Math 314, Homework Assignment Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Size: px
Start display at page:

Download "Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1."

Transcription

1 Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose l nd l re perpendiculr. Thus, the lines intersect in point, which we denote y P 0 nd its coordintes y (x 0, y 0 ). As neither l nor l is verticl, ech line intersects the verticl line with eqution x = x 0 + in points P nd P, respectively. By definition of slope, the coordintes of P re (x 0 +, y 0 + m ) nd those of P re (x 0 +, y 0 + m ). Since l nd l re perpendiculr, the tringle with vertices P 0, P nd P is right tringle, so tht d(p, P ) = d(p 0, P ) + d(p 0, P ), where d(p, Q) represents the distnce etween points P nd Q. Therefore, (m m ) = () + (m ) + () + (m ) = + m + m. Expnding the left-hnd side nd sutrcting m +m from oth sides, we find m m =. Therefore, m m = s climed. Conversely, ssume m m =. We first must prove tht l nd l intersect. Let Q (x, y ) e point on l nd Q (x, y ) e point on l. Then y y = m (x x ) nd y y = m (x x ) re the equtions for l nd l, respectively. These equtions yield the liner system m x + y = y m x, m x + y = y m x which hs solution since A = m m hs determinnt det A = m + m, which is only 0 if m = m in which cse m m 0. As m m = < 0, y our ssumption, the lines l nd l must intersect in point P 0 (x 0, y 0 ). Let P (x 0 +, y 0 + m ) nd P (x 0 +, y 0 + m ) e the points of intersection of l nd l with the verticl line x = x 0 +. Then, the ngle θ etween l nd l t P 0 is determined y the Lw of Cosines to e cos θ = d(p, P ) d(p 0, P ) d(p 0, P ) d(p 0, P )d(p 0, P ) = (m m ) () + (m ) () + (m ) () + (m ) () + (m ) m m = () + (m ) () + (m ) = 0 since m m =. Therefore, cos θ = 0, so θ = π. Thus l nd l re perpendiculr lines.. This prolem concerns rectngulr hyperols. () Prove tht the eqution of the hyperol x y = cn e written in the form xy = c if we tke the symptotes y = ±x s new x- nd y-xes. Therefore, the hyperol my e prmetrized with prmetric equtions x = ct, y = c/t.

2 Mth 4, Homework Assignment Proof. Let the x -xis e the line y = x nd the y -xis the line y = x. Then x = cos(π/4)x + sin(π/4)y = x + y nd y = sin(π/4)x + cos(π/4)y = x + y descrie the originl vriles x nd y in terms of our new xes vriles, x nd y. Hence, the hyperol x y = my e written in terms of x nd y s = = y x + x + (x ) + (x )(y ) + (y ) = x y. y (x ) (x )(y ) + (y ) Therefore, with respect to our new xes, the eqution for the hyperol x y = hs the form x y = c, where c =, s climed. () Let P nd Q e points on the hyperol with prmeters t nd t, respectively. Determine the eqution of the chord P Q. Solution: The coordintes for P re (ct, c/t ) nd those for Q re (ct, c/t ), c c t respectively. Hence, the slope of the chord P Q is m = t =, y finding ct ct t t common denomintor for the numertor nd cncelling the terms t t in the expression. Therefore, the eqution of the chord P Q is y c t = t t (x ct ). Determine the coordintes of the point N where P Q meets the x-xis. Solution: The point N where the line P Q meets the x-xis must hve y-coordinte 0. Therefore, its x-coordinte is found y solving the eqution of the chord P Q for x when we set y = 0. Tht is, we must solve c = (x ct ) for x. Multiplying t t t oth sides y t t yields ct = x ct, so tht x = ct + ct is the x-coordinte for N. Hence, (ct + ct, 0) re the coordintes of the point N where P Q meets the x-xis. Determine the midpoint M of P Q. Solution: The midpoint of P Q hs coordintes ( c ct + ct t, + c ) ( t ct + ct =, ct ) + ct t t using the midpoint formul. Prove tht OM = MN, where O is the origin.

3 Mth 4, Homework Assignment ( ct + ct Proof. Consider the tringle OMN, where O(0, 0) is the origin, M, ct ) + ct t t is the midpoint of the chord P Q, nd N(ct + ct, 0) is the point where the line P Q intersects the x-xis. If we drw the perpendiculr from( M to the side ) ON, it ct + ct intersects the the x-xis t the point R with coordintes, 0, nd thus isects the chord ON. Thus, OR = RN, ngle ORM equls ngle NRM (oth re right ngles, ecuse MR is perpendiculr to ON), nd MR = MR. Therefore, y the SAS Theorem, tringles ORM nd N RM re congruent. Hence, corresponding sides OM nd NM re equl, y definition of congruence.. Let P e point on the ellipse with eqution x + y =, where > > 0, = ( e ), nd 0 < e <. () If P hs coordintes ( cos t, ), determine the eqution of the tngent t P to the ellipse. Solution: The eqution of the tngent line t the point (x 0, y 0 ) to n ellipse with eqution x + y = is x 0x + y 0y =, y Theorem.. of the ook. Thus, the eqution of the tngent line t P ( cos t, ) is = ( cos t)x + ( )y = x cos t + y. () Determine the coordintes of the point T where the tngent in prt () meets the directrix x = /e. Solution: As the x-coordinte of the point T is x = /e, we my find the corresponding y-coordinte y solving the eqution = /e cos t + y for y. Sutrcting e cos t from oth sides nd multiplying y so T hs coordintes ( e, cos t ). e, we find y = (c) Let F e the focus with coordintes (e, 0). Prove tht P F is perpendiculr to T F. ( ) cos t e, Proof. Let us consider this prolem in two cses. First, suppose tht P F is not verticl, in which cse P F nd T F re non-verticl lines (T F cn never e verticl, s the x- coordinte of F is e while the x-coordinte of T is /e nd e < ). Thus, y Prolem, it suffices to prove tht the product of the slopes of the lines P F nd T F is equl to. Now, the slope of P F is m P F = cos t e nd the slope of T F is cos t m T F = e e e = (e cos t) ( e ).

4 Mth 4, Homework Assignment (e cos t) Hence, m P F m T F = (cos t e)( e ) = ( e ) =, since = ( e ). Therefore, P F is perpendiculr to T F if P F is not verticl. Now ssume P F is verticl, so the x-coordinte of P is cos t = e. Thus cos t = e, so the y-coordinte of T is = 0, which is the sme s the y-coordinte of F. Therefore the line T F is horizontl ( y = 0) whenever P F is verticl, nd so T F is perpendiculr to P F in this cse lso. Thus, the lines P F nd T F re lwys perpendiculr. (d) Determine the eqution of the norml t P to the ellipse. Solution: First, suppose the tngent line x cos t + y = is neither horizontl nor verticl. (This mens tht cos t 0.) Expressing this eqution in slope-intercept form, we find y = cos t x = cos t x +. By Prolem, the slope of the norml line is m = cos t =, so the eqution cos t for the norml line hs the form y = x + B for some vlue of B. Sustituting cos t x = cos t nd y = in for x nd y in the eqution for the norml line ove, we find tht B =, so the eqution of the norml line is y = cos t x +. Multiplying oth sides y cos t gives the eqution ( )x ( cos t)y = ( ) cos t for the norml line. We conclude y considering the cses where the tngent line is either horizontl or verticl. First, if the tngent line t P to the ellipse is horizontl, then its slope is 0, which requires cos t = 0. Thus P hs coordintes (0, ) or (0, ) nd the norml line is the verticl line x = 0. Oserve tht this is the sme s our eqution for the norml line ove, s cos t = 0 gives ( )x = 0 so x = 0. If the tngent line is verticl, then = 0, so = 0. This mens P hs coordintes (, 0) or (, 0). In either cse, the norml line is the horizontl line y = 0, which grees with the formul for the norml line given ove when we set = 0. Thus, regrdless of the loction of P on the ellipse nd the slope of the tngent line t P to the ellipse, the eqution of the norml line is ( )x ( cos t)y = ( ) cos t. (e) Determine the coordintes of the point Q where the norml line in prt (d) meets the xis y = 0. Solution: Setting y = 0 in the eqution of the tngent line found in prt (d) ove, we hve ( )x = ( ) cos t, so tht x = cos t. Thus the point Q hs coordintes ( ) cos t, 0. (f) Let F e the focus with coordintes (e, 0). Prove tht QF = ep F. 4

5 Mth 4, Homework Assignment Proof. Since oth Q nd F re on the x-xis, the length of the segment QF is the solute vlue of the difference of their x-coordintes, The distnce from P to F is QF = e cos t = e ( e ) cos t = e e cos t = e e cos t. P F = ( cos t e) + ( ) = cos t e cos t + e + sin t = cos t e cos t + e + ( e ) sin t = e cos t + e ( sin t) which we see is equl to e QF. = ( e cos t) = e cos t, 4. Let F denote the fmily of prols {(x, y) : y = 4(x+)} s tkes on ll positive vlues, nd G denote the fmily of prols {(x, y) : y = 4( x + )} s tkes on ll positive vlues. Use the reflection property of the prol to prove tht, if F F nd G G, then, t ech point of intersection, F nd G cross t right ngles. Proof. Let F F e the prol {(x, y) : y = 4(x + )} nd G G e the prol {(x, y) : y = 4( x + )}. (Oserve tht the positive numers nd re prmeters tht need not e the sme for F nd G.) Then F is the trnsltion of the prol {(x, y) : y = 4x} y the vector = (, 0) nd G is the trnsltion of the prol {(x, y) : y = 4x} y the vector = (, 0). Hence, the focus of F nd the focus of G coincide, nd oth re the origin, O = (0, 0) R. Suppose P is point of intersection of F nd G. Let l F denote the tngent line to F t P nd l G denote the tngent line to G t P. Let S e the point where the tngent line l F intersects the x-xis nd let T e the point where the line l G intersects the x-xis. By the proof of the Reflection Property of the Prol, the ngles OSP nd OP S re equl nd the ngles OT P nd OP T re equl. Now consider the tringle SP T. The ngle SP T is the sum of the ngles SP O nd OP T, while P ST = P S0 = OSP nd P T S = P T O = OT P. Hence, s the sum of the ngles in tringle is 80, we hve 80 = P ST + P T S + SP T = P SO + P T O + (OP S + OP T ) = (OP S + OP T ), so OP S + OP T = 90. Yet, OP S + OP T is the ngle etween l F nd l G, so l F nd l G re perpendiculr. Therefore, F nd G cross t right ngles, s climed. 5. Clssify the conics in R with the following equtions. Determine the center/vertex nd xis of ech. 5

6 Mth 4, Homework Assignment () x xy + y + 4x 5y + = 0 Solution: By Theorem.., since B 4AC = ( ) 4()() = 5 > 0, this conic is hyperol. To find the center nd xes of the hyperol, we construct the mtrix A =.5.5 nd serch for the specil orthogonl mtrix P tht digonlizes A. This is done y finding the eigenvlues nd eigenvectors of A, so consider the chrcteristic polynomil p A (t) = det(ti A) = (t )(t ) (.5)(.5) = t t.5. Setting p A (t) = 0 nd solving for t, we find tht the eigenvlues of A re λ =.5 nd µ = 0.5. The corresponding eigenvectors re u λ = nd vµ =. Hence P = = so tht P T = P nd det P = s required for P to e specil orthogonl mtrix. Then we perform the chnge of vriles x = x y y = x + y x + y so x = (x + y ) nd y = ( x + y ). Thus, the eqution for the conic in terms of x nd y ecomes 5 (x ) (y ) +4 (x +y ) 5 ( x +y )+ = 5 (x ) (y ) + 9 x y + = 0. Completing the squres, we otin 5 (x ) (y ) + = 9 5, so 5 8 (x ) (y ) + = is the stndrd form of the conic. Hence the center is t x = 9 0 nd y = nd the xes re x = 9 0 (mjor xis) nd y = (minor xis). Chnging vriles ck gin, we see tht x = (x y) nd y = (x+y), so the center of the hyperol is x = 7 5 nd y = 5 nd the xes re x y = 9 5 (mjor) nd x + y = (minor). () x + xy + 4y 7 = 0 Solution: Using Theorem.., we find B 4AC = () 4()(4) = 7 < 0, so this conic is n ellipse. The mtrix A = hs eigenvlues λ = 5+ nd µ = with corresponding eigenvectors u λ = nd v µ = +. Thus P = nd y chnge of vriles x = Px, the eqution of the conic 5 ecomes (x ) + 5 (y ) = 7, (x ) + 5 (y ) =, 4 so the center is x = 0, y = 0 nd the xes re x = 0 (minor) nd y = 0 (mjor). Rewriting this in terms of our originl vriles x = x ( + )y nd y = x+( + )y, the center of the ellipse is (0, 0) nd the xes re x (+ )y = 0 (minor) nd x + ( + )y = 0 (mjor). 6

7 Mth 4, Homework Assignment (c) x + xy + 4y + x 9 = 0 Solution: By Theorem.., s B 4AC = () 4()(4) = 5 < 0, the conic is n ellipse. Then A = , whose eigenvlues re λ = 5 0 nd µ = 5+ 0 with corresponding eigenvectors u λ = nd v µ =. Hence, P =, so x = 0 (x + y ) nd y = ( 0)x + ( + 0)y. 0 Therefore, the eqution of this conic ecomes 5 0 (x ) (y ) + 0(5 0) 0(5 + 0) = C for suitle positive constnt C. Hence the center of this ellipse is t x = 0(5 0), y = 0(5+ nd the xes re 0) x = 0(5 (mjor) nd 0) y = (minor). Putting everything ck in terms of x nd y, the center is t ( 0(5+ 0) , 5 ) while the xes re x + ( 0)y = 5 (mjor) nd x + ( + 0)y = 0 (minor) (d) x + xy + y 7x + = 0 Solution: Using Theorem.., the conic is prol since B 4AC = () 4()() = 0. For this conic, A =, so the eigenvlues re λ = 0 nd µ = nd P =, so tht the eqution ecomes (y ) 7 (x + y ) + = 0. Therefore, y completing the squre, we otin the eqution (y ) 7 4 = 7 (x ) = 7 (x ). Hence, the vertex of the prol is t x = 90 4, y = 7 4 nd the xis of the prol is y = 7 4. Putting everything ck in terms of x nd y, we hve tht the vertex of the prol is t x =.95, y = 0.05 nd the xis of the prol is x + y = 7 4. (e) x xy y = 0 Solution: Since B 4AC = ( ) 4()( ) = 7 > 0, the conic is hyperol y Theorem... Then A = , so tht its eigenvlues re λ = 7 nd µ = 7 nd P = Thus the eqution of the conic, in terms of x nd y is 7 (x ) 7 (y ) =, so 7 4 (x ) 7 4 (y ) =. Thus the center is t x = 0, y = 0 nd the mjor xis is x = 0 while the minor xis is y = 0. Putting things ck in terms of x nd y, we hve tht the center is t x = 0, y = 0 nd the xes re x+( 7 4)y = 0 (mjor) nd x + ( 7 + 4)y = 0 (minor). 7

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

Vector differentiation. Chapters 6, 7

Vector differentiation. Chapters 6, 7 Chpter 2 Vectors Courtesy NASA/JPL-Cltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higher-dimensionl counterprts

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1470 - COLLEGE ALGEBRA (4 SEMESTER HOURS)

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1470 - COLLEGE ALGEBRA (4 SEMESTER HOURS) SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 470 - COLLEGE ALGEBRA (4 SEMESTER HOURS). COURSE DESCRIPTION: Polynomil, rdicl, rtionl, exponentil, nd logrithmic functions

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line. CURVES ANDRÉ NEVES 1. Problems (1) (Ex 1 of 1.3 of Do Crmo) Show tht the tngent line to the curve α(t) (3t, 3t 2, 2t 3 ) mkes constnt ngle with the line z x, y. (2) (Ex 6 of 1.3 of Do Crmo) Let α(t) (e

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix. APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

The Acoustic Design of Soundproofing Doors and Windows

The Acoustic Design of Soundproofing Doors and Windows 3 The Open Acoustics Journl, 1, 3, 3-37 The Acoustic Design of Soundproofing Doors nd Windows Open Access Nishimur Yuy,1, Nguyen Huy Qung, Nishimur Sohei 1, Nishimur Tsuyoshi 3 nd Yno Tkshi 1 Kummoto Ntionl

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

Roots of Polynomials. Ch. 7. Roots of Polynomials. Roots of Polynomials. dy dt. a dt. y = General form:

Roots of Polynomials. Ch. 7. Roots of Polynomials. Roots of Polynomials. dy dt. a dt. y = General form: Roots o Polynomils C. 7 Generl orm: Roots o Polynomils ( ) n n order o te polynomil i constnt coeicients n Roots Rel or Comple. For n n t order polynomil n rel or comple roots. I n is odd At lest rel root

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001 CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Answer, Key Homework 10 David McIntyre 1

Answer, Key Homework 10 David McIntyre 1 Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then

More information

APPLICATION OF INTEGRALS

APPLICATION OF INTEGRALS APPLICATION OF INTEGRALS 59 Chpter 8 APPLICATION OF INTEGRALS One should study Mthemtics ecuse it is only through Mthemtics tht nture cn e conceived in hrmonious form. BIRKHOFF 8. Introduction In geometry,

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5. . Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry

More information

MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

CHAPTER 9: Moments of Inertia

CHAPTER 9: Moments of Inertia HPTER 9: Moments of nerti! Moment of nerti of res! Second Moment, or Moment of nerti, of n re! Prllel-is Theorem! Rdius of Grtion of n re! Determintion of the Moment of nerti of n re ntegrtion! Moments

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach Pro. Jy Bhttchry Spring 200 The Theory o the Firm II st lecture we covered: production unctions Tody: Cost minimiztion Firm s supply under cost minimiztion Short vs. long run cost curves Firm Ojectives

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Lesson 4.1 Triangle Sum Conjecture

Lesson 4.1 Triangle Sum Conjecture Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.

More information

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones. Physics 3P41 Chris Wiebe Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

More information

B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1

B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1 Appendi B. Conic Sections B B Conic Sections B. Conic Sections Recognize the four bsic conics: circles, prbols, ellipses, nd hperbols. Recognize, grph, nd write equtions of prbols (verte t origin). Recognize,

More information

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m . Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion

More information

GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES SERRET-FRENET VE BISHOP ÇATILARI

GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES SERRET-FRENET VE BISHOP ÇATILARI Sy 9, Arlk 0 GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES Erhn ATA*, Ysemin KEMER, Ali ATASOY Dumlupnr Uniersity, Fculty of Science nd Arts, Deprtment of Mthemtics, KÜTAHYA, et@dpu.edu.tr ABSTRACT

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

Orbits and Kepler s Laws

Orbits and Kepler s Laws Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how

More information

SOLUTIONS TO CONCEPTS CHAPTER 5

SOLUTIONS TO CONCEPTS CHAPTER 5 1. m k S 10m Let, ccelertion, Initil velocity u 0. S ut + 1/ t 10 ½ ( ) 10 5 m/s orce: m 5 10N (ns) 40000. u 40 km/hr 11.11 m/s. 3600 m 000 k ; v 0 ; s 4m v u ccelertion s SOLUIONS O CONCEPS CHPE 5 0 11.11

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

1.2 The Integers and Rational Numbers

1.2 The Integers and Rational Numbers .2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

More information

Basic Research in Computer Science BRICS RS-02-13 Brodal et al.: Solving the String Statistics Problem in Time O(n log n)

Basic Research in Computer Science BRICS RS-02-13 Brodal et al.: Solving the String Statistics Problem in Time O(n log n) BRICS Bsic Reserch in Computer Science BRICS RS-02-13 Brodl et l.: Solving the String Sttistics Prolem in Time O(n log n) Solving the String Sttistics Prolem in Time O(n log n) Gerth Stølting Brodl Rune

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

All pay auctions with certain and uncertain prizes a comment

All pay auctions with certain and uncertain prizes a comment CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Section 1: Crystal Structure

Section 1: Crystal Structure Phsics 927 Section 1: Crstl Structure A solid is sid to be crstl if toms re rrnged in such w tht their positions re ectl periodic. This concept is illustrted in Fig.1 using two-dimensionl (2D) structure.

More information

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems Euler Euler Everywhere Using the Euler-Lgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch

More information

Rotational Equilibrium: A Question of Balance

Rotational Equilibrium: A Question of Balance Prt of the IEEE Techer In-Service Progrm - Lesson Focus Demonstrte the concept of rottionl equilirium. Lesson Synopsis The Rottionl Equilirium ctivity encourges students to explore the sic concepts of

More information

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

More information