkins
 1 years ago
 Views:
Transcription
1 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl dt nd determine n pproximte eqution describing the dt. In this short chpter we supplement our other grphicl methods b introducing other kinds of grph pper, the logrithmic nd semilogrithmic. We will see tht grphs mde on these kinds of pper enble us to deduce things bout dt tht were not evident when plotted on ordinr rectngulr coordinte pper. In prticulr, it will often enble us to find n eqution to describe tht dt, process known s curve fitting.
2 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper Logrithmic nd Semilogrithmic Pper FIGURE Logrithmic grph pper. Our grphing so fr hs ll been done on ordinr grph pper, on which the lines re equll spced. For some purposes, though, it is better to use logrithmic pper (Fig. ), lso clled loglog pper, or semilogrithmic pper (Fig. ), lso clled semilog pper. Looking t the logrithmic scles of these grphs, we note the following:. The lines re not equll spced. The distnce in inches from, s, to, is equl to the distnce from to, which, in turn, is equl to the distnce from to.. Ech tenfold increse in the scle, s, from to 0 or from 0 to 00, is clled ccle. Ech ccle requires the sme distnce in inches long the scle. 3. The log scles do not include zero. Looking t Fig., notice tht lthough the numbers on the verticl scle re in equl increments (,, 3,..., 0), the spcing on tht scle is proportionl to the logrithms of those numbers. So the numerl is plced t position corresponding to log (which is 0.0, or bout onethird of the distnce long the verticl); is plced t log (bout 0. of the w); nd 0 is t log 0 (which equls, t the top of the scle). When to Use Logrithmic or Semilog Pper We use these specil ppers when:. The rnge of the vribles is too lrge for ordinr pper.. We wnt to grph power function or n exponentil function. Ech of these will plot s stright line on the pproprite pper, s shown in Fig We wnt to find n eqution tht will pproximtel represent set of empiricl dt. Grphing the Power Function A power function is one whose eqution is of the following form: FIGURE pper. Semilogrithmic grph Power Function x n where nd n re nonzero constnts. This eqution is nonliner (except when n ), nd the shpe of its grph depends upon whether n is positive or negtive nd whether n is greter thn or less thn. Figure 3 shows the shpes tht this curve cn hve for vrious rnges of n. If we tke the logrithm of both sides of Eq., we get log log(x n ) log n log x If we now mke the substitution X log x nd Y log, our eqution becomes Y nx log This eqution is liner nd, on rectngulr grph pper, grphs s stright line with slope of n nd intercept of log (Fig. ). However, we do not hve to mke the substitutions shown bove if we use logrithmic pper, where the scles re proportionl to the logrithms of the vribles x nd. We simpl hve to plot the originl eqution on loglog pper, nd it will be stright line which hs slope n nd which hs vlue of when x (see Fig. 3). This will be illustrted in the following exmple.
3 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge 3 Section Logrithmic nd Semilogrithmic Pper 3 On ordinr grph pper On logrithmic or semilog grph pper Eq. = x n where 0 < n < Slope = n 0 x x Power function Eq. = x n where n > 0 x Slope = n x On logrithmic grph pper Eq. = x n where n < 0 Slope = n 0 x x Exponentil function Eq. = (b) nx Exponentil growth Text Eq. = e nt where n > 0 Exponentil dec Text Eq. = e nt where n < 0 0 x 0 t Slope = n log b 0 x Slope = n log e 0 t Slope = n log e On semilog grph pper 0 t 0 t FIGURE 3 The power function nd the exponentil function, grphed on ordinr pper nd loglog or semilog pper. Exmple : Plot the eqution.x. for vlues of x from to 0. Choose grph pper so tht the eqution plots s stright line. Solution: We mke tble of point pirs. Since the grph will be stright line, we need onl two points, with third s check. Here, we will plot four points to show tht ll points do lie on stright line. We choose vlues of x nd for ech compute the vlue of. x Y Slope = n intercept = log X FIGURE Grph of Y nx log on rectngulr grph pper.
4 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper We choose loglog rther thn semilog pper becuse we re grphing power function, which plots s stright line on this pper (see Fig. 3). We choose the number of ccles for ech scle b looking t the rnge of vlues for x nd. Note tht the logrithmic scles do not contin zero, so we cnnot plot the point (0, 0). Thus on the x xis we need one ccle. On the xis we must go from. to.. With two ccles we cn spn rnge of to 00. Thus we need loglog pper, one ccle b two ccles. We mrk the scles, plot the points s shown in Fig., nd get stright line s expected. We note tht the vlue of t x is equl to. nd is the sme s the coefficient of x. in the given eqution (0,.) (,.). Slope = x FIGURE Grph of.x.. We cn get the slope of the stright line b mesuring the rise nd run with scle nd dividing rise b run. Or we cn use the vlues from the grph. But since the spcing on the grph rell tells the logrithm vlue of the position of the pictured points, we must remember to tke the logrithm of those vlues. (Either common or nturl will give the sme result.) Thus slope r is ru e n ln. ln. ln ln. The slope of the line is thus equl to the power of x, s expected from Fig.. We will use these ides lter when we tr to write n eqution to fit set of dt. Common Error Be sure to tke the logs of the vlues on the x nd xes when computing the slope.
5 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Section Logrithmic nd Semilogrithmic Pper Grphing the Exponentil Function Consider the exponentil function given b the following eqution: Exponentil Function (b) nx If we tke the logrithm of both sides, we get log log b nx log (n log b)x log If we replce log with Y, we get the liner eqution Y (n log b) x log If we grph the given eqution on semilog pper with the logrithmic scle long the xis, we get stright line with slope of n log b which cuts the xis t (Fig. 3). Also shown re the specil cses where the bse b is equl to e (....). Here, the independent vrible is shown s t, becuse exponentil growth nd dec re usull functions of time. Exmple : Plot the exponentil function 00e 0.x for vlues of x from 0 to 0. Solution: We mke tble of point pirs. x We choose semilog pper for grphing the exponentil function nd use the liner scle for x. The rnge of is from 3. to 00; thus we need one ccle of the logrithmic scle. The grph is shown in Fig.. Note tht the line obtined hs (0, 00) 0 Slope = 0. 0 (0, 3.) x FIGURE Grph of 00e 0.x.
6 0CH_PHClter_TMSETE_ //00 : PM Pge Grphs on Logrithmic nd Semilogrithmic Pper When computing the slope on semilog pper, we tke the logrithms of the vlues on the log scle, but not on the liner scle. Computing the slope using common logs, we get slope n log e log 3. log n log e s we got using nturl logs. The process of fitting n pproximte eqution to fit set of dt points is clled curve fitting. In sttistics it is referred to s regression. Here we will do onl some ver simple cses. intercept of 00. Also, the slope is equl to n log e or, if we use nturl logs, is equl to n. slope n ln 3. ln This is the coefficient of x in our given eqution. Empiricl Functions We choose logrithmic or semilog pper to plot set of empiricl dt when:. The rnge of vlues is too lrge for ordinr pper.. We suspect tht the reltion between our vribles m be power function or n exponentil function, nd we wnt to find tht function. We show the second cse b mens of n exmple. Exmple 3: A test of certin electronic device shows it to hve n output current i versus input voltge s shown in the following tble: (V) 3 i (A)..... Plot the given empiricl dt, nd tr to find n pproximte formul for in terms of x. Solution: We first mke grph on liner grph pper (Fig. ) nd get curve tht is concve upwrd. Compring its shpe with the curves in Fig. 3, we suspect tht the eqution of the curve (if we cn find one t ll) m be either power function or n exponentil function i (A) v (V) FIGURE Plot of tble of points on liner grph pper. Next, we mke plot on semilog pper (Fig. ) nd do not get stright line. However, plot on loglog pper (Fig. ) is liner. We thus ssume tht our eqution hs the form i n or ln i n ln ln In Exmple we showed how to compute the slope of the line to get the exponent n, nd we lso sw tht the coefficient ws the vlue of the function t x. Now
7 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Section Logrithmic nd Semilogrithmic Pper In Fig. below our dt plotted s nice stright line on logrithmic pper. But with rel dt we re often unble to drw stright line tht psses through ever point. The method of lest squres, not shown here, is often used to drw line tht is considered the best fit for scttering of dt points. i (A) FIGURE 3 v (V) Plot of tble of points on semilog pper. i (A) we show different method for finding nd n which cn be used even if we do not hve the vlue t x. We choose two points on the curve, s, (,.) nd (,.), nd substitute ech into getting nd ln i n ln ln ln. n ln ln 0 3 v (V) FIGURE Plot of tble of points on loglog pper. ln. n ln ln A simultneous solution, not shown, for n nd ields Our eqution is then n. nd. Here, gin, we could hve used common logrithms nd gotten the sme result. i.. Finll, we test this formul b computing vlues of i nd compring them with the originl dt, s shown in the following tble: 3 Originl i..... Clculted i..... We get vlues ver close to the originl. The fitting of power function to set of dt is clled power regression in sttistics. You m be ble to do this on our grphics clcultor. See problem of Exercise.
8 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper Exercise Grphs on Logrithmic nd Semilogrithmic Pper Grphing the Power Function Grph ech power function on loglog pper for x to 0.. x 3. 3x 3. x. x 3/. x. 3 x. /x. 3/x. x /3 Grph ech set of dt on loglog pper, determine the coefficients grphicll, nd write n pproximte eqution to fit the given dt. 0. x x Grphing the Exponentil Function Grph ech exponentil function on semilog pper.. 3 x 3. x. e x. e x. x/. 3 x/. 3e x/3. e x 0. e x/ You m be ble to do this on our grphics clcultor. See Problem. Grphing Empiricl Functions Grph ech set of dt on loglog or semilog pper, determine the coefficients grphicll, nd write n pproximte eqution to fit the given dt.. x x Current in tungsten lmp, i, for vrious voltges, : (V) i (ma) Difference in temperture, T, between cooling bod nd its surroundings t vrious times, t: t (s) T ( F)
9 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Section Logrithmic nd Semilogrithmic Pper. Pressure, p, of lb of sturted stem t vrious volumes, : (ft 3 ) p (lb/in. ) Mximum height reched b long pendulum t seconds fter being set in motion: t (s) 0 3 (in.) Grphics Clcultor. Some grphics clcultors cn fit stright line, power function, n exponentil function, or logrithmic function to given set of dt points, nd cn give the two constnts in the function. Such fitting goes b the sttistics nme of regression. The TI, for exmple, cn do liner, logrithmic, exponentil, nd power regression. You must enter the dt points nd then choose the tpe of function tht ou think will fit. The clcultor will give the two constnts. It will lso give the correltion coefficient, which is mesure of goodness of fit. If this coefficient is close to or, the fit is good; if it is close to 0, the fit is bd. Stud our clcultor mnul to lern how to do regression. Then use it for n of the problems through in this exercise set.
Linear Functions. (1) Let F denote the Fahrenheit temperature and C the Celsius temperature of an object. F and C are related by
Liner Functions A. Definition nd Exmples A function f is liner if it cn be expressed in the form f ( x) = mx + b where m nd b re constnts nd x is n rbitrry member of the domin of f. Often the reltionship
More informationTHE ELLIPSE AND HYPERBOLA
600 (110) Chpter 11 Nonliner Sstems nd the Conic Sections 61. 1 6. 1 nd E so tht the grph of this eqution is circle. Wht does the grph of look like? B nd D cn be n rel numbers but A must equl C nd AE
More informationPlotting and Graphing
Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured
More informationChapter 5. Exponential and Logarithmic Functions. 5.1 Exponential Functions
Chpter 5. Exponentil nd Logrithmic Functions 5. Exponentil Functions The exponentil function with bse is defined by f (x) = x where > 0 nd. Its domin is the set of ll rel numbers, nd its rnge is the set
More informationExponential and Logarithmic Functions
Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationa, a 1, and x is any real
MA 131 Lecture Notes Eponentil Functions, Inverse Functions, nd Logrithmic Functions Eponentil Functions We sy tht unction is n lgebric unction i it is creted by combintion o lgebric processes such s ddition,
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationPolar Coordinates and Polar Graphs. Polar Coordinates
_1.qxd 11// :5 PM Pge 79 SECTION 1. Polr Coordintes nd Polr Grphs 79 O Polr coordintes Figure 1. Section 1. r = directed distnce θ = directed ngle P = (r, θ) Polr xis Polr Coordintes nd Polr Grphs Understnd
More informationLecture Notes on Differentiation
Lecture Notes on Differentition A tngent line to function t point is the line tht best pproximtes the function t tht point better thn ny other line. The slope of the function t given point is the slope
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationQuadratic functions. Chapter12 A B. Graphs of quadratic. functions
Chpter12 Qudrtic functions Sllus reference: 2.7, 4.3, 4.6 Contents: A B C D E F G H Qudrtic functions Grphs of qudrtic functions Aes intercepts Ais of smmetr Verte Finding qudrtic from its grph Where functions
More informationCCGPS UNIT 3 Semester 1 COORDINATE ALGEBRA Page 1 of 30. Linear and Exponential Functions
CCGPS UNIT 3 Semester COORDINATE ALGEBRA Pge of 30 Liner nd Exponentil Functions Nme: Dte: Represent nd solve equtions nd inequlities grphiclly MCC92.A.REI.0 Understnd tht the grph of n eqution in two
More informationQuadratic Functions. Analyze and describe the characteristics of quadratic functions
Section.3  Properties of rphs of Qudrtic Functions Specific Curriculum Outcomes covered C3 Anlyze nd describe the chrcteristics of qudrtic functions C3 Solve problems involving qudrtic equtions F Anlyze
More informationMA Lesson 21 Notes. **It is important to understand that a logarithm is an exponent!**
MA 15910 Lesson 1 Notes ( x5) How would person solve n eqution with vrible in n exponent, such s 9? (We cnnot rewrite this eqution esily with the sme bse.) A nottion ws developed so tht equtions such
More informationSECTION 114 Translation of Axes
11 Trnsltion of Aes 811 Rdiotelescope For the receiving ntenn shown in the figure, the common focus F is locted 10 feet bove the verte of the prbol, nd focus F (for the hperbol) is 0 feet bove the verte.
More informationSAT Subject Test Practice Test I: Math Level II Time 60 minutes, 50 Questions
SAT Subject Test Prctice Test I: Mth Level II Time 60 minutes, 50 Questions All questions in the Mth Level 1 nd Mth Level 2 Tests re multiplechoice questions in which you re sked to choose the BEST response
More informationA sequence is a list of numbers in a specific order. A series is a sum of the terms of a sequence.
Core Module Revision Sheet The C exm is hour 30 minutes long nd is in two sections. Section A (36 mrks) 8 0 short questions worth no more thn 5 mrks ech. Section B (36 mrks) 3 questions worth mrks ech.
More informationSystems, Matrices, and Applications Systems of Linear Equations
Mt Dr. Firoz : System of equtions nd mtrices Systems, Mtrices, nd pplictions Systems of Liner Equtions System of eqution (Hs solution) Consistent Inconsistent (hs no solution) Dependent For Emple: Consider
More informationThe Quadratic Formula. 16 x 2 7.5x. 16 x 2 7.5x Complete the square. 16 x x x 3.75
LESSON 7.4 EXAMPLE A Solution The Qudrtic Formul Although you cn lwys use grph of qudrtic function to pproximte the xintercepts, you re often not ble to find exct solutions. This lesson will develop procedure
More informationG THE DEFINITE INTEGRAL
Theory Supplement Section G 35 G THE DEFINITE INTEGRAL Recll tht if f is continuous on [, b] the definite integrl is given by limit of left or right sums: n f(x) dx = lim f(x i ) x = lim n i= n i= f(x
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationThe next type of numbers we generally come to understand are fractions, but we ll put these on hold for now.
The Rel Number Line nd Types of Rel Numbers Most people s first understnding of numbers reltes to wht we mthtype people cll counting numbers or more formlly nturl numbers. These re the numbers we use
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Abbsi June 0, 014 1 The problem To find numericl vlue for the integrl of rel vlued function of rel vrible over specific rnge over the rel line. This mens to evlute
More informationPHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS
PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,
More informationChapter 2 Section 6 Lesson Squares, Square Roots, and Absolute Value
Chpter Section 6 Lesson Squres, Squre Roots, nd Absolute Vlue Introduction This lesson explins squred numbers, the squre root, nd the ide of bsolute vlue. Squred Numbers To squre number mens to multiply
More informationApplication: Arc Length
Appliction: Arc Length 7 The Generl Problem The Riemnn integrl hs wide vriety of pplictions In this section, using the subdivide nd conquer strtegy we will show how it cn be used to determine the lengths
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationSystems of Equations
III3 Systems of Equtions Multiple Equtions with Multiple Unknowns: The generl rule tht you need to be wre of is tht to solve for two unknowns, you need two independent equtions contining those two unknowns
More informationLecture for Week 14 (Secs ) Definite Integrals and the Fundamental Theorem
Lecture for Week 14 (Secs. 6.3 4) Definite Integrls nd the Fundmentl Theorem 1 Integrl clculus the second hlf of the subject, fter differentil clculus hs two spects: 1. Undoing differentition. This is
More informationRatio, Proportion, and Variation
7.3 Rtio, Proportion, nd Vrition Rtio One of the most frequently used mthemticl concepts in everydy life is rtio. A bsebll plyer s btting verge is ctully rtio. The slope, or pitch, of roof on building
More informationName: Lab Partner: Section:
Chpter 4 Newton s 2 nd Lw Nme: Lb Prtner: Section: 4.1 Purpose In this experiment, Newton s 2 nd lw will be investigted. 4.2 Introduction How does n object chnge its motion when force is pplied? A force
More informationThe Quadratic Formula and the Discriminant
99 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt
More informationIf f is a function defined for a x b, we divide the interval [a, b] into n subintervals of equal width x = b a n
4.2 The Definite Integrl Recll: A limit of the form rises when we compute n re nd when we try to find the distnce trveled by n object. This sme type of limit occurs in wide vriety of situtions, even when
More informationSection 6.2 The definite integral
Section 6.2 The definite integrl (3/2/8) Overview: We sw in Section 6. how the chnge of continuous function over n intervl cn be clculted from its rte of chnge if the rte of chnge is step function. We
More informationChapter 6 Solving equations
Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign
More informationBasically, logarithmic transformations ask, a number, to what power equals another number?
Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In
More information14.2. The Mean Value and the RootMeanSquare Value. Introduction. Prerequisites. Learning Outcomes
he Men Vlue nd the RootMenSqure Vlue 4. Introduction Currents nd voltges often vry with time nd engineers my wish to know the men vlue of such current or voltge over some prticulr time intervl. he men
More informationExponential Functions
WS07.0 Eponentil Functions Aim: To study the properties of eponentil functions nd lern the fetures of their grphs Section A Activity : The Eponentil Function, f ( ).. For f ( ) : The bse of f ( ) is (ii)
More information1 What You Need To Know About Basic Maths
1 Wht You Need To Know About Bsic Mths Before we cn strt on ny of the more interesting stuff, I thought I d mke sure tht everyone hs the bsic mthemticl bckground necessry to red nd understnd everything
More information4x 22x 3. Chapter 2: Variable Expressions
Chpter : Vrible Expressions Expressions (contin no sign) : An expressionis one or numbers or vribles hving some mthemticl opertions done on them. Numericl Expressions: 3 + 5 3(4) / 51 4 Expressions cn
More informationLecture 18 : Wednesday May 14th
Lecture 8 : Wednesdy My 4th jcques@ucsd.edu 8. Are nd rclength in polr coordintes The rc length of the curve r = f(θ) for α θ β is given by the formul β α f (θ) + f(θ) dθ. We lso stted the formul β x
More informationMathematics Higher Level
Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:
More informationNet Change and Displacement
mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the
More informationThe Traditional Definition of the Integral
The Trditionl Definition of the Integrl y 2 y = f ( ) 1 2 3 4 5 5 2 f ( ) d = lim n n f( i) i=1 where = 5 2 n nd i lies somewhere between 2+(i 1) nd 2 + i 1 Wht Is n Integrl? An integrl is process ( blck
More informationUnit #9 : Definite Integral Properties, Fundamental Theorem of Calculus
Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
More informationCALC 1501 LECTURE NOTES
v: 232 CALC 5 LECTURE NOTES RASUL SHAFIKOV 3. Improper Intergrls. So fr we delt with integrtion of continuous functions on bounded intervls. In this section we will discuss integrtion of continuous functions
More informationHelicopter Theme and Variations
Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the
More informationINTEGRATION TECHNIQUES. Math 101. Contents
INTEGRATION TECHNIQUES Mth 101 Contents 1. Substitution (.3,.8 1. Integrtion by prts ( 7..1. x n sin x, x n cos x, x n e x.. e x sin x, e x cos x.3. x n (ln x m 3. Rtionl functions ( 7.3 [dvnced] 3.1.
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra
SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting
More informationMoments of Inertia (Rotational Inertia)
Moments of nerti (ottionl nerti) his lb is cse sensitive. Plese do NO mix up nd r, nd M nd m. ntroduction ottionl motions involve more thn liner motions. nerti gives us n ide of how hrd or esy the object
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More informationACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2017
ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 206/207 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil
More informationChapter 3 Notes Exponential and Logarithmic Functions
Chpter Notes Eponentil nd Logrithmic Functions Eponentil functions involve constnt bse nd vrible eponent. The inverse of n eponentil function is rithmic function. Eponentil nd rithmic functions re widely
More informationUpon starting the program, the following screen appears (make sure the macro security is set to medium to allow macros to be run).
CCCP user mnul Strt of project Upon strting the progrm, the following screen ppers (mke sure the mcro security is set to medium to llow mcros to be run). (1.1) Figure 1: strting screen In figure 1 some
More informationExponential functions are those with variable powers, e.g. y = a". Their graphs take two forms: When0
Exponentil functions re those with vrible powers, e.g. y = ". Their grphs tke two forms: When d ) 1, the grph: is lwys incresing is lwys positive never cuts the x xis psses through (0, 1) shows exponentil
More informationSection 4.1. Figure Region beneath the graph of y = f(x) and over the interval [a, b]
Difference Equtions to Differentil Equtions Section. The Definite Integrl As we discussed in Section., nd mentioned gin t the beginning of Section 3., there re two bsic problems in clculus. In Chpter 3
More information0.1. Definite Integrals and Area. Recall that we write a definite integral of f(x) from a to b as b
CHAPTER 5 We use derivtives to find the rte of chnge of function. For exmple, if you hve function telling you the position of rocketship, you could tke the derivtive to find its velocity. Frequently, however,
More informationwww.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
More informationMathematics for Chemists 2 Lecture 1: Integral calculus I. Indefinite and definite integrals, basic calculation of integrals
Mthemtics for Chemists 2 Lecture 1: Integrl clculus I Indefinite nd definite integrls, sic clcultion of integrls Johnnes Kepler University Summer semester 2012 Lecturer: Dvid Sevill Integrl clculus I 1/19
More informationExample A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationBasic Analysis of Autarky and Free Trade Models
Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently
More informationCALCULUS I (in a nutshell)
We ve spent this semester lerning two min concepts: 1. DERIVATION 2. INTEGRATION CALCULUS I (in nutshell) DERIVATION: The derivtive of function f(x) with respect to the vrible x is FUNCTION denoted f (x)
More information11.2 Logarithmic Functions
.2 Logrithmic Functions In the lst section we delt with the eponentil function. One thing tht we notice from tht discussion is tht ll eponentil functions pss the horizontl line test. Tht mens tht the eponentil
More informationThe Velocity Factor of an Insulated TwoWire Transmission Line
The Velocity Fctor of n Insulted TwoWire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationWEEK #9 : Definite Integral Properties; Fundamental Theorem of Calculus
WEEK #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationOn the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding
Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl
More informationSection 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables
The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More informationLet us recall some facts you have learnt in previous grades under the topic Area.
6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us
More informationREVIEW OF SIMPLE UNIVARIATE CALCULUS
REVIEW OF SIMPLE UNIVARIATE CALCULUS 1. APPROXIMATING CURVES WITH LINES 1.1. The eqution for line. A liner function of rel vrible x is given by y f(x) x + b, nd b re constnts (1) The grph of liner eqution
More informationLesson 10. Parametric Curves
Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find
More informationSun Life Financial Canadian Open Mathematics Challenge
The Cndin Mthemticl Society in collbortion with The CENTRE for EDUCATION in MATHEMATICS nd COMPUTING presents the Sun Life Finncil Cndin Open Mthemtics Chllenge Wednesdy, November 4, 010 Solutions 010
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationChapter 3. Quadrature Formulas
Chpter 3 Qudrture Formuls There re severl different methods for obtining the re under n unknown curve f(x) bsed on just vlues of tht function t given points. During our investigtions in this clss we will
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More informationhp calculators HP 10s Solving Problems Involving Fractions Basic Concepts Fractions on the HP 10s Practice Working Problems Involving Fractions
Bsic Concepts Frctions on the HP 10s Prctice Working Problems Involving Frctions Bsic concepts Those numbers tht cn be written s one integer over nother, i.e., (b cn t be zero) re clled rtionl numbers.
More informationTaylor Polynomials with Error Term
Tylor Polynomils with Error Term The functions e x, sinx, / x, etc re nice functions but they re not s nice s polynomils. Specificlly polynomils cn be evluted completely bsed on multipliction, subtrction
More information10.5 Graphing Quadratic Functions
0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions
More information1 Numerical Integration
cs4: introduction to numericl nlysis /6/0 Lecture 8: Numericl Integrtion Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Nthnel Fillmore Numericl Integrtion Recll tht lst lecture, we discussed numericl
More informationTeaching Guide Zero and Negative Exponents
Teching Guide Zero nd Negtive Eponents Prepring for Your Clss Common Vocbulr Zero eponent, negtive eponent Instruction Tips In the more complicted eponentil epressions, it m be helpful to students if ou
More informationPythagoras theorem and trigonometry (2)
HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in rightngled tringles. These
More informationConic Sections MODULE  II Coordinate Geometry CONIC SECTIONS
Conic Sections MODULE  II Codinte 1 CONIC SECTIONS While cutting crrot ou might hve noticed different shpes shown b the edges of the cut. Anlticll ou m cut it in three different ws, nmel (i) (ii) (iii)
More informationReview Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
More informationUnit 4 The Definite Integral
Unit 4 The Definite Integrl We know wht n indefinite integrl is: the generl ntiderivtive of the integrnd function. There is relted (lthough in some wys vstly different) concept, the definite integrl, which
More informationSo there are two points of intersection, one being x = 0, y = 0 2 = 0 and the other being x = 2, y = 2 2 = 4. y = x 2 (2,4)
Ares The motivtion for our definition of integrl ws the problem of finding the re between some curve nd the is for running between two specified vlues. We pproimted the region b union of thin rectngles
More informationModule Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials
MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic
More informationQuick Review of the Definition of the Definite Integral
Quick Review of the Definition of the Definite Integrl Philippe B. Lvl KSU Tody Philippe B. Lvl (KSU) Definite Integrl Tody 1 / 25 Introduction This is quick review of the mteril relted to the definition
More informationSect 8.3 Triangles and Hexagons
13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed twodimensionl geometric figure consisting of t lest three line segments for its
More informationNumerical approximation of definite integrals. Calculus and Differential Equations I. Overestimates and underestimates
Numericl pproximtion of definite integrls You should lredy be fmilir with the left nd righthnd Riemnn sums used in the definition of the definite integrl: MATH 50 A I f (x) dx = lim f ( ) x = lim n n
More informationProblem 1: The Earth s Horizontal Magnetic Field
Eperimentl competition Problem 8 April 009 Pge of 4 Problem : The Erth s Horizontl Mgnetic Field This is to determine the horizontl component of the Erth s mgnetic field H using smllmplitude oscilltion
More informationMath 22B Solutions Homework 1 Spring 2008
Mth 22B Solutions Homework 1 Spring 2008 Section 1.1 22. A sphericl rindrop evportes t rte proportionl to its surfce re. Write differentil eqution for the volume of the rindrop s function of time. Solution
More information