Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Size: px
Start display at page:

Download "Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom"

Transcription

1 Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in equal time. The peiod of evolution T of a planet about the sun is elated to the majo axis A of the ellipse by 3 T = k A whee k is the same fo all planets. 7. Planetay Obits: The Keple Poblem Intoduction Since Johannes Keple fist fomulated the laws that descibe planetay motion, scientists endeavoed to solve fo the equation of motion of the planets. In his hono, this poblem has been named The Keple Poblem. When thee ae moe than two bodies, the poblem becomes impossible to solve exactly. The most impotant thee-body poblem at the time involved finding the motion of the moon, since the moon inteacts gavitationally with both the sun and the eath. Newton ealized that if the exact position of the moon wee known, the longitude of any obseve on the eath could be detemined by measuing the moon s position with espect to the stas. In the eighteenth centuy, Leonhad Eule and othe mathematicians spent many yeas tying to solve the thee-body poblem, and they aised a deepe question. Do the small contibutions fom the gavitational inteactions of all the planets make the planetay system unstable ove long peiods of time? At the end of 8th centuy, Piee Simon Laplace and othes found a seies solution to this stability question, but it was unknown whethe o not the seies solution conveged afte a long peiod of time. Heni Poincaé poved that the seies actually diveged. Poincaé went on to invent new mathematical methods that poduced the moden fields of diffeential geomety and topology in ode to answe the stability question using geometic aguments, athe than analytic methods. Poincaé and othes did manage As stated in An Intoduction to Mechanics, Daniel Kleppne and Robet Kolenkow, McGaw-Hill, 973, p 4. //9 7 -

2 to show that the thee-body poblem was indeed stable, due to the existence of peiodic solutions. Just as in the time of Newton and Leibniz and the invention of calculus, unsolved poblems in celestial mechanics became the expeimental laboatoy fo the discovey of new mathematics. 7. Reducing the Two-Body Poblem into a One-Body Poblem We shall begin ou solution of the two-body poblem by showing how the motion of two bodies inteacting via a gavitational foce (two-body poblem) is mathematically equivalent to the motion of a single body with a educed mass given by mm μ = m + m (7..) that is acted on by an extenal cental gavitational foce. Once we solve fo the motion of the educed body in this equivalent one-body poblem, we can then etun to the eal twobody poblem and solve fo the actual motion of the two oiginal bodies. The educed mass was intoduced in Section.7 of these notes. That section used simila but diffeent notation fom that used in this chapte. Conside the gavitational foce between two bodies with masses m and m as shown in Figue 7.. Figue 7. Gavitational foce between two bodies. Choose a coodinate system with a choice of oigin such that body has position and body has position (Figue 7.). The elative position vecto pointing fom body to body is =. We denote the magnitude of by =, whee is the distance between the bodies, and ˆ is the unit vecto pointing fom body to body, so that = ˆ (7..) //9 7 -

3 Figue 7. Coodinate system fo the two-body poblem. The foce on body (due to the inteaction of the two bodies) can be descibed as mm F ˆ, = F, = G ˆ. (7..3) Recall that Newton s Thid Law equies that the foce on body is equal in magnitude and opposite in diection to the foce on body, F = F,, Newton s Second Law can be applied individually to the two bodies: F,. (7..4) d = m, (7..5) dt F d = m dt,. (7..6) Dividing though by the mass in each of Equations (7..5) and (7..6) yields F d, = dt m F d, = dt m, (7..7). (7..8) Subtacting the expession in Equation (7..8) fom that in Equation (7..7) gives //9 7-3

4 F F d d d = =. (7..9) m m dt dt dt,, Using Newton s Thid Law as given in Equation (7..4), Equation (7..9) becomes F d + =. (7..), m m dt Using the educed mass μ, as defined in Equation (7..),, μ = m + m (7..) Equation (7..) becomes F, d = μ dt d F, = μ dt (7..) whee F is given by Equation (7..3)., Ou esult has a special intepetation using Newton s Second Law. Let μ be the educed mass of a educed body with position vecto = ˆ with espect to an oigin O, whee ˆ is the unit vecto pointing fom the oigin O to the educed body. Then the equation of motion, Equation (7..), implies that the body of educed mass μ is unde the influence of an attactive gavitational foce pointing towad the oigin. So, the oiginal two-body gavitational poblem has now been educed to an equivalent one-body poblem, involving a educed body with educed mass μ unde the influence of a cental foce F ˆ,. Note that in this efomulation, thee is no body located at the cental point (the oigin O ). The paamete in the two-body poblem is the elative distance between the oiginal two bodies, while the same paamete in the one-body poblem is the distance between the educed body and the cental point. 7.3 Enegy and Angula Momentum, Constants of the Motion The equivalent one-body poblem has two constants of the motion, enegy E and the angula momentum L about the oigin O. Enegy is a constant because thee ae no //9 7-4

5 extenal foces acting on the educed body, and angula momentum is constant about the oigin because the only foce is diected towads the oigin, and hence the toque about the oigin due to that foce is zeo (the vecto fom the oigin to the educed body is antipaallel to the foce vecto and sinπ = ). Since angula momentum is constant, the obit of the educed body lies in a plane with the angula momentum vecto pointing pependicula to this plane. In the plane of the obit, choose pola coodinates (, θ ) fo the educed body (see Figue 7.3), whee is the distance of the educed body fom the cental point that is now taken as the oigin, and θ is the angle that the educed body makes with espect to a chosen diection, and which inceases positively in the counteclockwise diection. Figue 7.3 Coodinate system fo the obit of the educed body. Thee ae two appoaches to descibing the motion of the educed body. We can ty to find both the distance fom the oigin, t ( ) and the angle, θ ( t), as functions of the paamete time, but in most cases explicit functions can t be found analytically. We can also find the distance fom the oigin, ( θ ), as a function of the angle θ. This second appoach offes a spatial desciption of the motion of the educed body (see Appendix 7.A). The Obit Equation fo the Reduced Body Conside the educed body with educed mass given by Equation (7..), obiting about a cental point unde the influence of a adially attactive foce given by Equation (7..3). Since the foce is consevative, the potential enegy with choice of zeo efeence point U ( ) = is given by U () Gm m =. (7.3.) The total enegy enegy is E is constant, and the sum of the kinetic enegy and the potential //9 7-5

6 E v Gm m = μ. (7.3.) The kinetic enegy tem, μv /, has the educed mass and the elative speed v of the two bodies. As in Chaptes 5 and 7, we will use the notation v = v ˆ ˆ ad + vtanθ, d (7.3.3) v = v =, dt whee v = d dt and vtan = ( dθ / dt). Equation (7.3.) then becomes ad / d dθ G m m E μ = + dt dt. (7.3.4) The magnitude of the angula momentum with espect to the cente of mass is dθ dt = μ tan = μ. (7.3.5) L v We shall explicitly eliminate the θ dependence fom Equation (7.3.4) by using ou expession in Equation (7.3.5), dθ L =. (7.3.6) dt μ The mechanical enegy as expessed in Equation (7.3.4) then becomes d L G mm dt E = μ + μ. (7.3.7) Equation (7.3.7) is a sepaable diffeential equation involving the vaiable function of time t and can be solved fo the fist deivative d / dt, as a d L G m m = E + dt μ μ. (7.3.8) Equation (7.3.8) can in pinciple be integated diectly fo t (). In fact, in doing the integal no fewe than six cases need to be consideed, and even then the solution is of the fom t ( ) instead of t ( ). These integals ae pesented in Appendix 7.E. The function //9 7-6

7 t () can then, in pinciple, be substituted into Equation (7.3.6) and can then be integated to find θ ( t). Instead of solving fo the position of the educed body as a function of time, we shall find a geometic desciption of the obit by finding ( θ ). We fist divide Equation (7.3.6) by Equation (7.3.8) to obtain dθ L dθ dt μ = = d d L dt E μ + μ Gm m. (7.3.9) The vaiables and θ ae sepaable; L d μ dθ = L E μ + μ Gmm ( L/ ) d = μ L E + Gmm μ (7.3.). Equation (7.3.) can be integated to find the adius as a function of the angle θ ; see Appendix 7.A fo the exact integal solution. The esult is called the obit equation fo the educed body and is given by ε cosθ = (7.3.) whee L = (7.3.) μ Gm m is a constant (known as the semilatus ectum) and ε = + μ EL ( Gm m ) (7.3.3) //9 7-7

8 is the eccenticity of the obit. The two constants of the motion in tems of L= ( μ Gm m ) Gmm E = ( ε ). and ε ae (7.3.4) An altenate deivation of Equation (7.3.) is given in Appendix 7.F. The obit equation as given in Equation (7.3.) is a geneal conic section and is pehaps somewhat moe familia in Catesian coodinates. Let x= cosθ and y = sinθ, with = x + y. The obit equation can be ewitten as = + ε cosθ. (7.3.5) Using the Catesian substitutions fo x and y, ewite Equation (7.3.5) as Squaing both sides of Equation (7.3.6), ( ) / x + y = + ε x. (7.3.6) x + y = + ε x + ε x. (7.3.7) Afte eaanging tems, Equation (7.3.7) is the geneal expession of a conic section with axis on the x -axis, ( ε ) x ε x y + = (7.3.8) (we now see that the dotted axis in Figue 7.3 can be taken to be the x -axis). Fo a given >, coesponding to a given nonzeo angula momentum as in Equation (7.3.), thee ae fou cases detemined by the value of the eccenticity. Case : When ε =, E = E min < and =. Equation (7.3.8) is the equation fo a cicle, x y + = (7.3.9) Case : When < ε <, E < E < and Equation (7.3.8) descibes an ellipse, min y + Ax Bx= k (7.3.) //9 7-8

9 whee A > and k is a positive constant. ( Appendix 7.C shows how this expession may be expessed in the moe taditional fom involving the coodinates of the cente of the ellipse and the semimajo and semimino axes.) Case 3: When ε =, E = and Equation (7.3.8) descibes a paabola, x y =. (7.3.) Case 4: When ε >, E > and Equation (7.3.8) descibes a hypebola, whee A > and k is a positive constant. y Ax Bx= k (7.3.) 7.4 Enegy Diagam, Effective Potential Enegy, and Obits of Motion The enegy (Equation (7.3.7)) of the educed body moving in two dimensions can be eintepeted as the enegy of a educed body moving in one dimension, the adial diection, in an ective potential enegy given by two tems, U L Gm m μ =. (7.4.) The total enegy is still the same, but ou intepetation has changed; d L G m m E = K + U = μ + dt μ, (7.4.) whee the ective kinetic enegy K associated with the one-dimensional motion is K d = μ dt. (7.4.3) The gaph of U as a function of = /, whee as given in Equation (7.3.), is shown in Figue 7.4. The uppe cuve (ed, if you can see this in colo) is popotional to L /( μ ) /. The lowe blue cuve is popotional to Gm m / /. The sum U is epesented by the geen cuve. The minimum value of U is at =, as will be shown analytically below. The vetical scale is in units of U. ( ) //9 7-9

10 Figue 7.4 Gaph of ective potential enegy. Wheneve the one-dimensional kinetic enegy is zeo, K =, the enegy is equal to the ective potential enegy, E L Gm m μ = U =. (7.4.4) Recall that the potential enegy is defined to be the negative integal of the wok done by the foce. Fo ou eduction to a one-body poblem, using the ective potential, we will intoduce an ective foce such that U U F d F d B B, B, A = = A A (7.4.5) The fundamental theoem of calculus (fo one vaiable) then states that the integal of the deivative of the ective potential enegy function between two points is the ective potential enegy diffeence between those two points, B du U, B U, A d d A = (7.4.6) Compaing Equation (7.4.6) to Equation (7.4.5) shows that the adial component of the ective foce is the negative of the deivative of the ective potential enegy, //9 7 -

11 F du d = (7.4.7) The ective potential enegy descibes the potential enegy fo a educed body moving in one dimension. (Note that the ective potential enegy is only a function of the vaiable and is independent of the vaiable θ ). Thee ae two contibutions to the ective potential enegy, and the total adial component of the foce is F d d L Gm m (7.4.8) d d μ = U = Thus thee ae two foces acting on the educed body, with an ective centifugal foce given by F = F + F, centifugal, gavity, (7.4.9) F d L L = = d μ μ 3,centifugal (7.4.) and the conventional gavitational foce F Gm m =. (7.4.), gavity With this nomenclatue, let s eview the fou cases pesented in Section 7.3. Case : Cicula Obit E = E min The lowest enegy state, enegy, E zeo since = ( U ) min min E = K + U E min, coesponds to the minimum of the ective potential. When this condition is satisfied the ective kinetic enegy is. The condition K d = μ = dt (7.4.) implies that the adial velocity is zeo, so the distance fom the cental point is a constant. This is the condition fo a cicula obit. The condition fo the minimum of the ective potential enegy is = du L G m m 3 d = μ +. (7.4.3) //9 7 -

12 We can solve Equation (7.4.3) fo, L =, (7.4.4) Gmm epoducing Equation (7.3.). Case : Elliptic Obit Emin < E < When K =, the mechanical enegy is equal to the ective potential enegy, E = U, as in Equation (7.4.4). Having d / dt = coesponds to a point of closest o futhest appoach as seen in Figue 7.4. This condition coesponds to the minimum and maximum values of fo an elliptic obit, E L Gm m μ = (7.4.5) Equation (7.4.5) is a quadatic equation fo the distance, + Gm m L E μe = (7.4.6) with two oots E E μe Gmm Gmm L = ± + Equation (7.4.7) may be simplified somewhat as /. (7.4.7) Gm m LE E μ( Gmm) = ± + / (7.4.8) Fom Equation (7.3.3), the squae oot is the eccenticity ε, ε = + μ EL ( Gm m ), (7.4.9) //9 7 -

13 and Equation (7.4.8) becomes Gm m E ( = ±. (7.4.) ε ) A little algeba shows that L / μ Gmm = ε LE + μ( Gmm) = LE/ μ( Gmm ) Gm m = E L / μgmm. (7.4.) Substituting the last expession in (7.4.) into Equation (7.4.) gives an expession fo the points of closest and futhest appoach, ( ε ). (7.4.) ε = ± The minus sign coesponds to the distance of closest appoach, ε and the plus sign coesponds to the distance of futhest appoach, Case 3: Paabolic Obit E = min = (7.4.3) + ε max =. (7.4.4) The ective potential enegy, as given in Equation (7.4.), appoaches zeo ( U ) when the distance appoaches infinity ( ). Since the total enegy is zeo, when the kinetic enegy also appoaches zeo, K. This coesponds to a paabolic obit (see Equation (7.3.)). Recall that in ode fo a body to escape fom a planet, the body must have a total enegy E = (we set U = at infinity). This escape velocity condition coesponds to a paabolic obit. Fo a paabolic obit, the body also has a distance of closest appoach. This distance pa can be found fom the condition //9 7-3

14 L Gmm E = U = =. (7.4.5) μ Solving Equation (7.4.5) fo yields L = = ; (7.4.6) pa μ Gmm the fact that the minimum distance to the oigin (the focus of a paabola) is half the semilatus ectum is a well-known popety of a paabola. Case 4: Hypebolic Obit E > When E >, in the limit as the kinetic enegy is positive, K >. This coesponds to a hypebolic obit (see Equation (7.3.)). The condition fo closest appoach is simila to Equation (7.4.5) except that the enegy is now positive. This implies that thee is only one positive solution to the quadatic Equation (7.4.6), the distance of closest appoach fo the hypebolic obit The constant ε hyp =. (7.4.7) + is independent of the enegy and fom Equation (7.3.3) as the enegy of the educed body inceases, the eccenticity inceases, and hence fom Equation (7.4.7), the distance of closest appoach gets smalle. 7.5 Obits of the Two Bodies The obit of the educed body can be cicula, elliptical, paabolic o hypebolic, depending on the values of the two constants of the motion, the angula momentum and the enegy. Once we have the explicit solution (in this discussion, ( θ ) ) fo the educed body, we can find the actual obits of the two bodies. Choose a coodinate system as we did fo the eduction of the two-body poblem (Figue 7.5). //9 7-4

15 Figue 7.5 Cente of mass coodinate system. The cente of mass of the system is given by R cm m+ m =. (7.5.) m + m Let be the vecto fom the cente of mass to body and cente of mass to body. Then, by the geomety in Figue 7.5, = = be the vecto fom the (7.5.) and hence m + m m ( ) μ R. (7.5.3) = cm = = = m+ m m+ m m A simila calculation shows that μ =. (7.5.4) m Thus each body undegoes a motion about the cente of mass in the same manne that the educed body moves about the cental point given by Equation (7.3.). The only diffeence is that the distance fom eithe body to the cente of mass is shotened by a facto μ / mi. When the obit of the educed body is an ellipse, then the obits of the two bodies ae also ellipses, as shown in Figue 7.6. //9 7-5

16 Figue 7.6 The elliptical motion of bodies unde mutual gavitation. When one mass is much smalle than the othe, fo example mass is appoximately the smalle mass, m m, then the educed mm mm m + μ = = m m m (7.5.5) The cente of mass is located appoximately at the position of the lage mass, body of mass. Thus body moves accoding to m μ = m (7.5.6) and body is appoximately stationay, μ m = m m (7.5.7) 7.6 Keple s Laws Elliptic Obit Law Each planet moves in an ellipse with the sun at one focus. When the enegy is negative, E <, and accoding to Equation (7.3.3), //9 7-6

17 ε = + μ EL ( Gm m ) (7.6.) and the eccenticity must fall within the ange ε <. These obits ae eithe cicles o ellipses. Note the elliptic obit law is only valid if we assume that thee is only one cental foce acting. We ae ignoing the gavitational inteactions due to all the othe bodies in the univese, a necessay appoximation fo ou analytic solution. Equal Aea Law The adius vecto fom the sun to a planet sweeps out equal aeas in equal time. Using analytic geomety, the sum of the aeas of the tiangles in Figue 7.7 is given by ( Δθ) ( Δθ) Δ A= ( Δ θ) + Δ = ( Δ θ) + Δ (7.6.) in the limit of small Δ θ (the aea of the small piece on the ight, bounded on one side by the cicula segment, is appoximated by that of a tiangle). The aveage ate of the change of aea, Figue 7.7 Keple s equal aea law. Δ A, in time In the limit as Δt, Δθ, this becomes ( θ) ( θ) Δ t, is given by ΔA Δ Δ Δ = + Δt Δt Δ t. (7.6.3) da dt dθ dt =. (7.6.4) //9 7-7

18 Note that in this appoximation, we ae essentially neglecting the small piece on the ight in Figue 7.7 Recall that accoding to Equation (7.3.6) (epoduced below as Equation (7.6.5)), the angula momentum is elated to the angula velocity dθ / dt by dθ L = (7.6.5) dt μ and Equation (7.6.4) is then da L =. (7.6.6) dt μ Since L and μ ae constants, the ate of change of aea with espect to time is a constant. This is often familialy efeed to by the expession: equal aeas ae swept out in equal times (see Keple s Laws at the beginning of this chapte). Peiod Law The peiod of evolution T of a planet about the sun is elated to the majo axis the ellipse by 3 T = k A A of whee k is the same fo all planets. When Keple stated his peiod law fo planetay obits based on obsevation, he only noted the dependence on the lage mass of the sun. Since the mass of the sun is much geate than the mass of the planets, his obsevation is an excellent appoximation. Equation (7.6.6) can be ewitten in the fom Equation (7.6.7) can be integated as μ da = L. (7.6.7) dt μ da = L dt (7.6.8) obit T whee T is the peiod of the obit. Fo an ellipse, //9 7-8

19 Aea = da =π ab obit (7.6.9) whee a is the semimajo axis and b is the semimino axis. ( Appendix 7.D deives this esult fom Equation (7.3.).) Thus we have T μ π ab =. (7.6.) L Squaing Equation (7.6.) then yields T 4π μ ab =. (7.6.) L In Appendix 7.B, the angula momentum is given in tems of the semimajo axis and the eccenticity by Equation (B..). Substitution fo the angula momentum into Equation (7.6.) yields T 4π μ ab = μ Gm m a ( ε ). (7.6.) In Appendix 7.B, the semi-mino axis is given by Equation (B.3.7), which upon substitution into Equation (7.6.) yields T 3 4π μ a =. (7.6.3) μ Gm m Using Equation (7..) fo educed mass, the squae of the peiod of the obit is popotional to the semi-majo axis cubed, T 4π a = G m 3 ( + m ). (7.6.4) 7.7 The Boh Atom Numeical values of physical constants ae fom the Paticle Data Goup tables, available fom //9 7-9

20 Conside the electic foce between two pointlike objects with chages q and q. The foce law is an invese squae law, like the gavitational foce. The diffeence is that the constant Gm m is eplaced by kq q whee 9 k = = N m C (7.7.) 4πε (the constant k is not a sping constant o the Boltzmann constant, meely a eflection of ou finite alphabet). The minus sign in the gavitational inteaction does not appea in the electic inteaction because thee ae two types of electic chage, positive and negative. The electic foce is attactive fo chages of opposite sign and epulsive fo chages of the same sign. Figue 7.8 Coulomb inteaction between two chages. q The foce on the chaged paticle of chage due to the electic inteaction between the two chaged paticles is given by Coulomb s law, qq F = ˆ ( ),, 4πε. (7.7.) Coulomb s Law povides an accuate desciption of the motion of chaged paticles when they ae not bound togethe. We cannot model the inteaction between the electon and the poton when the chaged paticles ae as close togethe as in the hydogen atom, since the Newtonian concept of foce is not well-defined at length scales associated with the size of atoms. Thus we need a new theoy, quantum mechanics, to explain the popeties of the atom. When the chaged paticles ae fa apat they ae essentially fee paticles and the quantum mechanical desciption of the bound system is not necessay. Theefoe the exact same method of solution that was used in the Keple Poblem fo obits of planets applies to the motion of chaged paticles. //9 7 -

21 Fo a poton and an electon in a bound system, the hydogen atom, Niels Boh found a semi-classical agument that allows one to use the classical theoy of electic foces to pedict the obseved enegies of the hydogen atom. The following agument does not satisfy the pinciples of quantum mechanics, even though the esult is in easonable ageement with expeimentally detemined popeties of the hydogen atom. We begin ou discussion by ecalling ou esult, Equation (7.4.) fo the enegy of the gavitational system of two bodies when consideed as a single educed body of educed mass μ = mm /( m+ m) moving in one dimension, with the distance fom the cental point denoted by the vaiable, E = K + U (7.7.3) whee the ective potential enegy is L L U = U gavity G μ + = μ mm (7.7.4) and the ective kinetic enegy is K d = μ dt. (7.7.5) We can extend this desciption to the electic inteaction between the electon and poton of the hydogen atom by eplacing the constant Gmm with kqq, whee the chage of the poton is q = e, and the chage of the electon is q = e. The enegy is then given by d d L E = μ + U e = μ +. (7.7.6) dt dt μ 4πε Since the mass of the electon of the poton m p m e = kg is much smalle than the mass 7 =.6767 kg, the educed mass is appoximately the mass of the electon, μ m e. A schematic plot of the ective potential enegy as a function of the vaiable fo the hydogen atom is shown in Figue 7.9. //9 7 -

22 Figue 7.9 Hydogen atom enegy diagam. Thee ae two impotant diffeences between the classical mechanical desciption of the possible obits unde a cental foce and a quantum mechanical desciption of the possible states of a hydogen atom. The fist diffeence is that the enegy E of the hydogen atom can only take on discete quantized values, unlike the classical case whee the enegy E can take on a continuous ange of values, negative fo cicula and elliptic bound obits, and positive fo hypebolic fee obits. The second diffeence is that thee ae additional states with the same value of enegy, but which have diffeent discete values of angula momentum, (and othe discete quantum popeties of the atom, fo example spin of the electon). Chemists identify these discete values of angula momentum by alphabetical labels ( s, p, d, f, g,...) while physicists label them by the obital angula momentum quantum numbes l =,,,.... We shall ty to estimate the enegy levels of the electon in the hydogen atom. We shall begin by assuming that the discete enegy states descibe cicula electon obits about the poton. (Quantum mechanics equies us to dop the notion that the electon can be thought of as a point paticle moving in an obit and eplace the paticle pictue with the idea that the electon s position can only be descibed by pobabilistic aguments.) Despite the unphysical natue of ou hypothesis, ou estimation of the enegy levels of the electon in the atom agee supisingly well with expeiment. The cicula obits coesponded to the situation descibed by This occus when E L e = ( U ) =. (7.7.7) μ 4πε min min //9 7 -

23 du L e = 3 d = μ + 4πε. (7.7.8) Solving Equation (7.7.8) fo the adius of the obit, we find 4πε L =. (7.7.9) μ e We also note that the squae of the angula momentum is then μ e L =. (7.7.) 4πε We now make ou semi-classical assumption that the angula momentum assume discete values L can only h L= n. (7.7.) π 34 whee n is an intege, n =,,..., and h = kg m s is the Planck constant. With this assumption that the values L ae discete, Equation (7.7.) becomes nh μ e n = π 4πε (7.7.) whee n denotes the adii of the discete cicula obits, 4πε nh n =. (7.7.3) 4π μe The adii ae quantized, 4πε nh n = =n (7.7.4) 4π μe and equal to integal multiples of the gound state adius 4πεh = (7.7.5) 4π μe //9 7-3

24 whee, setting μ = me, the electon mass, is 34 ( 6.66 kg m s ) ( )( )( ) = 4π N m C 9.9 kg.6 C = 5.9 m to fou significant figues. The length as a o, pehaps counteintuitively, (7.7.6) is known as the Boh adius and is often given a, the latte notation indicating a nuclea mass of infinity, in which case, μ = me, as in the above calculation. We can substitute Equation (7.7.6) into Equation (7.7.7) and find that the enegy levels ae also quantized and given by E n L e μ e n e = = μn 4πε n 4πε μn n (7.7.7) e e. n πε n = = 4πε 4 Using Equation (7.7.5) fo E n, Equation (7.7.7) fo the enegy levels becomes e e = = = A (7.7.8) 4πε 4πε 4π μ 4πε 4 π μ nh e ( ) h n n whee, with μ = me, the constant A is given by A = π me 4 e h ( 4πε ) ( )( ) ( 34 ( 6.66 kg m s ) π 9.9 kg N m C.6 C = = 8.8 J ) (7.7.9) to fou significant figues. We can expess this enegy in tems of the enegy units of electon-volts ( ev ), whee an electon-volt is the enegy necessay to acceleate an electon with chage e acoss a potential enegy pe unit chage of volt ( volt = 9 9 ev =.6 C J C =.6 J and joule pe coulomb). Thus ( )( ) //9 7-4

25 ev A = = ( ) ( 9.6 J ) The enegy in Equation (7.7.8) can be witten as 8.8 J.36 ev. (7.7.) E n hc R = (7.7.) n whee R, the Rydbeg constant, is given by 8 (.8 J) 34 8 ( 6.66 kg m s )(.998 m s ) A R = = hc 7.97 m. = (7.7.) and c = m s is the speed of light. The fist few enegy levels ae shown in Figue 7., along with the enegy diffeence between the second and thid levels. The fist thee enegy levels ae E = 3.6 ev, E = 3.39 ev, E 3 =.5 ev. Figue 7. Enegy levels fo an electon in a hydogen atom Emission of light When an electon makes a tansition fom a highe enegy state E i to a lowe enegy state E f, light is emitted. The fequency of the emitted light is given by //9 7-5

26 f ΔE h E E f i = =. (7.7.3) h Using ou esult as given in Equation (7.7.8) fo the enegy levels, we have f = Rc n f n. (7.7.4) i The wavelength of the emitted light λ is elated to the fequency f of the light by f λ = c. (7.7.5) Thus the invese wavelength of the light is given by f = = R λ c. (7.7.6) nf n 7.7. Example: Calculate the wavelength of the light emitted when an electon in the enegy level n = 3 dops to the enegy level n =. Fom Equation (7.7.6) the wavelength is λ nn = = i f 3, R ni nf m. (7.7.7) The emitted light lies in the visible spectum and appeas ed to the human eye. //9 7-6

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Gravitation and Kepler s Laws

Gravitation and Kepler s Laws 3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente

More information

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS 9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, two-body obits, thee-body obits, petubations, tides, non-gavitational foces,

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

Financing Terms in the EOQ Model

Financing Terms in the EOQ Model Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

NUCLEAR MAGNETIC RESONANCE

NUCLEAR MAGNETIC RESONANCE 19 Jul 04 NMR.1 NUCLEAR MAGNETIC RESONANCE In this expeiment the phenomenon of nuclea magnetic esonance will be used as the basis fo a method to accuately measue magnetic field stength, and to study magnetic

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell)

The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell) 1 The Gavity Field of the Eath - Pat 1 (Copyight 00, David T. Sandwell) This chapte coves physical geodesy - the shape of the Eath and its gavity field. This is just electostatic theoy applied to the Eath.

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

10. Collisions. Before During After

10. Collisions. Before During After 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics 4-1 Lagangian g and Euleian Desciptions 4-2 Fundamentals of Flow Visualization 4-3 Kinematic Desciption 4-4 Reynolds Tanspot Theoem (RTT) 4-1 Lagangian and Euleian Desciptions (1) Lagangian desciption

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

Excitation energies for molecules by Time-Dependent. based on Effective Exact Exchange Kohn-Sham potential

Excitation energies for molecules by Time-Dependent. based on Effective Exact Exchange Kohn-Sham potential Excitation enegies fo molecules by Time-Dependent Density-Functional Theoy based on Effective Exact Exchange Kohn-Sham potential Fabio Della Sala National Nanotechnology Laboatoies Lecce Italy A. Göling

More information

12.1. FÖRSTER RESONANCE ENERGY TRANSFER

12.1. FÖRSTER RESONANCE ENERGY TRANSFER ndei Tokmakoff, MIT epatment of Chemisty, 3/5/8 1-1 1.1. FÖRSTER RESONNCE ENERGY TRNSFER Föste esonance enegy tansfe (FR) efes to the nonadiative tansfe of an electonic excitation fom a dono molecule to

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Chapte Relativistic Quantum Mechanics In this Chapte we will addess the issue that the laws of physics must be fomulated in a fom which is Loentz invaiant, i.e., the desciption should not allow one to

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

Chapter 2. Electrostatics

Chapter 2. Electrostatics Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8 - TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w 1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

Semipartial (Part) and Partial Correlation

Semipartial (Part) and Partial Correlation Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

CRRC-1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer

CRRC-1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer CRRC- Method #: Standad Pactice fo Measuing Sola Reflectance of a Flat, Opaque, and Heteogeneous Suface Using a Potable Sola Reflectomete Scope This standad pactice coves a technique fo estimating the

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

Chapte 3 Is Gavitation A Results Of Asymmetic Coulomb Chage Inteactions? Jounal of Undegaduate Reseach èjurè Univesity of Utah è1992è, Vol. 3, No. 1, pp. 56í61. Jeæey F. Gold Depatment of Physics, Depatment

More information

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS ON THE R POLICY IN PRODUCTION-INVENTORY SYSTEMS Saifallah Benjaafa and Joon-Seok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poduction-inventoy

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero. Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

CHAPTER 10 Aggregate Demand I

CHAPTER 10 Aggregate Demand I CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Classical Mechanics (CM):

Classical Mechanics (CM): Classical Mechanics (CM): We ought to have some backgound to aeciate that QM eally does just use CM and makes one slight modification that then changes the natue of the oblem we need to solve but much

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

arxiv:1012.5438v1 [astro-ph.ep] 24 Dec 2010

arxiv:1012.5438v1 [astro-ph.ep] 24 Dec 2010 Fist-Ode Special Relativistic Coections to Keple s Obits Tyle J. Lemmon and Antonio R. Mondagon Physics Depatment, Coloado College, Coloado Spings, Coloado 80903 (Dated: Decembe 30, 00) Abstact axiv:0.5438v

More information

Chapter 2 Coulomb s Law

Chapter 2 Coulomb s Law Chapte Coulomb s Law.1 lectic Chage...-3. Coulomb's Law...-3 Animation.1: Van de Gaaff Geneato...-4.3 Pinciple of Supeposition...-5 xample.1: Thee Chages...-5.4 lectic Field...-7 Animation.: lectic Field

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

3.02 Potential Theory and Static Gravity Field of the Earth

3.02 Potential Theory and Static Gravity Field of the Earth 3.02 Potential Theoy and Static Gavity Field of the Eath C. Jekeli, The Ohio State Univesity, Columbus, OH, USA ª 2007 Elsevie B.V. All ights eseved. 3.02. Intoduction 2 3.02.. Histoical Notes 2 3.02..2

More information

Valuation of Floating Rate Bonds 1

Valuation of Floating Rate Bonds 1 Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned

More information