Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom


 Morgan Webb
 1 years ago
 Views:
Transcription
1 Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in equal time. The peiod of evolution T of a planet about the sun is elated to the majo axis A of the ellipse by 3 T = k A whee k is the same fo all planets. 7. Planetay Obits: The Keple Poblem Intoduction Since Johannes Keple fist fomulated the laws that descibe planetay motion, scientists endeavoed to solve fo the equation of motion of the planets. In his hono, this poblem has been named The Keple Poblem. When thee ae moe than two bodies, the poblem becomes impossible to solve exactly. The most impotant theebody poblem at the time involved finding the motion of the moon, since the moon inteacts gavitationally with both the sun and the eath. Newton ealized that if the exact position of the moon wee known, the longitude of any obseve on the eath could be detemined by measuing the moon s position with espect to the stas. In the eighteenth centuy, Leonhad Eule and othe mathematicians spent many yeas tying to solve the theebody poblem, and they aised a deepe question. Do the small contibutions fom the gavitational inteactions of all the planets make the planetay system unstable ove long peiods of time? At the end of 8th centuy, Piee Simon Laplace and othes found a seies solution to this stability question, but it was unknown whethe o not the seies solution conveged afte a long peiod of time. Heni Poincaé poved that the seies actually diveged. Poincaé went on to invent new mathematical methods that poduced the moden fields of diffeential geomety and topology in ode to answe the stability question using geometic aguments, athe than analytic methods. Poincaé and othes did manage As stated in An Intoduction to Mechanics, Daniel Kleppne and Robet Kolenkow, McGawHill, 973, p 4. //9 7 
2 to show that the theebody poblem was indeed stable, due to the existence of peiodic solutions. Just as in the time of Newton and Leibniz and the invention of calculus, unsolved poblems in celestial mechanics became the expeimental laboatoy fo the discovey of new mathematics. 7. Reducing the TwoBody Poblem into a OneBody Poblem We shall begin ou solution of the twobody poblem by showing how the motion of two bodies inteacting via a gavitational foce (twobody poblem) is mathematically equivalent to the motion of a single body with a educed mass given by mm μ = m + m (7..) that is acted on by an extenal cental gavitational foce. Once we solve fo the motion of the educed body in this equivalent onebody poblem, we can then etun to the eal twobody poblem and solve fo the actual motion of the two oiginal bodies. The educed mass was intoduced in Section.7 of these notes. That section used simila but diffeent notation fom that used in this chapte. Conside the gavitational foce between two bodies with masses m and m as shown in Figue 7.. Figue 7. Gavitational foce between two bodies. Choose a coodinate system with a choice of oigin such that body has position and body has position (Figue 7.). The elative position vecto pointing fom body to body is =. We denote the magnitude of by =, whee is the distance between the bodies, and ˆ is the unit vecto pointing fom body to body, so that = ˆ (7..) //9 7 
3 Figue 7. Coodinate system fo the twobody poblem. The foce on body (due to the inteaction of the two bodies) can be descibed as mm F ˆ, = F, = G ˆ. (7..3) Recall that Newton s Thid Law equies that the foce on body is equal in magnitude and opposite in diection to the foce on body, F = F,, Newton s Second Law can be applied individually to the two bodies: F,. (7..4) d = m, (7..5) dt F d = m dt,. (7..6) Dividing though by the mass in each of Equations (7..5) and (7..6) yields F d, = dt m F d, = dt m, (7..7). (7..8) Subtacting the expession in Equation (7..8) fom that in Equation (7..7) gives //9 73
4 F F d d d = =. (7..9) m m dt dt dt,, Using Newton s Thid Law as given in Equation (7..4), Equation (7..9) becomes F d + =. (7..), m m dt Using the educed mass μ, as defined in Equation (7..),, μ = m + m (7..) Equation (7..) becomes F, d = μ dt d F, = μ dt (7..) whee F is given by Equation (7..3)., Ou esult has a special intepetation using Newton s Second Law. Let μ be the educed mass of a educed body with position vecto = ˆ with espect to an oigin O, whee ˆ is the unit vecto pointing fom the oigin O to the educed body. Then the equation of motion, Equation (7..), implies that the body of educed mass μ is unde the influence of an attactive gavitational foce pointing towad the oigin. So, the oiginal twobody gavitational poblem has now been educed to an equivalent onebody poblem, involving a educed body with educed mass μ unde the influence of a cental foce F ˆ,. Note that in this efomulation, thee is no body located at the cental point (the oigin O ). The paamete in the twobody poblem is the elative distance between the oiginal two bodies, while the same paamete in the onebody poblem is the distance between the educed body and the cental point. 7.3 Enegy and Angula Momentum, Constants of the Motion The equivalent onebody poblem has two constants of the motion, enegy E and the angula momentum L about the oigin O. Enegy is a constant because thee ae no //9 74
5 extenal foces acting on the educed body, and angula momentum is constant about the oigin because the only foce is diected towads the oigin, and hence the toque about the oigin due to that foce is zeo (the vecto fom the oigin to the educed body is antipaallel to the foce vecto and sinπ = ). Since angula momentum is constant, the obit of the educed body lies in a plane with the angula momentum vecto pointing pependicula to this plane. In the plane of the obit, choose pola coodinates (, θ ) fo the educed body (see Figue 7.3), whee is the distance of the educed body fom the cental point that is now taken as the oigin, and θ is the angle that the educed body makes with espect to a chosen diection, and which inceases positively in the counteclockwise diection. Figue 7.3 Coodinate system fo the obit of the educed body. Thee ae two appoaches to descibing the motion of the educed body. We can ty to find both the distance fom the oigin, t ( ) and the angle, θ ( t), as functions of the paamete time, but in most cases explicit functions can t be found analytically. We can also find the distance fom the oigin, ( θ ), as a function of the angle θ. This second appoach offes a spatial desciption of the motion of the educed body (see Appendix 7.A). The Obit Equation fo the Reduced Body Conside the educed body with educed mass given by Equation (7..), obiting about a cental point unde the influence of a adially attactive foce given by Equation (7..3). Since the foce is consevative, the potential enegy with choice of zeo efeence point U ( ) = is given by U () Gm m =. (7.3.) The total enegy enegy is E is constant, and the sum of the kinetic enegy and the potential //9 75
6 E v Gm m = μ. (7.3.) The kinetic enegy tem, μv /, has the educed mass and the elative speed v of the two bodies. As in Chaptes 5 and 7, we will use the notation v = v ˆ ˆ ad + vtanθ, d (7.3.3) v = v =, dt whee v = d dt and vtan = ( dθ / dt). Equation (7.3.) then becomes ad / d dθ G m m E μ = + dt dt. (7.3.4) The magnitude of the angula momentum with espect to the cente of mass is dθ dt = μ tan = μ. (7.3.5) L v We shall explicitly eliminate the θ dependence fom Equation (7.3.4) by using ou expession in Equation (7.3.5), dθ L =. (7.3.6) dt μ The mechanical enegy as expessed in Equation (7.3.4) then becomes d L G mm dt E = μ + μ. (7.3.7) Equation (7.3.7) is a sepaable diffeential equation involving the vaiable function of time t and can be solved fo the fist deivative d / dt, as a d L G m m = E + dt μ μ. (7.3.8) Equation (7.3.8) can in pinciple be integated diectly fo t (). In fact, in doing the integal no fewe than six cases need to be consideed, and even then the solution is of the fom t ( ) instead of t ( ). These integals ae pesented in Appendix 7.E. The function //9 76
7 t () can then, in pinciple, be substituted into Equation (7.3.6) and can then be integated to find θ ( t). Instead of solving fo the position of the educed body as a function of time, we shall find a geometic desciption of the obit by finding ( θ ). We fist divide Equation (7.3.6) by Equation (7.3.8) to obtain dθ L dθ dt μ = = d d L dt E μ + μ Gm m. (7.3.9) The vaiables and θ ae sepaable; L d μ dθ = L E μ + μ Gmm ( L/ ) d = μ L E + Gmm μ (7.3.). Equation (7.3.) can be integated to find the adius as a function of the angle θ ; see Appendix 7.A fo the exact integal solution. The esult is called the obit equation fo the educed body and is given by ε cosθ = (7.3.) whee L = (7.3.) μ Gm m is a constant (known as the semilatus ectum) and ε = + μ EL ( Gm m ) (7.3.3) //9 77
8 is the eccenticity of the obit. The two constants of the motion in tems of L= ( μ Gm m ) Gmm E = ( ε ). and ε ae (7.3.4) An altenate deivation of Equation (7.3.) is given in Appendix 7.F. The obit equation as given in Equation (7.3.) is a geneal conic section and is pehaps somewhat moe familia in Catesian coodinates. Let x= cosθ and y = sinθ, with = x + y. The obit equation can be ewitten as = + ε cosθ. (7.3.5) Using the Catesian substitutions fo x and y, ewite Equation (7.3.5) as Squaing both sides of Equation (7.3.6), ( ) / x + y = + ε x. (7.3.6) x + y = + ε x + ε x. (7.3.7) Afte eaanging tems, Equation (7.3.7) is the geneal expession of a conic section with axis on the x axis, ( ε ) x ε x y + = (7.3.8) (we now see that the dotted axis in Figue 7.3 can be taken to be the x axis). Fo a given >, coesponding to a given nonzeo angula momentum as in Equation (7.3.), thee ae fou cases detemined by the value of the eccenticity. Case : When ε =, E = E min < and =. Equation (7.3.8) is the equation fo a cicle, x y + = (7.3.9) Case : When < ε <, E < E < and Equation (7.3.8) descibes an ellipse, min y + Ax Bx= k (7.3.) //9 78
9 whee A > and k is a positive constant. ( Appendix 7.C shows how this expession may be expessed in the moe taditional fom involving the coodinates of the cente of the ellipse and the semimajo and semimino axes.) Case 3: When ε =, E = and Equation (7.3.8) descibes a paabola, x y =. (7.3.) Case 4: When ε >, E > and Equation (7.3.8) descibes a hypebola, whee A > and k is a positive constant. y Ax Bx= k (7.3.) 7.4 Enegy Diagam, Effective Potential Enegy, and Obits of Motion The enegy (Equation (7.3.7)) of the educed body moving in two dimensions can be eintepeted as the enegy of a educed body moving in one dimension, the adial diection, in an ective potential enegy given by two tems, U L Gm m μ =. (7.4.) The total enegy is still the same, but ou intepetation has changed; d L G m m E = K + U = μ + dt μ, (7.4.) whee the ective kinetic enegy K associated with the onedimensional motion is K d = μ dt. (7.4.3) The gaph of U as a function of = /, whee as given in Equation (7.3.), is shown in Figue 7.4. The uppe cuve (ed, if you can see this in colo) is popotional to L /( μ ) /. The lowe blue cuve is popotional to Gm m / /. The sum U is epesented by the geen cuve. The minimum value of U is at =, as will be shown analytically below. The vetical scale is in units of U. ( ) //9 79
10 Figue 7.4 Gaph of ective potential enegy. Wheneve the onedimensional kinetic enegy is zeo, K =, the enegy is equal to the ective potential enegy, E L Gm m μ = U =. (7.4.4) Recall that the potential enegy is defined to be the negative integal of the wok done by the foce. Fo ou eduction to a onebody poblem, using the ective potential, we will intoduce an ective foce such that U U F d F d B B, B, A = = A A (7.4.5) The fundamental theoem of calculus (fo one vaiable) then states that the integal of the deivative of the ective potential enegy function between two points is the ective potential enegy diffeence between those two points, B du U, B U, A d d A = (7.4.6) Compaing Equation (7.4.6) to Equation (7.4.5) shows that the adial component of the ective foce is the negative of the deivative of the ective potential enegy, //9 7 
11 F du d = (7.4.7) The ective potential enegy descibes the potential enegy fo a educed body moving in one dimension. (Note that the ective potential enegy is only a function of the vaiable and is independent of the vaiable θ ). Thee ae two contibutions to the ective potential enegy, and the total adial component of the foce is F d d L Gm m (7.4.8) d d μ = U = Thus thee ae two foces acting on the educed body, with an ective centifugal foce given by F = F + F, centifugal, gavity, (7.4.9) F d L L = = d μ μ 3,centifugal (7.4.) and the conventional gavitational foce F Gm m =. (7.4.), gavity With this nomenclatue, let s eview the fou cases pesented in Section 7.3. Case : Cicula Obit E = E min The lowest enegy state, enegy, E zeo since = ( U ) min min E = K + U E min, coesponds to the minimum of the ective potential. When this condition is satisfied the ective kinetic enegy is. The condition K d = μ = dt (7.4.) implies that the adial velocity is zeo, so the distance fom the cental point is a constant. This is the condition fo a cicula obit. The condition fo the minimum of the ective potential enegy is = du L G m m 3 d = μ +. (7.4.3) //9 7 
12 We can solve Equation (7.4.3) fo, L =, (7.4.4) Gmm epoducing Equation (7.3.). Case : Elliptic Obit Emin < E < When K =, the mechanical enegy is equal to the ective potential enegy, E = U, as in Equation (7.4.4). Having d / dt = coesponds to a point of closest o futhest appoach as seen in Figue 7.4. This condition coesponds to the minimum and maximum values of fo an elliptic obit, E L Gm m μ = (7.4.5) Equation (7.4.5) is a quadatic equation fo the distance, + Gm m L E μe = (7.4.6) with two oots E E μe Gmm Gmm L = ± + Equation (7.4.7) may be simplified somewhat as /. (7.4.7) Gm m LE E μ( Gmm) = ± + / (7.4.8) Fom Equation (7.3.3), the squae oot is the eccenticity ε, ε = + μ EL ( Gm m ), (7.4.9) //9 7 
13 and Equation (7.4.8) becomes Gm m E ( = ±. (7.4.) ε ) A little algeba shows that L / μ Gmm = ε LE + μ( Gmm) = LE/ μ( Gmm ) Gm m = E L / μgmm. (7.4.) Substituting the last expession in (7.4.) into Equation (7.4.) gives an expession fo the points of closest and futhest appoach, ( ε ). (7.4.) ε = ± The minus sign coesponds to the distance of closest appoach, ε and the plus sign coesponds to the distance of futhest appoach, Case 3: Paabolic Obit E = min = (7.4.3) + ε max =. (7.4.4) The ective potential enegy, as given in Equation (7.4.), appoaches zeo ( U ) when the distance appoaches infinity ( ). Since the total enegy is zeo, when the kinetic enegy also appoaches zeo, K. This coesponds to a paabolic obit (see Equation (7.3.)). Recall that in ode fo a body to escape fom a planet, the body must have a total enegy E = (we set U = at infinity). This escape velocity condition coesponds to a paabolic obit. Fo a paabolic obit, the body also has a distance of closest appoach. This distance pa can be found fom the condition //9 73
14 L Gmm E = U = =. (7.4.5) μ Solving Equation (7.4.5) fo yields L = = ; (7.4.6) pa μ Gmm the fact that the minimum distance to the oigin (the focus of a paabola) is half the semilatus ectum is a wellknown popety of a paabola. Case 4: Hypebolic Obit E > When E >, in the limit as the kinetic enegy is positive, K >. This coesponds to a hypebolic obit (see Equation (7.3.)). The condition fo closest appoach is simila to Equation (7.4.5) except that the enegy is now positive. This implies that thee is only one positive solution to the quadatic Equation (7.4.6), the distance of closest appoach fo the hypebolic obit The constant ε hyp =. (7.4.7) + is independent of the enegy and fom Equation (7.3.3) as the enegy of the educed body inceases, the eccenticity inceases, and hence fom Equation (7.4.7), the distance of closest appoach gets smalle. 7.5 Obits of the Two Bodies The obit of the educed body can be cicula, elliptical, paabolic o hypebolic, depending on the values of the two constants of the motion, the angula momentum and the enegy. Once we have the explicit solution (in this discussion, ( θ ) ) fo the educed body, we can find the actual obits of the two bodies. Choose a coodinate system as we did fo the eduction of the twobody poblem (Figue 7.5). //9 74
15 Figue 7.5 Cente of mass coodinate system. The cente of mass of the system is given by R cm m+ m =. (7.5.) m + m Let be the vecto fom the cente of mass to body and cente of mass to body. Then, by the geomety in Figue 7.5, = = be the vecto fom the (7.5.) and hence m + m m ( ) μ R. (7.5.3) = cm = = = m+ m m+ m m A simila calculation shows that μ =. (7.5.4) m Thus each body undegoes a motion about the cente of mass in the same manne that the educed body moves about the cental point given by Equation (7.3.). The only diffeence is that the distance fom eithe body to the cente of mass is shotened by a facto μ / mi. When the obit of the educed body is an ellipse, then the obits of the two bodies ae also ellipses, as shown in Figue 7.6. //9 75
16 Figue 7.6 The elliptical motion of bodies unde mutual gavitation. When one mass is much smalle than the othe, fo example mass is appoximately the smalle mass, m m, then the educed mm mm m + μ = = m m m (7.5.5) The cente of mass is located appoximately at the position of the lage mass, body of mass. Thus body moves accoding to m μ = m (7.5.6) and body is appoximately stationay, μ m = m m (7.5.7) 7.6 Keple s Laws Elliptic Obit Law Each planet moves in an ellipse with the sun at one focus. When the enegy is negative, E <, and accoding to Equation (7.3.3), //9 76
17 ε = + μ EL ( Gm m ) (7.6.) and the eccenticity must fall within the ange ε <. These obits ae eithe cicles o ellipses. Note the elliptic obit law is only valid if we assume that thee is only one cental foce acting. We ae ignoing the gavitational inteactions due to all the othe bodies in the univese, a necessay appoximation fo ou analytic solution. Equal Aea Law The adius vecto fom the sun to a planet sweeps out equal aeas in equal time. Using analytic geomety, the sum of the aeas of the tiangles in Figue 7.7 is given by ( Δθ) ( Δθ) Δ A= ( Δ θ) + Δ = ( Δ θ) + Δ (7.6.) in the limit of small Δ θ (the aea of the small piece on the ight, bounded on one side by the cicula segment, is appoximated by that of a tiangle). The aveage ate of the change of aea, Figue 7.7 Keple s equal aea law. Δ A, in time In the limit as Δt, Δθ, this becomes ( θ) ( θ) Δ t, is given by ΔA Δ Δ Δ = + Δt Δt Δ t. (7.6.3) da dt dθ dt =. (7.6.4) //9 77
18 Note that in this appoximation, we ae essentially neglecting the small piece on the ight in Figue 7.7 Recall that accoding to Equation (7.3.6) (epoduced below as Equation (7.6.5)), the angula momentum is elated to the angula velocity dθ / dt by dθ L = (7.6.5) dt μ and Equation (7.6.4) is then da L =. (7.6.6) dt μ Since L and μ ae constants, the ate of change of aea with espect to time is a constant. This is often familialy efeed to by the expession: equal aeas ae swept out in equal times (see Keple s Laws at the beginning of this chapte). Peiod Law The peiod of evolution T of a planet about the sun is elated to the majo axis the ellipse by 3 T = k A A of whee k is the same fo all planets. When Keple stated his peiod law fo planetay obits based on obsevation, he only noted the dependence on the lage mass of the sun. Since the mass of the sun is much geate than the mass of the planets, his obsevation is an excellent appoximation. Equation (7.6.6) can be ewitten in the fom Equation (7.6.7) can be integated as μ da = L. (7.6.7) dt μ da = L dt (7.6.8) obit T whee T is the peiod of the obit. Fo an ellipse, //9 78
19 Aea = da =π ab obit (7.6.9) whee a is the semimajo axis and b is the semimino axis. ( Appendix 7.D deives this esult fom Equation (7.3.).) Thus we have T μ π ab =. (7.6.) L Squaing Equation (7.6.) then yields T 4π μ ab =. (7.6.) L In Appendix 7.B, the angula momentum is given in tems of the semimajo axis and the eccenticity by Equation (B..). Substitution fo the angula momentum into Equation (7.6.) yields T 4π μ ab = μ Gm m a ( ε ). (7.6.) In Appendix 7.B, the semimino axis is given by Equation (B.3.7), which upon substitution into Equation (7.6.) yields T 3 4π μ a =. (7.6.3) μ Gm m Using Equation (7..) fo educed mass, the squae of the peiod of the obit is popotional to the semimajo axis cubed, T 4π a = G m 3 ( + m ). (7.6.4) 7.7 The Boh Atom Numeical values of physical constants ae fom the Paticle Data Goup tables, available fom //9 79
20 Conside the electic foce between two pointlike objects with chages q and q. The foce law is an invese squae law, like the gavitational foce. The diffeence is that the constant Gm m is eplaced by kq q whee 9 k = = N m C (7.7.) 4πε (the constant k is not a sping constant o the Boltzmann constant, meely a eflection of ou finite alphabet). The minus sign in the gavitational inteaction does not appea in the electic inteaction because thee ae two types of electic chage, positive and negative. The electic foce is attactive fo chages of opposite sign and epulsive fo chages of the same sign. Figue 7.8 Coulomb inteaction between two chages. q The foce on the chaged paticle of chage due to the electic inteaction between the two chaged paticles is given by Coulomb s law, qq F = ˆ ( ),, 4πε. (7.7.) Coulomb s Law povides an accuate desciption of the motion of chaged paticles when they ae not bound togethe. We cannot model the inteaction between the electon and the poton when the chaged paticles ae as close togethe as in the hydogen atom, since the Newtonian concept of foce is not welldefined at length scales associated with the size of atoms. Thus we need a new theoy, quantum mechanics, to explain the popeties of the atom. When the chaged paticles ae fa apat they ae essentially fee paticles and the quantum mechanical desciption of the bound system is not necessay. Theefoe the exact same method of solution that was used in the Keple Poblem fo obits of planets applies to the motion of chaged paticles. //9 7 
21 Fo a poton and an electon in a bound system, the hydogen atom, Niels Boh found a semiclassical agument that allows one to use the classical theoy of electic foces to pedict the obseved enegies of the hydogen atom. The following agument does not satisfy the pinciples of quantum mechanics, even though the esult is in easonable ageement with expeimentally detemined popeties of the hydogen atom. We begin ou discussion by ecalling ou esult, Equation (7.4.) fo the enegy of the gavitational system of two bodies when consideed as a single educed body of educed mass μ = mm /( m+ m) moving in one dimension, with the distance fom the cental point denoted by the vaiable, E = K + U (7.7.3) whee the ective potential enegy is L L U = U gavity G μ + = μ mm (7.7.4) and the ective kinetic enegy is K d = μ dt. (7.7.5) We can extend this desciption to the electic inteaction between the electon and poton of the hydogen atom by eplacing the constant Gmm with kqq, whee the chage of the poton is q = e, and the chage of the electon is q = e. The enegy is then given by d d L E = μ + U e = μ +. (7.7.6) dt dt μ 4πε Since the mass of the electon of the poton m p m e = kg is much smalle than the mass 7 =.6767 kg, the educed mass is appoximately the mass of the electon, μ m e. A schematic plot of the ective potential enegy as a function of the vaiable fo the hydogen atom is shown in Figue 7.9. //9 7 
22 Figue 7.9 Hydogen atom enegy diagam. Thee ae two impotant diffeences between the classical mechanical desciption of the possible obits unde a cental foce and a quantum mechanical desciption of the possible states of a hydogen atom. The fist diffeence is that the enegy E of the hydogen atom can only take on discete quantized values, unlike the classical case whee the enegy E can take on a continuous ange of values, negative fo cicula and elliptic bound obits, and positive fo hypebolic fee obits. The second diffeence is that thee ae additional states with the same value of enegy, but which have diffeent discete values of angula momentum, (and othe discete quantum popeties of the atom, fo example spin of the electon). Chemists identify these discete values of angula momentum by alphabetical labels ( s, p, d, f, g,...) while physicists label them by the obital angula momentum quantum numbes l =,,,.... We shall ty to estimate the enegy levels of the electon in the hydogen atom. We shall begin by assuming that the discete enegy states descibe cicula electon obits about the poton. (Quantum mechanics equies us to dop the notion that the electon can be thought of as a point paticle moving in an obit and eplace the paticle pictue with the idea that the electon s position can only be descibed by pobabilistic aguments.) Despite the unphysical natue of ou hypothesis, ou estimation of the enegy levels of the electon in the atom agee supisingly well with expeiment. The cicula obits coesponded to the situation descibed by This occus when E L e = ( U ) =. (7.7.7) μ 4πε min min //9 7 
23 du L e = 3 d = μ + 4πε. (7.7.8) Solving Equation (7.7.8) fo the adius of the obit, we find 4πε L =. (7.7.9) μ e We also note that the squae of the angula momentum is then μ e L =. (7.7.) 4πε We now make ou semiclassical assumption that the angula momentum assume discete values L can only h L= n. (7.7.) π 34 whee n is an intege, n =,,..., and h = kg m s is the Planck constant. With this assumption that the values L ae discete, Equation (7.7.) becomes nh μ e n = π 4πε (7.7.) whee n denotes the adii of the discete cicula obits, 4πε nh n =. (7.7.3) 4π μe The adii ae quantized, 4πε nh n = =n (7.7.4) 4π μe and equal to integal multiples of the gound state adius 4πεh = (7.7.5) 4π μe //9 73
24 whee, setting μ = me, the electon mass, is 34 ( 6.66 kg m s ) ( )( )( ) = 4π N m C 9.9 kg.6 C = 5.9 m to fou significant figues. The length as a o, pehaps counteintuitively, (7.7.6) is known as the Boh adius and is often given a, the latte notation indicating a nuclea mass of infinity, in which case, μ = me, as in the above calculation. We can substitute Equation (7.7.6) into Equation (7.7.7) and find that the enegy levels ae also quantized and given by E n L e μ e n e = = μn 4πε n 4πε μn n (7.7.7) e e. n πε n = = 4πε 4 Using Equation (7.7.5) fo E n, Equation (7.7.7) fo the enegy levels becomes e e = = = A (7.7.8) 4πε 4πε 4π μ 4πε 4 π μ nh e ( ) h n n whee, with μ = me, the constant A is given by A = π me 4 e h ( 4πε ) ( )( ) ( 34 ( 6.66 kg m s ) π 9.9 kg N m C.6 C = = 8.8 J ) (7.7.9) to fou significant figues. We can expess this enegy in tems of the enegy units of electonvolts ( ev ), whee an electonvolt is the enegy necessay to acceleate an electon with chage e acoss a potential enegy pe unit chage of volt ( volt = 9 9 ev =.6 C J C =.6 J and joule pe coulomb). Thus ( )( ) //9 74
25 ev A = = ( ) ( 9.6 J ) The enegy in Equation (7.7.8) can be witten as 8.8 J.36 ev. (7.7.) E n hc R = (7.7.) n whee R, the Rydbeg constant, is given by 8 (.8 J) 34 8 ( 6.66 kg m s )(.998 m s ) A R = = hc 7.97 m. = (7.7.) and c = m s is the speed of light. The fist few enegy levels ae shown in Figue 7., along with the enegy diffeence between the second and thid levels. The fist thee enegy levels ae E = 3.6 ev, E = 3.39 ev, E 3 =.5 ev. Figue 7. Enegy levels fo an electon in a hydogen atom Emission of light When an electon makes a tansition fom a highe enegy state E i to a lowe enegy state E f, light is emitted. The fequency of the emitted light is given by //9 75
26 f ΔE h E E f i = =. (7.7.3) h Using ou esult as given in Equation (7.7.8) fo the enegy levels, we have f = Rc n f n. (7.7.4) i The wavelength of the emitted light λ is elated to the fequency f of the light by f λ = c. (7.7.5) Thus the invese wavelength of the light is given by f = = R λ c. (7.7.6) nf n 7.7. Example: Calculate the wavelength of the light emitted when an electon in the enegy level n = 3 dops to the enegy level n =. Fom Equation (7.7.6) the wavelength is λ nn = = i f 3, R ni nf m. (7.7.7) The emitted light lies in the visible spectum and appeas ed to the human eye. //9 76
2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationRevision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More informationGravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More informationChapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43
Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationDerivation of Bohr s Equations for the Oneelectron Atom. F coulombic
Deivation of Boh s Equations fo the Oneelecton Atom Boh set about to devise a model that would explain the obseved line specta of oneelecton atoms, such as H, He +, Li 2+. The model Boh used was based
More informationThe Quantum Mechanical Nature of the Law of Universal Gravitation and the Law of Coulomb s Interactions
The Quantum echanical Natue of the Law of Univesal Gavitation and the Law of Coulomb s Inteactions Fayang Qiu Laboatoy of olecula Engineeing, and Laboatoy of Natual Poduct Synthesis, Guangzhou Institute
More informationPHYS2010: General Physics I Course Lecture Notes Section IX
PHYS200: Geneal Physics I Couse Lectue Notes Section IX D. Donald G. Luttemose East Tennessee State Univesity Edition 2.5 Abstact These class notes ae designed fo use of the instucto and students of the
More informationBrown University PHYS 0060 ELECTRIC POTENTIAL
INTRODUCTION ELECTRIC POTENTIL You have no doubt noticed that TV sets, light bulbs, and othe electic appliances opeate on 115 V, but electic ovens and clothes dyes usually need 220 V. atteies may be ated
More informationUniversal Gravitation
J  The Foce of Gavity Chapte J Univesal Gavitation Blinn College  Physics 45  Tey Honan Intoduction If Isaac Newton had meely witten down his thee laws of motion he would pobably still be known as the
More informationChapter 13 Gravitation
Chapte 13 Gavitation Newton, who extended the concept of inetia to all bodies, ealized that the moon is acceleating and is theefoe subject to a centipetal foce. He guessed that the foce that keeps the
More informationmv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !
Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!
More informationGravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationWorking with Gravity: Potential Energy
pevious index next Woking with Gavity: Potential negy Michael Fowle 31/1/07 Gavitational Potential negy nea the ath We fist biefly eview the familia subject of gavitational potential enegy nea the ath
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationChapter 5: Circular Motion : Earlier in the semester. Universal Law of Gravitation: Today. Newton s Universal Law of Gravitation
Chapte 5: Cicula otion : Ealie in the semeste Univesal Law of Gavitation: Today 1 Newton s Univesal Law of Gavitation 1 Newton s Law of Univesal Gavitation Fo a pai of point masses Diection: towads each
More informationLecture 19: Effective Potential, and Gravity
Lectue 19: Effective Potential, and Gavity The expession fo the enegy of centalfoce motion was: 1 ( ) l E = µ + U + µ We can teat this as a onedimensional poblem if we define an effective potential:
More informationCh. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth
Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More information3 The Electric Field Due to one or more Point Charges
Chapte 3 The lectic Field Due to one o moe Point Chages 3 The lectic Field Due to one o moe Point Chages A chaged paticle (a.k.a. a point chage, a.k.a. a souce chage) causes an electic field to exist in
More informationSection 39 Gravitational Potential Energy & General Relativity
Section 39 Gavitational Potential Enegy & Geneal elativity What is the univese made out of and how do the pats inteact? We ve leaned that objects do what they do because of foces, enegy, linea and angula
More informationThe Grating Spectrometer and Atomic Spectra
PHY 19 Gating Spectomete 1 The Gating Spectomete and Atomic Specta Intoduction In the pevious expeiment diffaction and intefeence wee discussed and at the end a diffaction gating was intoduced. In this
More information81 Newton s Law of Universal Gravitation
81 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,
More informationChapter 25 Electric Potential
Chapte 5 Electic Potential Can we apply the concept of potential, fist intoduced in mechanics, to electostatic system and find the law of consevation of enegy? We can define an electostatic potential enegy,
More informationChapter 13. VectorValued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates
13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. VectoValued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along
More informationCHAPTER 21 CENTRAL FORCES AND EQUIVALENT POTENTIAL
1 1.1 Intoduction CHAPTER 1 CENTRA FORCES AND EQUIVAENT POTENTIA Wen a paticle is in obit aound a point unde te influence of a cental attactive foce (i.e. a foce F () wic is diected towads a cental point,
More informationSchrödinger, 3. 2 y + 2. π y / L 2. )sin(n y. )sin(n z. n x. = 2 π 2 2 L 3 L 2 / 8.
Schödinge, 3 The 3D infinite squae well: quantum dots, wells, and wies In the peceding discussion of the Schödinge Equation the paticle of inteest was assumed to be moving in the x diection. Of couse,
More informationMechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
More informationProblem Set 5: Universal Law of Gravitation; Circular Planetary Orbits.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.01T Fall Tem 2004 Poblem Set 5: Univesal Law of Gavitation; Cicula Planetay Obits. Available online Octobe 1; Due: Octobe 12 at 4:00
More informationThe Schwarzschild Metric
The Schwazschild Metic Relativity and Astophysics Lectue 34 Tey Hete Outline Schwazschild metic Spatial pat Time pat Coodinate Fames Feefloat Shell Schwazschild bookkeepe Pinciple of Extemal Aging Consevation
More informationGRAVITATIONAL FIELD: CHAPTER 11. The groundwork for Newton s great contribution to understanding gravity was laid by three majors players:
CHAPT 11 TH GAVITATIONAL FILD (GAVITY) GAVITATIONAL FILD: The goundwok fo Newton s geat contibution to undestanding gavity was laid by thee majos playes: Newton s Law of Gavitation o gavitational and inetial
More informationA) 2 B) 2 C) 2 2 D) 4 E) 8
Page 1 of 8 CTGavity1. m M Two spheical masses m and M ae a distance apat. The distance between thei centes is halved (deceased by a facto of 2). What happens to the magnitude of the foce of gavity between
More informationOneelectron atom radial functions Notes on Quantum Mechanics
Oneelecton atom adial functions Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/oneelectonatomradialfunctions.pdf Last updated Fiday, Novembe 21, 2003 17:46:0905:00 Copyight 2003
More informationThe Effects of Moons on Saturn s Ring System
The Effects of Moons on Satun s Ring System Kisten Lason Physics Depatment, The College of Wooste, Wooste, Ohio 44691, USA (Dated: May 10, 007) The ing system of Satun is a complex inteaction between numeous
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More informationExam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
More informationPart 1. Electric Charges, Forces and Fields. Forces of nature or A short journey back to Physics 111. Chapter 17. Forces of Nature.
Foces of Natue Electic Chages, Foces and Fields Chapte 17 Electic Chage Coulomb s Law Electic Field Electic Field Lines Flux of an Electic Field Physics 111: Analysis of motion  3 key ideas Pat 1 Foces
More informationVoltage ( = Electric Potential )
V1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
More informationGEOSYNCHRONOUS EARTH SATELLITES
GEOSYNCHONOUS EATH SATELLITES Pehaps the most impotant contibution of the wold s space effots ove the last half centuy has been the advent of geosynchonous eath satellites. These devices have made global
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationElectric & Potential Fields
Electic & Potential Fields Pupose An electic field suounds any assemblage of chaged objects. To detemine the stength and diection of these fields, it is most convenient to fist map the electic potential
More informationGravitational Field and its Potential
Lectue 19 Monday  Octobe 17, 2005 Witten o last updated: Octobe 17, 2005 P441 Analytical Mechanics  I Gavitational Field and its Potential c Alex. Dzieba Isaac Newton What Isaac Newton achieved was tuly
More informationChapter 16 Gyroscopes and Angular Momentum
Chapte 16 Gyoscopes and Angula Momentum 16.1 Gyoscopes o fa, most of the examples and applications we have consideed concened the otation of igid bodies about a fixed axis, o a moving axis the diection
More informationThe Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
More informationRecap: Newton s Gravitational Law
Recap: Newton s Gavitational Law The gavitational foce between two objects is popotional to thei masses and invesely popotional to the squae of the distance between thei centes. F = G m 1 m (Newtons) F
More informationjfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt
Phone : 0 903 903 7779, 98930 58881 Gavitation Page: 8 fo/u fopkj Hkh# tu] ugha vkjehks dke] foif ns[k NksM+s qja e/;e eu dj ';kea iq#"k flag ladyi dj] lgs foif vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks
More informationEP 106 General Physics II
EP 06 Geneal Physics II Chapte : Electic Chage and Coulomb Law Electic chage Electic chage is a fundamental quantity. The unit of electic chage is called the coulomb (C), name afte Chales Coulomb, a ench
More informationNewton s Law of Universal Gravitation Every object in the universe is attracted to every other object. r 2
6//01 Newton s Law of Univesal Gavitation Evey object in the univese is attacted to evey othe object. Cavendish poves the law in 1798 F= Gm 1 m G = 6.67 X 1011 Nm /kg m 1 = mass of one object m = mass
More informationReview Module: Cross Product
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of hysics 801 Fall 2009 Review Module: Coss oduct We shall now intoduce ou second vecto opeation, called the coss poduct that takes any two vectos and geneates
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More informationStatic and Dynamic Balancing of a Piano Key
Static and Dynamic Balancing of a Piano Key Stephen Bikett 1 Copyight c 2003. All ights eseved. Two Simple Cases The basic pinciples of static and dynamic balancing can be illustated 2 by epesenting the
More informationSo we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)
Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing
More informationPhysics E1ax Solutions: Assignment for Feb. 3 Feb. 10 Homework #1: Electric Potential, Coulomb s Law, Equipotentials
Physics Eax Solutions: Assignment fo Feb. 3 Feb. 0 Homewok #: Electic Potential, Coulomb s Law, Equipotentials Afte completing this homewok assignment, you should be able to Undestand the diffeence between
More informationTHE GRAVITATIONAL FORCE INTRO
SECTION 4: THE RAVITATIONAL FORCE A INTRO In the Newtonian paadigm, the undestanding of fundamental pocesses becomes equivalent to a desciption of the foces at play in the Univese. It tuns out that ou
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More information(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7  Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
More informationConservation of Momentum II
Pupose: To veify the pinciples of Consevation of Momentum and Consevation of Enegy in Elastic and Inelastic Collisions, and to exploe Collisions in the Cente of Mass fame. Equipment: Cuved Tack Metal Ball
More informationDO PHYSICS ONLINE GRAVITATIONAL FIEDS
DO PHYSICS ONLIN SPAC GRAVITATIONAL FIDS NWTON S LAW OF UNIVRSAL GRAVITATION Newton's Univesal Law of Gavitation states that any two objects exet a gavitational foce of attaction on each othe. The diection
More informationChapter 35. Bohr Theory of Hydrogen HYDROGEN
Chapte 35 Boh Theoy of Hydogen CHAPTER 35 HYDROGEN BOHR THEORY OF The hydogen atom played a special ole in the histoy of physics by poviding the key that unlocked the new mechanics that eplaced Newtonian
More informationIntroduction to Electric Potential
Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic
More informationTANGENTS IN POLAR COORDINATES
TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS. Polacoodinate equations fo lines A pola coodinate system in the plane is detemined by a Pole P and a halfline called the pola
More informationSecond Order Equations
Chapte 2 Second Ode Equations 2 Second Deivatives in Science and Engineeing Second ode equations involve the second deivative d 2 y=dt 2 Often this is shotened to y, and then the fist deivative is y In
More informationThere are two kinds of charges, namely, positive (+) charge and negative ( ) charge. Like charges repel
Unit 4 Electic Foces, Fields and Cicuits 4 Electic chage 4 Coulomb s law 43 Shell theoems fo electostatics 44 Electic field 45 Electic field lines 46 Shielding and chaging by induction 47 Electic Cicuits
More informationRelativistic Theory of Black Holes
Relativistic Theoy of Black Holes Daniele Sasso * Abstact The gavitational theoy is the most accedited theoy fo explaining black holes. In this pape we pesent a new intepetation based on the elativistic
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More informationCentripetal Force. F c
18/P01 Laboatoy Objectives Centipetal Foce In this lab you will Equipment test Newton s nd Law as it applies to unifom cicula motion. detemine the eo in measuing peiod, adius, and mass and use these values
More information2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The twobody poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
More informationChapter 23: Gauss s Law
Chapte 3: Gauss s Law Homewok: Read Chapte 3 Questions, 5, 1 Poblems 1, 5, 3 Gauss s Law Gauss s Law is the fist of the fou Maxwell Equations which summaize all of electomagnetic theoy. Gauss s Law gives
More informationProblem Set 6: Solutions
UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 164 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente
More informationAP Physics Test Magnetic Fields; Sources of Magnetic Field
AP Physics Test Magnetic Fields; Souces of Magnetic Field Pat I. Multiple hoice (4 points each) hoose the one best answe to each of the following poblems. axis 2 A = 0.05 T 0.3 m 0.3 m 1 (AP). A squae
More informationMagnetic Forces. Physics 231 Lecture 71
Magnetic Foces Physics 231 Lectue 71 Magnetic Foces Chaged paticles expeience an electic foce when in an electic field egadless of whethe they ae moving o not moving Thee is anothe foce that chaged paticles
More informationLecture 16: 3D Potentials and the Hydrogen Atom
ectue 6, p ectue 6: 3D Potentials and the Hydogen Atom 4.5 g( ) x 4 x P() 4a = a z x 8 z y x n n n n n n m h E z y x ) ( ) ( ) ( ),, ( z y x z y x o a / 3 o e a ) ( 3 6 n ev. E n Oveview of the Couse Up
More informationLINES AND TANGENTS IN POLAR COORDINATES
LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Polacoodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and
More informationLab 5: Circular Motion
Lab 5: Cicula motion Physics 193 Fall 2006 Lab 5: Cicula Motion I. Intoduction The lab today involves the analysis of objects that ae moving in a cicle. Newton s second law as applied to cicula motion
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationChapter 3: Vectors and Coordinate Systems
Coodinate Systems Chapte 3: Vectos and Coodinate Systems Used to descibe the position of a point in space Coodinate system consists of a fied efeence point called the oigin specific aes with scales and
More informationLecture 8.1 Gravitation 1. Gravitational Force
Lectue 8.1 Gavitation 1. Gavitational oce Duing ou discussion of foces we talked about gavitational foce acting on any object nea the eath's suface. We have aleady leaned that this foce povides the sae
More informationGauss s Law. Gauss s law and electric flux. Chapter 24. Electric flux. Electric flux. Electric flux. Electric flux
Gauss s law and electic flux Gauss s Law Chapte 4 Gauss s law is based on the concept of flux: You can think of the flux though some suface as a measue of the numbe of field lines which pass though that
More informationReview Topics Lawrence B. Rees You may make a single copy of this document for personal use without written permission.
Review Topics Lawence. Rees 2006. You ma make a single cop of this document fo pesonal use without witten pemission. R.1 Vectos I assume that ou have alead studied vectos in pevious phsics couses. If ou
More informationChapter 23. The Electric Force
Chapte 3. The Electic oce Chapte 3. The Electic oce Coulomb's Law 31. Two balls each having a chage of 3 C ae sepaated by mm. What is the foce of epulsion between them? (9 x 1 N m /C )(3 x 1 C)(3 x 1
More informationChapter 13. Universal Gravitation
Chapte 13 Univesal Gavitation CHAPTER OUTLINE 13.1 Newton s Law of Univesal Gavitation 13.2 Measuing the Gavitational Constant 13.3 FeeFall Acceleation and the Gavitational Foce 13.4 Keple s Laws and
More informationGeneral Physics (PHY 2130)
Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:
More informationCopyright 2008 Pearson Education, Inc., publishing as Pearson AddisonWesley.
Chapte 5. Foce and Motion In this chapte we study causes of motion: Why does the windsufe blast acoss the wate in the way he does? The combined foces of the wind, wate, and gavity acceleate him accoding
More informationProblems on Force Exerted by a Magnetic Fields from Ch 26 T&M
Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuentcaying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to
More informationConservation of Momentum
Physics 7 Consevation of Momentum Intoduction Collisions occu all aound us and on many size scales. We obseve them in ou eveyday wold as ca accidents, battes hitting a baseball out of the ballpak, aindops
More informationModels of the Atom Thomson Plum Pudding Why? Known that negative charges can be removed from atom. Problem: Doesn t match spectral lines
3/3 Day 14: Questions? Atomic Models Magnets/magnetic moments StenGelach Expeiments PH300 Moden Physics SP11 If this nonsense of Boh should in the end pove to be ight, we will quit physics!!! Otto Sten
More information12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
More informationF G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
More informationGravitation and Kepler s Laws
3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente
More information8.4 Torque. Torque. Rotational Dynamics. ProblemSolving
8.4 oque oque otational Dynamics PoblemSolving We began this couse with chaptes on kinematics, the desciption of motion without asking about its causes. We then found that foces cause motion, and used
More informationChapter 25. Electric Potential
Chapte 25. lectic Potential Chapte 25. lectic Potential Wok and lectic Potential negy 251. n positively chaged plate is 30 mm above a negatively chaged plate, and the electic field intensity has a magnitude
More informationThe statement of the problem of factoring integer is as follows: Given an integer N, find prime numbers p i and integers e i such that.
CS 2942 Sho s Factoing Algoithm 0/5/04 Fall 2004 Lectue 9 Intoduction Now that we have talked about uantum Fouie Tansfoms and discussed some of thei popeties, let us see an application aea fo these ideas.
More informationPhysics 18 Spring 2011 Homework 9  Solutions Wednesday March 16, 2011
Physics 18 Sping 2011 Homewok 9  s Wednesday Mach 16, 2011 Make sue you name is on you homewok, and please box you final answe. Because we will be giving patial cedit, be sue to attempt all the poblems,
More information2008 QuarterFinal Exam Solutions
2008 Quatefinal Exam  Solutions 1 2008 QuateFinal Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of
More informationVersion 001 Review 4 Electric Force, Magnetic fields tubman (19112) 1
Vesion 001 Review 4 Electic Foce, Magnetic fields tubman (19112) 1 This pintout should have 42 questions. Multiplechoice questions may continue on the next column o page find all choices befoe answeing.
More informationResources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics
3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gapsystem.og/~histoy/mathematicians/ Newton.html http://www.fga.com http://www.clke.com/clipat
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More information