Math 314, Homework Assignment Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Size: px
Start display at page:

Download "Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1."

Transcription

1 Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose l nd l re perpendiculr. Thus, the lines intersect in point, which we denote y P 0 nd its coordintes y (x 0, y 0 ). As neither l nor l is verticl, ech line intersects the verticl line with eqution x = x 0 + in points P nd P, respectively. By definition of slope, the coordintes of P re (x 0 +, y 0 + m ) nd those of P re (x 0 +, y 0 + m ). Since l nd l re perpendiculr, the tringle with vertices P 0, P nd P is right tringle, so tht d(p, P ) = d(p 0, P ) + d(p 0, P ), where d(p, Q) represents the distnce etween points P nd Q. Therefore, (m m ) = () + (m ) + () + (m ) = + m + m. Expnding the left-hnd side nd sutrcting m +m from oth sides, we find m m =. Therefore, m m = s climed. Conversely, ssume m m =. We first must prove tht l nd l intersect. Let Q (x, y ) e point on l nd Q (x, y ) e point on l. Then y y = m (x x ) nd y y = m (x x ) re the equtions for l nd l, respectively. These equtions yield the liner system m x + y = y m x, m x + y = y m x which hs solution since A = m m hs determinnt det A = m + m, which is only 0 if m = m in which cse m m 0. As m m = < 0, y our ssumption, the lines l nd l must intersect in point P 0 (x 0, y 0 ). Let P (x 0 +, y 0 + m ) nd P (x 0 +, y 0 + m ) e the points of intersection of l nd l with the verticl line x = x 0 +. Then, the ngle θ etween l nd l t P 0 is determined y the Lw of Cosines to e cos θ = d(p, P ) d(p 0, P ) d(p 0, P ) d(p 0, P )d(p 0, P ) = (m m ) () + (m ) () + (m ) () + (m ) () + (m ) m m = () + (m ) () + (m ) = 0 since m m =. Therefore, cos θ = 0, so θ = π. Thus l nd l re perpendiculr lines.. This prolem concerns rectngulr hyperols. () Prove tht the eqution of the hyperol x y = cn e written in the form xy = c if we tke the symptotes y = ±x s new x- nd y-xes. Therefore, the hyperol my e prmetrized with prmetric equtions x = ct, y = c/t.

2 Mth 4, Homework Assignment Proof. Let the x -xis e the line y = x nd the y -xis the line y = x. Then x = cos(π/4)x + sin(π/4)y = x + y nd y = sin(π/4)x + cos(π/4)y = x + y descrie the originl vriles x nd y in terms of our new xes vriles, x nd y. Hence, the hyperol x y = my e written in terms of x nd y s = = y x + x + (x ) + (x )(y ) + (y ) = x y. y (x ) (x )(y ) + (y ) Therefore, with respect to our new xes, the eqution for the hyperol x y = hs the form x y = c, where c =, s climed. () Let P nd Q e points on the hyperol with prmeters t nd t, respectively. Determine the eqution of the chord P Q. Solution: The coordintes for P re (ct, c/t ) nd those for Q re (ct, c/t ), c c t respectively. Hence, the slope of the chord P Q is m = t =, y finding ct ct t t common denomintor for the numertor nd cncelling the terms t t in the expression. Therefore, the eqution of the chord P Q is y c t = t t (x ct ). Determine the coordintes of the point N where P Q meets the x-xis. Solution: The point N where the line P Q meets the x-xis must hve y-coordinte 0. Therefore, its x-coordinte is found y solving the eqution of the chord P Q for x when we set y = 0. Tht is, we must solve c = (x ct ) for x. Multiplying t t t oth sides y t t yields ct = x ct, so tht x = ct + ct is the x-coordinte for N. Hence, (ct + ct, 0) re the coordintes of the point N where P Q meets the x-xis. Determine the midpoint M of P Q. Solution: The midpoint of P Q hs coordintes ( c ct + ct t, + c ) ( t ct + ct =, ct ) + ct t t using the midpoint formul. Prove tht OM = MN, where O is the origin.

3 Mth 4, Homework Assignment ( ct + ct Proof. Consider the tringle OMN, where O(0, 0) is the origin, M, ct ) + ct t t is the midpoint of the chord P Q, nd N(ct + ct, 0) is the point where the line P Q intersects the x-xis. If we drw the perpendiculr from( M to the side ) ON, it ct + ct intersects the the x-xis t the point R with coordintes, 0, nd thus isects the chord ON. Thus, OR = RN, ngle ORM equls ngle NRM (oth re right ngles, ecuse MR is perpendiculr to ON), nd MR = MR. Therefore, y the SAS Theorem, tringles ORM nd N RM re congruent. Hence, corresponding sides OM nd NM re equl, y definition of congruence.. Let P e point on the ellipse with eqution x + y =, where > > 0, = ( e ), nd 0 < e <. () If P hs coordintes ( cos t, ), determine the eqution of the tngent t P to the ellipse. Solution: The eqution of the tngent line t the point (x 0, y 0 ) to n ellipse with eqution x + y = is x 0x + y 0y =, y Theorem.. of the ook. Thus, the eqution of the tngent line t P ( cos t, ) is = ( cos t)x + ( )y = x cos t + y. () Determine the coordintes of the point T where the tngent in prt () meets the directrix x = /e. Solution: As the x-coordinte of the point T is x = /e, we my find the corresponding y-coordinte y solving the eqution = /e cos t + y for y. Sutrcting e cos t from oth sides nd multiplying y so T hs coordintes ( e, cos t ). e, we find y = (c) Let F e the focus with coordintes (e, 0). Prove tht P F is perpendiculr to T F. ( ) cos t e, Proof. Let us consider this prolem in two cses. First, suppose tht P F is not verticl, in which cse P F nd T F re non-verticl lines (T F cn never e verticl, s the x- coordinte of F is e while the x-coordinte of T is /e nd e < ). Thus, y Prolem, it suffices to prove tht the product of the slopes of the lines P F nd T F is equl to. Now, the slope of P F is m P F = cos t e nd the slope of T F is cos t m T F = e e e = (e cos t) ( e ).

4 Mth 4, Homework Assignment (e cos t) Hence, m P F m T F = (cos t e)( e ) = ( e ) =, since = ( e ). Therefore, P F is perpendiculr to T F if P F is not verticl. Now ssume P F is verticl, so the x-coordinte of P is cos t = e. Thus cos t = e, so the y-coordinte of T is = 0, which is the sme s the y-coordinte of F. Therefore the line T F is horizontl ( y = 0) whenever P F is verticl, nd so T F is perpendiculr to P F in this cse lso. Thus, the lines P F nd T F re lwys perpendiculr. (d) Determine the eqution of the norml t P to the ellipse. Solution: First, suppose the tngent line x cos t + y = is neither horizontl nor verticl. (This mens tht cos t 0.) Expressing this eqution in slope-intercept form, we find y = cos t x = cos t x +. By Prolem, the slope of the norml line is m = cos t =, so the eqution cos t for the norml line hs the form y = x + B for some vlue of B. Sustituting cos t x = cos t nd y = in for x nd y in the eqution for the norml line ove, we find tht B =, so the eqution of the norml line is y = cos t x +. Multiplying oth sides y cos t gives the eqution ( )x ( cos t)y = ( ) cos t for the norml line. We conclude y considering the cses where the tngent line is either horizontl or verticl. First, if the tngent line t P to the ellipse is horizontl, then its slope is 0, which requires cos t = 0. Thus P hs coordintes (0, ) or (0, ) nd the norml line is the verticl line x = 0. Oserve tht this is the sme s our eqution for the norml line ove, s cos t = 0 gives ( )x = 0 so x = 0. If the tngent line is verticl, then = 0, so = 0. This mens P hs coordintes (, 0) or (, 0). In either cse, the norml line is the horizontl line y = 0, which grees with the formul for the norml line given ove when we set = 0. Thus, regrdless of the loction of P on the ellipse nd the slope of the tngent line t P to the ellipse, the eqution of the norml line is ( )x ( cos t)y = ( ) cos t. (e) Determine the coordintes of the point Q where the norml line in prt (d) meets the xis y = 0. Solution: Setting y = 0 in the eqution of the tngent line found in prt (d) ove, we hve ( )x = ( ) cos t, so tht x = cos t. Thus the point Q hs coordintes ( ) cos t, 0. (f) Let F e the focus with coordintes (e, 0). Prove tht QF = ep F. 4

5 Mth 4, Homework Assignment Proof. Since oth Q nd F re on the x-xis, the length of the segment QF is the solute vlue of the difference of their x-coordintes, The distnce from P to F is QF = e cos t = e ( e ) cos t = e e cos t = e e cos t. P F = ( cos t e) + ( ) = cos t e cos t + e + sin t = cos t e cos t + e + ( e ) sin t = e cos t + e ( sin t) which we see is equl to e QF. = ( e cos t) = e cos t, 4. Let F denote the fmily of prols {(x, y) : y = 4(x+)} s tkes on ll positive vlues, nd G denote the fmily of prols {(x, y) : y = 4( x + )} s tkes on ll positive vlues. Use the reflection property of the prol to prove tht, if F F nd G G, then, t ech point of intersection, F nd G cross t right ngles. Proof. Let F F e the prol {(x, y) : y = 4(x + )} nd G G e the prol {(x, y) : y = 4( x + )}. (Oserve tht the positive numers nd re prmeters tht need not e the sme for F nd G.) Then F is the trnsltion of the prol {(x, y) : y = 4x} y the vector = (, 0) nd G is the trnsltion of the prol {(x, y) : y = 4x} y the vector = (, 0). Hence, the focus of F nd the focus of G coincide, nd oth re the origin, O = (0, 0) R. Suppose P is point of intersection of F nd G. Let l F denote the tngent line to F t P nd l G denote the tngent line to G t P. Let S e the point where the tngent line l F intersects the x-xis nd let T e the point where the line l G intersects the x-xis. By the proof of the Reflection Property of the Prol, the ngles OSP nd OP S re equl nd the ngles OT P nd OP T re equl. Now consider the tringle SP T. The ngle SP T is the sum of the ngles SP O nd OP T, while P ST = P S0 = OSP nd P T S = P T O = OT P. Hence, s the sum of the ngles in tringle is 80, we hve 80 = P ST + P T S + SP T = P SO + P T O + (OP S + OP T ) = (OP S + OP T ), so OP S + OP T = 90. Yet, OP S + OP T is the ngle etween l F nd l G, so l F nd l G re perpendiculr. Therefore, F nd G cross t right ngles, s climed. 5. Clssify the conics in R with the following equtions. Determine the center/vertex nd xis of ech. 5

6 Mth 4, Homework Assignment () x xy + y + 4x 5y + = 0 Solution: By Theorem.., since B 4AC = ( ) 4()() = 5 > 0, this conic is hyperol. To find the center nd xes of the hyperol, we construct the mtrix A =.5.5 nd serch for the specil orthogonl mtrix P tht digonlizes A. This is done y finding the eigenvlues nd eigenvectors of A, so consider the chrcteristic polynomil p A (t) = det(ti A) = (t )(t ) (.5)(.5) = t t.5. Setting p A (t) = 0 nd solving for t, we find tht the eigenvlues of A re λ =.5 nd µ = 0.5. The corresponding eigenvectors re u λ = nd vµ =. Hence P = = so tht P T = P nd det P = s required for P to e specil orthogonl mtrix. Then we perform the chnge of vriles x = x y y = x + y x + y so x = (x + y ) nd y = ( x + y ). Thus, the eqution for the conic in terms of x nd y ecomes 5 (x ) (y ) +4 (x +y ) 5 ( x +y )+ = 5 (x ) (y ) + 9 x y + = 0. Completing the squres, we otin 5 (x ) (y ) + = 9 5, so 5 8 (x ) (y ) + = is the stndrd form of the conic. Hence the center is t x = 9 0 nd y = nd the xes re x = 9 0 (mjor xis) nd y = (minor xis). Chnging vriles ck gin, we see tht x = (x y) nd y = (x+y), so the center of the hyperol is x = 7 5 nd y = 5 nd the xes re x y = 9 5 (mjor) nd x + y = (minor). () x + xy + 4y 7 = 0 Solution: Using Theorem.., we find B 4AC = () 4()(4) = 7 < 0, so this conic is n ellipse. The mtrix A = hs eigenvlues λ = 5+ nd µ = with corresponding eigenvectors u λ = nd v µ = +. Thus P = nd y chnge of vriles x = Px, the eqution of the conic 5 ecomes (x ) + 5 (y ) = 7, (x ) + 5 (y ) =, 4 so the center is x = 0, y = 0 nd the xes re x = 0 (minor) nd y = 0 (mjor). Rewriting this in terms of our originl vriles x = x ( + )y nd y = x+( + )y, the center of the ellipse is (0, 0) nd the xes re x (+ )y = 0 (minor) nd x + ( + )y = 0 (mjor). 6

7 Mth 4, Homework Assignment (c) x + xy + 4y + x 9 = 0 Solution: By Theorem.., s B 4AC = () 4()(4) = 5 < 0, the conic is n ellipse. Then A = , whose eigenvlues re λ = 5 0 nd µ = 5+ 0 with corresponding eigenvectors u λ = nd v µ =. Hence, P =, so x = 0 (x + y ) nd y = ( 0)x + ( + 0)y. 0 Therefore, the eqution of this conic ecomes 5 0 (x ) (y ) + 0(5 0) 0(5 + 0) = C for suitle positive constnt C. Hence the center of this ellipse is t x = 0(5 0), y = 0(5+ nd the xes re 0) x = 0(5 (mjor) nd 0) y = (minor). Putting everything ck in terms of x nd y, the center is t ( 0(5+ 0) , 5 ) while the xes re x + ( 0)y = 5 (mjor) nd x + ( + 0)y = 0 (minor) (d) x + xy + y 7x + = 0 Solution: Using Theorem.., the conic is prol since B 4AC = () 4()() = 0. For this conic, A =, so the eigenvlues re λ = 0 nd µ = nd P =, so tht the eqution ecomes (y ) 7 (x + y ) + = 0. Therefore, y completing the squre, we otin the eqution (y ) 7 4 = 7 (x ) = 7 (x ). Hence, the vertex of the prol is t x = 90 4, y = 7 4 nd the xis of the prol is y = 7 4. Putting everything ck in terms of x nd y, we hve tht the vertex of the prol is t x =.95, y = 0.05 nd the xis of the prol is x + y = 7 4. (e) x xy y = 0 Solution: Since B 4AC = ( ) 4()( ) = 7 > 0, the conic is hyperol y Theorem... Then A = , so tht its eigenvlues re λ = 7 nd µ = 7 nd P = Thus the eqution of the conic, in terms of x nd y is 7 (x ) 7 (y ) =, so 7 4 (x ) 7 4 (y ) =. Thus the center is t x = 0, y = 0 nd the mjor xis is x = 0 while the minor xis is y = 0. Putting things ck in terms of x nd y, we hve tht the center is t x = 0, y = 0 nd the xes re x+( 7 4)y = 0 (mjor) nd x + ( 7 + 4)y = 0 (minor). 7

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Homework Assignment 1 Solutions

Homework Assignment 1 Solutions Dept. of Mth. Sci., WPI MA 1034 Anlysis 4 Bogdn Doytchinov, Term D01 Homework Assignment 1 Solutions 1. Find n eqution of sphere tht hs center t the point (5, 3, 6) nd touches the yz-plne. Solution. The

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter 11 11.1 Overview 11.1.1 Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig. 11.1). Fig. 11.1 Suppose we

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

to the area of the region bounded by the graph of the function y = f(x), the x-axis y = 0 and two vertical lines x = a and x = b.

to the area of the region bounded by the graph of the function y = f(x), the x-axis y = 0 and two vertical lines x = a and x = b. 5.9 Are in rectngulr coordintes If f() on the intervl [; ], then the definite integrl f()d equls to the re of the region ounded the grph of the function = f(), the -is = nd two verticl lines = nd =. =

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

Two special Right-triangles 1. The

Two special Right-triangles 1. The Mth Right Tringle Trigonometry Hndout B (length of ) - c - (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Right-tringles. The

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Sect 8.3 Triangles and Hexagons

Sect 8.3 Triangles and Hexagons 13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed two-dimensionl geometric figure consisting of t lest three line segments for its

More information

Quadrilaterals Here are some examples using quadrilaterals

Quadrilaterals Here are some examples using quadrilaterals Qudrilterls Here re some exmples using qudrilterls Exmple 30: igonls of rhomus rhomus hs sides length nd one digonl length, wht is the length of the other digonl? 4 - Exmple 31: igonls of prllelogrm Given

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Worksheet 24: Optimization

Worksheet 24: Optimization Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

69. The Shortest Distance Between Skew Lines

69. The Shortest Distance Between Skew Lines 69. The Shortest Distnce Between Skew Lines Find the ngle nd distnce between two given skew lines. (Skew lines re non-prllel non-intersecting lines.) This importnt problem is usully encountered in one

More information

Vector differentiation. Chapters 6, 7

Vector differentiation. Chapters 6, 7 Chpter 2 Vectors Courtesy NASA/JPL-Cltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higher-dimensionl counterprts

More information

DETERMINANTS. ] of order n, we can associate a number (real or complex) called determinant of the matrix A, written as det A, where a ij. = ad bc.

DETERMINANTS. ] of order n, we can associate a number (real or complex) called determinant of the matrix A, written as det A, where a ij. = ad bc. Chpter 4 DETERMINANTS 4 Overview To every squre mtrix A = [ ij ] of order n, we cn ssocite number (rel or complex) clled determinnt of the mtrix A, written s det A, where ij is the (i, j)th element of

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Solutions to Section 1

Solutions to Section 1 Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Answer, Key Homework 8 David McIntyre 1

Answer, Key Homework 8 David McIntyre 1 Answer, Key Homework 8 Dvid McIntyre 1 This print-out should hve 17 questions, check tht it is complete. Multiple-choice questions my continue on the net column or pge: find ll choices before mking your

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1470 - COLLEGE ALGEBRA (4 SEMESTER HOURS)

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1470 - COLLEGE ALGEBRA (4 SEMESTER HOURS) SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 470 - COLLEGE ALGEBRA (4 SEMESTER HOURS). COURSE DESCRIPTION: Polynomil, rdicl, rtionl, exponentil, nd logrithmic functions

More information

4.0 5-Minute Review: Rational Functions

4.0 5-Minute Review: Rational Functions mth 130 dy 4: working with limits 1 40 5-Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

Chapter 9: Quadratic Equations

Chapter 9: Quadratic Equations Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.

More information

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long

More information

Null Similar Curves with Variable Transformations in Minkowski 3-space

Null Similar Curves with Variable Transformations in Minkowski 3-space Null Similr Curves with Vrile Trnsformtions in Minkowski -spce Mehmet Önder Cell Byr University, Fculty of Science nd Arts, Deprtment of Mthemtics, Murdiye Cmpus, 45047 Murdiye, Mnis, Turkey. -mil: mehmet.onder@yr.edu.tr

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

Quadratic Equations - 1

Quadratic Equations - 1 Alger Module A60 Qudrtic Equtions - 1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions - 1 Sttement of Prerequisite

More information

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix. APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line. CURVES ANDRÉ NEVES 1. Problems (1) (Ex 1 of 1.3 of Do Crmo) Show tht the tngent line to the curve α(t) (3t, 3t 2, 2t 3 ) mkes constnt ngle with the line z x, y. (2) (Ex 6 of 1.3 of Do Crmo) Let α(t) (e

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, } ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

APPLICATION OF INTEGRALS

APPLICATION OF INTEGRALS Chpter 8 APPLICATION OF INTEGRALS 8.1 Overview This chpter dels with specific ppliction of integrls to find the re under simple curves, re etween lines nd rcs of circles, prols nd ellipses, nd finding

More information

The Acoustic Design of Soundproofing Doors and Windows

The Acoustic Design of Soundproofing Doors and Windows 3 The Open Acoustics Journl, 1, 3, 3-37 The Acoustic Design of Soundproofing Doors nd Windows Open Access Nishimur Yuy,1, Nguyen Huy Qung, Nishimur Sohei 1, Nishimur Tsuyoshi 3 nd Yno Tkshi 1 Kummoto Ntionl

More information

5.1 Second-Order linear PDE

5.1 Second-Order linear PDE 5.1 Second-Order liner PDE Consider second-order liner PDE L[u] = u xx + 2bu xy + cu yy + du x + eu y + fu = g, (x,y) U (5.1) for n unknown function u of two vribles x nd y. The functions,b nd c re ssumed

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

Sequences and Series

Sequences and Series Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Math I EB127. Arab Academy For Science & Technology. [Basic and Applied Science Dept.]

Math I EB127. Arab Academy For Science & Technology. [Basic and Applied Science Dept.] Ar Acdem For Science & Technolog [Bsic nd Applied Science Dept] Mth [EB] Anltic Geometr Determinnts Mtrices Sstem of Liner Equtions Curve Fitting Liner Progrmming Mth I EB Sllus for Mthemtics I Course

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists. Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix

More information

1 Perspective in Curved Objects

1 Perspective in Curved Objects 1 Perspective in Curved Ojects This document complements the mteril in section 3.3 of Trnsformtions nd Projections in Computer Grphics (Springer Verlg, 2006, ISBN 1-84628-392-2). It discusses techniques

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Homework #6: Answers. a. If both goods are produced, what must be their prices?

Homework #6: Answers. a. If both goods are produced, what must be their prices? Text questions, hpter 7, problems 1-2. Homework #6: Answers 1. Suppose there is only one technique tht cn be used in clothing production. To produce one unit of clothing requires four lbor-hours nd one

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

1+(dy/dx) 2 dx. We get dy dx = 3x1/2 = 3 x, = 9x. Hence 1 +

1+(dy/dx) 2 dx. We get dy dx = 3x1/2 = 3 x, = 9x. Hence 1 + Mth.9 Em Solutions NAME: #.) / #.) / #.) /5 #.) / #5.) / #6.) /5 #7.) / Totl: / Instructions: There re 5 pges nd totl of points on the em. You must show ll necessr work to get credit. You m not use our

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: x n+ x n n + + C, dx = ln x + C, if n if n = In prticulr, this mens tht dx = ln x + C x nd x 0 dx = dx = dx = x + C Integrl of Constnt:

More information

Answer, Key Homework 4 David McIntyre Mar 25,

Answer, Key Homework 4 David McIntyre Mar 25, Answer, Key Homework 4 Dvid McIntyre 45123 Mr 25, 2004 1 his print-out should hve 18 questions. Multiple-choice questions my continue on the next column or pe find ll choices before mkin your selection.

More information

11. PYTHAGORAS THEOREM

11. PYTHAGORAS THEOREM 11. PYTHAGORAS THEOREM 11-1 Along the Nile 2 11-2 Proofs of Pythgors theorem 3 11-3 Finding sides nd ngles 5 11-4 Semiirles 7 11-5 Surds 8 11-6 Chlking hndll ourt 9 11-7 Pythgors prolems 10 11-8 Designing

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn Interntionl Institute of Technology Thmmst University t Rngsit School of Informtion, Computer nd Communiction Technology COURSE : ECS 204 Bsic Electricl Engineering L INSTRUCTOR : Asst. Prof.

More information

Equations between labeled directed graphs

Equations between labeled directed graphs Equtions etween leled directed grphs Existence of solutions Grret-Fontelles A., Misnikov A., Ventur E. My 2013 Motivtionl prolem H 1 nd H 2 two sugroups of the free group generted y X A, F (X, A). H 1

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Lesson 10. Parametric Curves

Lesson 10. Parametric Curves Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

NCERT INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS. Trigonometric Ratios of the angle A in a triangle ABC right angled at B are defined as:

NCERT INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS. Trigonometric Ratios of the angle A in a triangle ABC right angled at B are defined as: INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS (A) Min Concepts nd Results Trigonometric Rtios of the ngle A in tringle ABC right ngled t B re defined s: side opposite to A BC sine of A = sin A = hypotenuse

More information

9.1 PYTHAGOREAN THEOREM (right triangles)

9.1 PYTHAGOREAN THEOREM (right triangles) Simplifying Rdicls: ) 1 b) 60 c) 11 d) 3 e) 7 Solve: ) x 4 9 b) 16 80 c) 9 16 9.1 PYTHAGOREAN THEOREM (right tringles) c If tringle is right tringle then b, b re the legs * c is clled the hypotenuse (side

More information

1. Inverse of a tridiagonal matrix

1. Inverse of a tridiagonal matrix Pré-Publicções do Deprtmento de Mtemátic Universidde de Coimbr Preprint Number 05 16 ON THE EIGENVALUES OF SOME TRIDIAGONAL MATRICES CM DA FONSECA Abstrct: A solution is given for problem on eigenvlues

More information

The area of the larger square is: IF it s a right triangle, THEN + =

The area of the larger square is: IF it s a right triangle, THEN + = 8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 35: 10.8 Laplace s Equation

Lecture Notes for Math 251: ODE and PDE. Lecture 35: 10.8 Laplace s Equation Lecture Notes for Mth 51: ODE nd PDE. Lecture 35: 1.8 Lplce s Eqution Shwn D. Ryn Spring 1 Lst Time: We studied nother fundmentl eqution in the study of prtil differentil equtions, which is the wve eqution.

More information

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and Rtionl Functions Rtionl unctions re the rtio o two polynomil unctions. They cn be written in expnded orm s ( ( P x x + x + + x+ Qx bx b x bx b n n 1 n n 1 1 0 m m 1 m + m 1 + + m + 0 Exmples o rtionl unctions

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

Lecture 2: Matrix Algebra. General

Lecture 2: Matrix Algebra. General Lecture 2: Mtrix Algebr Generl Definitions Algebric Opertions Vector Spces, Liner Independence nd Rnk of Mtrix Inverse Mtrix Liner Eqution Systems, the Inverse Mtrix nd Crmer s Rule Chrcteristic Roots

More information

Solving Linear Equations - Formulas

Solving Linear Equations - Formulas 1. Solving Liner Equtions - Formuls Ojective: Solve liner formuls for given vrile. Solving formuls is much like solving generl liner equtions. The only difference is we will hve severl vriles in the prolem

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

Homework 10. Problems: 19.29, 19.63, 20.9, 20.68

Homework 10. Problems: 19.29, 19.63, 20.9, 20.68 Homework 0 Prolems: 9.29, 9.63, 20.9, 20.68 Prolem 9.29 An utomoile tire is inlted with ir originlly t 0 º nd norml tmospheric pressure. During the process, the ir is compressed to 28% o its originl volume

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

Generalized Inverses: How to Invert a Non-Invertible Matrix

Generalized Inverses: How to Invert a Non-Invertible Matrix Generlized Inverses: How to Invert Non-Invertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax

More information