Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
|
|
- Delphia Charles
- 4 years ago
- Views:
Transcription
1 Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming that the positive chage is distibuted unifomly within the nucleus, what ae the magnitude and diection of the electic field at the suface of the nucleus due to the positive chage. Outside a unifomly chaged sphee, the field looks like that of a point chage at the cente of the sphee. E C ( m) N / C!.8 In Fig. -31, paticle 1 of chage 1 5 and paticle of chage + ae fixed to an x-axis (a) As a multiple of distance L, at what coodinate on the axis is the net electic field of the paticles zeo? (a) Sketch the net electic field lines. E1 E 1 (x,)
2 E 1 E 1 x E E 1 5 x (x L) 5 x (x L) 5 x (x L) x 1 (5 + 1)L 3.11 Figue -34 shows two chaged paticles on an x axis: C at x 3.m and C at x +3.m. What ae the (a) magnitude and (b) diection (elative to the positive diection of the x axis) of the net electic field poduced at point P at y +4.m x (., 4.) (-3.,.) (+3.,.) We can do this poblem most easily by using the full vecto fom fo the electic field due to a point chage. ( 3.) i ˆ + (4. ) ˆ j m ˆ + + 3ˆ i + 4 ˆ j 5 ( (3))ˆ i + (4 ) ˆ j ˆ (3) + 4 5m 3ˆ i + 4 ˆ j 5
3 E E + + E C 4 π ε (5m) 3 ˆ 5 i + 4 ˆ j C 4 π ε (5m) 6 i ˆ + ˆ j N / C ˆ i C 4 π ε (5m) 3 ˆ i + 4 ˆ j 5.13 In Fig. -36, thee paticles ae fixed in place and have chages 1 +e and 3 +e. Distance a 6.µm. What ae the (a)magnitude and (b) diection of the net electic field at point P due to the paticles. 1 E E 3 E 1 3 The fields due to chages 1 and cancel exactly. This leaves us only to calculate the field due to 3. 1 a + a a E N / C at 45 a /.19. Find the magnitude and diection of the electic field at point P due to the electic dipole. You may assume that >>d
4 (,d/ ) + (, ) - (,-d/ ) We begin by witing the exact field. ( ) i ˆ + ( d ) ˆ j ( ) i ˆ + ( ( d )) ˆ j + ( d ) + ( d ) E E + + E ˆ + ˆ ˆ + + i ˆ d ˆ j + ( d ) ˆ i ˆ + d ˆ j + ( d ) We can substitute in. In the last step, since d/ is vey small we ignoe this tem. emembe that the diection of p is in the +j diection in this poblem (fom - to + chage).
5 E E + + E ˆ + ˆ ( + ( d ) ) i ˆ d ˆ j + ( d ) ( + ( d ) ) i ˆ + d ˆ j + ( d ) (- indicates downwad) d ( + ( d ˆ j ) ) 3/ p 3 (1 + ( d ˆ j ) ) 3/ p 3.4 In Fig -44, a thin glass od foms a semicicle of adius 5.cm. Chage is unifomly distibuted along the od, with pc in the uppe half and 4.5 pc in the l lowe half. What ae the (a) magnitude and (b) diection elative to the positive diection of the x axis of the electic field E a P, the cente of the cicle. Because of the symmety in the poblem, we can see that the net field will point downwad. We also can see that the contibution fom the bottom uate cicle is eual to the contibution fom the top uate cicle. Because of this, we only need to compute the downwad component due to the top uate cicle and multiply by. d d E We begin by defining a chage pe unit length π /
6 We now find the component of inteest and integate... d de cosθ de d d dθ The last facto of is because thee ae two uate ings. π / π / d dθ cosθ π / π 8ε tot 4ε cosθ dθ.5 In Fig -45, two cuved plastic ods, one of chage + and one of chage -, fo a cicle of adius in the XY plane.. Te x axis passes though thei connection points and the chage is distibuted unifomly on both ods. What ae the magnitude and diection of the electic field E poduces at P, the cente of the cicle. Because of the symmety in the poblem, we can see that the net field will point downwad. We also can see that the contibution fom the bottom half cicle is eual to the contibution fom the top half cicle. Because of this, we only need to compute the downwad component due to the top half cicle and multiply by. d θ θ de We begin by defining a chage pe unit length
7 π We now find the component of inteest and integate... The last facto of is because thee ae two half ings. d de cosθ de d d dθ π / π / π / π / d dθ cosθ πε tot π / π / πε cosθ dθ.6
8 i de dez i z { Because of the symmety, we only need to compute the field along the axis (called z). de z de cosθ de d + z d 1 dϕ cosθ z + z E z E z π π π de z 1 dϕ ( + z ) 1 z dϕ ( + z ) 3/ 1 z ε ( + z ) 3/ z + z Now that we know the field, we take the deivative with espect to z and set it eual to zeo to find the location of the maximum field. m E z 1z f ( + z ) 3/ de z dz m 1( - z ) f ( + z ) 5/ z 1
9 -3. In Fig. -51, positive chage 7.81pC is spead unifomly along a thin nonconducting od of length L 14.5cm. What ae the (a) magnitude and (b) diection (elative to the x axis of the electic field poduced at a distance 6.cm fom the od along its pependicula bisecto. (,d) -L / L / Fist we wite d fo a little length of chage We then wite the,, ˆ fo the chage d. d dx ( x) + (d ) ( x) i ˆ + (d ) ˆ j ˆ x i ˆ + d ˆ j x + d We can then compute the x and y components of the Electic Field. You may need dx x (a + x ) 3/ a a + x
10 E E x d ˆ d dx d (x + d ) 3/ dx x i ˆ + d ˆ j (x + d ) x + d d L / d + L / 4 L / d + L / 4 d L d + L / 4 πε d L 4d + L dx d (x + d ) 3/ d x d + x L / L / Now we can compute with numbes C C / m.145m d.6m C / m πε.6m.145m 4(.6m) + (.145m) 1.43N / C.33 In Fig -5, a semi infinite non conducting od (that is, infinite in one diection only), has unifom linea chage density. Show that the electic field Ep at point P makes an angle of 45 degees with the od and this esult is independent of the the distance. x d L d E (,- )
11 ( x) + ( ) ( x) i ˆ + ( ) ˆ j ˆ x i ˆ ˆ j x + We can then compute the x and y components of the Electic Field. You may need dx (a + x ) 3/ x a a + x We can compute each integal and then take the limit as L goes to infinity. We find that in this limit, the components ae identical fo all. This means that the atio of these components is 1 and the angle is 45 degees fo all. E E x d ˆ dx (x + ) lim :L E x 1 dx (x + ) 1 + L 1 dx (x + ) 3/ L + L L + L lim L x i ˆ ˆ j x + x x + x dx (x + ) 3/ dx (x + ) 3/ 1 + x x + x L L.34 This poblem is woked out in detail in section 3-7 of the book. We also woked this poblem in detail in class. Please eview the deivation thee.
12 σ C / m.5 1 m z 1 1 m E z σ ε (1 z z + ) N / C.39 An electon is eleased fom est in a unifom electic field of magnitude. # 1 4 N/C. Calculate the acceleation of the electon (ignoe gavitation). F ma E 1.6 # 1 a m E -19 C 9.1 # 1-31 $. # 14 N/C 3.5 # 1 kg 15 m/s.47 In Millikan s expeiment, an oil dop of adius 1.64 µm and density ρ.851g / cm 3 is suspended in chambe C (Fig. -14) when a downwad electic field E N / C is applied. Find the chage on the dop in tems of e F E If the doplet is suspended, we know that the net foce is zeo. This means that the weight is balanced by an upwad electic foce. We wite this balance mg F E mg E mg mg E We can wite the mass in tems of the volume of the dop.
13 m ρ 4 3 π g cm π ( cm) g kg mg E kg 9.8m / s C N / C 5e
12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
Gauss Law. Physics 231 Lecture 2-1
Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
Voltage ( = Electric Potential )
V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C
Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
Deflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6
Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe
Solution Derivations for Capa #8
Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass
Forces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
Chapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.
PY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what
2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
Physics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
Introduction to Fluid Mechanics
Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body
Exam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
Voltage ( = Electric Potential )
V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
Gravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
Lesson 7 Gauss s Law and Electric Fields
Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual
PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
A r. (Can you see that this just gives the formula we had above?)
24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion
Lesson 8 Ampère s Law and Differential Operators
Lesson 8 Ampèe s Law and Diffeential Opeatos Lawence Rees 7 You ma make a single cop of this document fo pesonal use without witten pemission 8 Intoduction Thee ae significant diffeences between the electic
Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined
Mechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
Mechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
Chapter 2. Electrostatics
Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.
Chapter 2 Coulomb s Law
Chapte Coulomb s Law.1 lectic Chage...-3. Coulomb's Law...-3 Animation.1: Van de Gaaff Geneato...-4.3 Pinciple of Supeposition...-5 xample.1: Thee Chages...-5.4 lectic Field...-7 Animation.: lectic Field
Fluids Lecture 15 Notes
Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit
Charges, Coulomb s Law, and Electric Fields
Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded
(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?
Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the
Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
Episode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r
Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita
Experiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
Lab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the
CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL
CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The
Multiple choice questions [70 points]
Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions
Uniform Rectilinear Motion
Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics
Phys 2101 Gabriela González. cos. sin. sin
1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe
Coordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
Multiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
AP Physics Electromagnetic Wrap Up
AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle
Carter-Penrose diagrams and black holes
Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
Problem Set # 9 Solutions
Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease
Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem
Intoduction One Function of Random Vaiables Functions of a Random Vaiable: Density Math 45 Into to Pobability Lectue 30 Let gx) = y be a one-to-one function whose deiatie is nonzeo on some egion A of the
Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
Displacement, Velocity And Acceleration
Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,
7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
Experiment MF Magnetic Force
Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating
UNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -
4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS ` E MISN-0-133. CHARGE DISTRIBUTIONS by Peter Signell, Michigan State University
MISN-0-133 GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS by Pete Signell, Michigan State Univesity 1. Intoduction..............................................
F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
Solutions for Physics 1301 Course Review (Problems 10 through 18)
Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal
Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
Exam in physics, El-grunder (Electromagnetism), 2014-03-26, kl 9.00-15.00
Umeå Univesitet, Fysik 1 Vitly Bychkov Em in physics, El-gunde (Electomgnetism, 14--6, kl 9.-15. Hjälpmedel: Students my use ny book(s. Mino notes in the books e lso llowed. Students my not use thei lectue
TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION
MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................
12.1. FÖRSTER RESONANCE ENERGY TRANSFER
ndei Tokmakoff, MIT epatment of Chemisty, 3/5/8 1-1 1.1. FÖRSTER RESONNCE ENERGY TRNSFER Föste esonance enegy tansfe (FR) efes to the nonadiative tansfe of an electonic excitation fom a dono molecule to
Model Question Paper Mathematics Class XII
Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat
Lab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual
2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w
1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a
Chapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
Motion Control Formulas
ems: A = acceleation ate {in/sec } C = caiage thust foce {oz} D = deceleation ate {in/sec } d = lead of scew {in/ev} e = lead scew efficiency ball scew 90% F = total fictional foce {oz} GR = gea atio J
Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3
Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each
Gravitation and Kepler s Laws
3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente
Continuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
Vector surface area Differentials in an OCS
Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals
Skills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.
Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such
Determining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
The Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
www.sakshieducation.com
Viscosity. The popety of viscosity in gas is due to ) Cohesive foces between the moecues ) Coisions between the moecues ) Not having a definite voume ) Not having a definite size. When tempeatue is inceased
10. Collisions. Before During After
10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)
Analytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
CHAPTER 10 Aggregate Demand I
CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income
VISCOSITY OF BIO-DIESEL FUELS
VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use
Chapter 4: Fluid Kinematics
Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian
3 Molecules in Electric and Magnetic Fields
Chapte, page Molecules in Electic and Magnetic Fields. Basic Equations fom Electodynamics The basis of the desciption of the behaviou of molecules in electic and magnetic fields ae the mateial equations
Week 3-4: Permutations and Combinations
Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication
Today in Physics 217: the method of images
Today in Physics 17: the method of images Solving the Laplace and Poisson euations by sleight of hand Introduction to the method of images Caveats Example: a point charge and a grounded conducting sphere
NURBS Drawing Week 5, Lecture 10
CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM
AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,
NUCLEAR MAGNETIC RESONANCE
19 Jul 04 NMR.1 NUCLEAR MAGNETIC RESONANCE In this expeiment the phenomenon of nuclea magnetic esonance will be used as the basis fo a method to accuately measue magnetic field stength, and to study magnetic
Supplementary Material for EpiDiff
Supplementay Mateial fo EpiDiff Supplementay Text S1. Pocessing of aw chomatin modification data In ode to obtain the chomatin modification levels in each of the egions submitted by the use QDCMR module
Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
The Binomial Distribution
The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between
HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely
Open Economies. Chapter 32. A Macroeconomic Theory of the Open Economy. Basic Assumptions of a Macroeconomic Model of an Open Economy
Chapte 32. A Macoeconomic Theoy of the Open Economy Open Economies An open economy is one that inteacts feely with othe economies aound the wold. slide 0 slide 1 Key Macoeconomic Vaiables in an Open Economy
Electric Potential. otherwise to move the object from initial point i to final point f
PHY2061 Enched Physcs 2 Lectue Notes Electc Potental Electc Potental Dsclame: These lectue notes ae not meant to eplace the couse textbook. The content may be ncomplete. Some topcs may be unclea. These
Worked Examples. v max =?
Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend
Problems of the 2 nd and 9 th International Physics Olympiads (Budapest, Hungary, 1968 and 1976)
Poblems of the nd and 9 th Intenational Physics Olympiads (Budapest Hungay 968 and 976) Péte Vankó Institute of Physics Budapest Univesity of Technology and Economics Budapest Hungay Abstact Afte a shot
Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field
Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe
SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.
SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the