Treatment Spring Late Summer Fall Mean = 1.33 Mean = 4.88 Mean = 3.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3."

Transcription

1 The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only two groups t time. Scientists often find tht they need to compre the mens of three or more groups. The sttisticl hypothesis test used to compre the mens of three or more groups is the nlysis of vrince (ANOVA). ANOVA: n exmple ANOVA clcultions re tedious enough tht they re rrely done by hnd, but there is no better wy to relly understnd this prticulr sttisticl test. As n exmple, consider gin the issue of the role of controlled fire in pririe restortions. One prticulrly contentious issue mong restortion ecologists is the timing of pririe burns. Although nturl fires my primrily hve been sprked by lte-summer lightening strikes, most controlled burns re done during the spring or fll. The timing of burning my strongly influence the outcome of pririe restortions becuse burns done t different times of yer cn fvor drmticlly different plnt species. As scientists, you cn collect dt to help resolve such issues. For exmple, you could collect dt to nswer the following question: How does the timing of controlled burns influence the biomss of desirble pririe plnt species? An exmple of the dt you might collect is in Tble 2, below. Tble 2. Totl biomss (g) of Rudbecki hirt (Blck-eyed Susn) growing in ech of 15, 0.5 m 2 plots. One third of the plots were burned in the spring, lte summer, nd fll of 1998, respectively. All plots were smpled during summer Tretment Spring Lte Summer Fll Men = 1.33 Men = 4.88 Men = 3.52 Before we go ny further, we need to stte null nd lterntive hypotheses. For exmple, the null hypothesis could be H 0 : The timing of controlled burning does not influence biomss of Rudbecki hirt. While the lterntive hypothesis could red s follows: H A : The timing of controlled burns influences the biomss of Rudbecki hirt. ANOVA: clcultions To nlyze these dt using n ANOVA, you first need to clculte the grnd men. The grnd men is simply fncy term for the men of ll of your observtions, regrdless of group. The grnd men cn be clculted using the following formul: 46

2 ! 1 n "" n Where is the number of groups, n is the number of observtions within ech group, nd is single observtion. Applying this formul to our pririe burn dt, where = 3 nd n = 5, gives the following grnd men:! 1 $ 0.10 # 0.61#1.91# 2.99 #1.06 # 5.56 #...# 3.53 # 3.85 # 3.01# 2.13# 2.50 # 6.10%! Once you hve clculted the grnd men, you need to clculte the sum of squres mong groups (SS mong ). The SS mong is n estimte of the vrition mong your groups or, more precisely, n estimte of the devition of the group mens from the grnd men. The SS mong cn be clculted using the following formul: SS mong! n " $ & % 2 Where is the number of groups, n is the number of observtions within ech group, nd is the men of ech group. Applying this formul to our pririe burn dt, where = 3 nd n = 5, gives the following SS mong : SS mong! 5$ 3.52& 3.24% 2 # $ 1.33 & 3.24% 2 # $ 4.88 & 3.24% 2 %! The lst thing you need to clculte is the sum of squres within groups (SS within ). The SS within is n estimte of the vrition mong observtions within groups, or, more precisely, n estimte of the devition of the observtions within ech group from the group men. The SS within cn be clculted using the following formul: SS within! "" n $ &% 2 Where is the number of groups, n is the number of observtions within ech group, is n individul observtion, nd is the men of ech group. Applying this formul to our pririe burn dt, where = 3 nd n = 5, gives the following SS within : SS within! $ 0.10 &1.33% 2 # $ 0.61&1.33% 2 #...# (2.50 & 3.52) 2 # $ 6.10 & 3.52% 2! ANOVA: the F-vlue The test sttistic for n ANOVA is clled n F-vlue. The F-vlue for n AVOVA is clculted using the 47

3 following formul: F! '( SS mong *( )( &1 +( '( SS within *( )( (n &1) +( Where is the number of groups nd n is the number of observtions within ech group. Applying this formul to our pririe burn dt, where = 3 nd n = 5, gives the following F-vlue: F! $ % $ %! If you look t the formul for the F-vlue, you cn see tht it is essentilly the rtio of the vrition mong groups to the vrition within groups. If the vrition mong groups is reltively lrge compred to the vrition within groups, then the F-vlue will be reltively lrge. A reltively lrge F-vlue suggests tht the vrition mong groups is lrgely cused by given vrible or experimentl mnipultion (in our exmple, the timing of burning), rther thn chnce vrition. If the vrition mong groups is similr to the vrition within groups, the F-vlue will be reltively smll. A reltively smll F- vlue suggests tht the difference mong groups is lrgely due to chnce nturl vrition nd mesurement error, rther thn to given vrible or mnipultion. This interprettion of n F-vlue should sound fmilir to you, becuse it is very similr to the interprettion of t-sttistic discussed bove. ANOVA: EXCEL output For dt set of ny size, n ANOVA is extremely tedious to clculte by hnd. As such, you will be using EXCEL to do ANOVAs (see below). The EXCEL ANOVA output for our pririe burn study is inserted below: ANOVA Source of SS Df MS F P-vlue F crit Vrition Between Groups Within Groups Totl By custom, the results of n ANOVA re expressed in the bove formt, which not surprisingly is clled n ANOVA tble. As you cn see, this tble contins the (now fmilir to you) estimtes of the SS mong, SS within, nd F-vlue (the vlues in this tble re not identicl to the vlues clculted erlier in this hndout becuse of rounding error in the hnd clcultions). It lso contins the ssocited P-vlue. To review, P-vlue rnges from 0 to 1, nd is the probbility of clculting given test sttistic ssuming tht the mens of your groups re identicl. The lrger the test sttistic is, the lower the chnce (P) tht tht n observed difference mong groups is due to chnce environmentl vrition, nd the greter the chnce tht difference hs biologicl custion. With smple size of 15 observtions, the probbility tht the differences we see mong spring, lte summer, nd fll burns re due to chnce lone is This vlue is bolded in the EXCEL output. Tht is, the p-vlue equls We cn therefore reject the null hypothesis tht burning seson hs no effect on R. hirt biomss, nd ccept the lterntive 48

4 hypothesis tht it burning seson does ffect R. hirt biomss. If the p-vlue for our F-vlue hd been >0.05, then we would hve ccepted tht null hypothesis. Note tht the ANOVA does not tell you nything bout pirwise differences between groups, only if there re overll differences mong ll groups. There re procedures tht cn be done fter n ANOVA tht test for pirwise differences between groups, but they re beyond the scope of this hndbook. How to do n ANOVA in EXCEL 1. Enter your dt so tht ech group is in seprte column. Lbel your columns ppropritely. For exmple, in our pririe burn exmple, the columns could be lbeled "spring", "lte summer", nd "fll". How to do n ANOVA in Minitb 1. Enter your dt so tht one lbeled column contins the grouping vrible (e.g., for the pririe burn exmple, the entries in this column could be spring, summer, nd fll ) nd second lbeled column contins the dependent vrible. 2. Click on Tools > Dt nlysis > Anov: single fctor. If the Dt nlysis module is not vilble in the Tools menu, click on Add-ins nd instll the Anlysis ToolPk. 2. Select Stt > ANOVA > generl liner model. 3. In the dilog window, plce the dependent vrible in the response box. The dependent vrible is wht you mesure. In this cse biomss is the dependent vrible. Plce the grouping vrible in the model box. The grouping vrible is the sme s the independent vrible or tretment, so in this exmple it would be seson. 3. Input the rnge of your dt by highlighting ll of your dt (including lbels). Click Lbels, then click OK. The ANOVA output should pper on the screen 4. Click OK to view the ANOVA output. 49

5 Exmple problems Crry out ANOVAs for the following dt sets: 1. Three different methods were used to mesure dissolved oxygen (mg/kg) content of lke wter. (Dt from JH Zr's Biosttisticl Anlysis, 4 th ed.) Method Number of eggs lid per femle per dy for femles from ech of three lines of Drosophili melnogster. The RS nd SS lines were selected for resistnce nd susceptibility to DDT. The NS line is the nonselected control. (Dt from RR Sokl nd FJ Rohlf's Biometry, 3 rd ed.) Line RS SS NS Strontium concentrtions (mg/ml) in three different bodies of wter. (Dt from JH Zr's Biosttisticl Anlysis, 4 th ed.) Gryson's Pond Bever Lke Angler's Cove

Tests for One Poisson Mean

Tests for One Poisson Mean Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution

More information

On the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding

On the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

Biostatistics 103: Qualitative Data Tests of Independence

Biostatistics 103: Qualitative Data Tests of Independence Singpore Med J 2003 Vol 44(10) : 498-503 B s i c S t t i s t i c s F o r D o c t o r s Biosttistics 103: Qulittive Dt Tests of Independence Y H Chn Prmetric & non-prmetric tests (1) re used when the outcome

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

N Mean SD Mean SD Shelf # Shelf # Shelf #

N Mean SD Mean SD Shelf # Shelf # Shelf # NOV xercises smple of 0 different types of cerels ws tken from ech of three grocery store shelves (1,, nd, counting from the floor). summry of the sugr content (grms per serving) nd dietry fiber (grms

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

DISSOLVED INORGANIC CARBON DIC

DISSOLVED INORGANIC CARBON DIC 1 Chpter 2 Geochemicl Rections DISSOLVED INORGANIC CARBON Inorgnic or minerlized crbon in its most oxidized stte crries vlence of 4. In minerls C 4 coordintes covlently with oxygen toms s the crbonte nion

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report DlNBVRGH + + THE CITY OF EDINBURGH COUNCIL Sickness Absence Monitoring Report Executive of the Council 8fh My 4 I.I...3 Purpose of report This report quntifies the mount of working time lost s result of

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chpter 4 Newton s 2 nd Lw Nme: Lb Prtner: Section: 4.1 Purpose In this experiment, Newton s 2 nd lw will be investigted. 4.2 Introduction How does n object chnge its motion when force is pplied? A force

More information

Lecture 3 Basic Probability and Statistics

Lecture 3 Basic Probability and Statistics Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

14.2. The Mean Value and the Root-Mean-Square Value. Introduction. Prerequisites. Learning Outcomes

14.2. The Mean Value and the Root-Mean-Square Value. Introduction. Prerequisites. Learning Outcomes he Men Vlue nd the Root-Men-Squre Vlue 4. Introduction Currents nd voltges often vry with time nd engineers my wish to know the men vlue of such current or voltge over some prticulr time intervl. he men

More information

Plotting and Graphing

Plotting and Graphing Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured

More information

PRACTICE 7: DETERMINATION BY VOLUMETRIC TECHNICS OF ALKALINITY IN WATER SAMPLES

PRACTICE 7: DETERMINATION BY VOLUMETRIC TECHNICS OF ALKALINITY IN WATER SAMPLES Áre de Toxicologí PRACTICE 7: DETERMINATION BY VOLUMETRIC TECHNICS OF ALKALINITY IN WATER SAMPLES OVERVIEW Prcticl ctivity of the Áre of Toxicologí Universidd Miguel Hernández de Elche Environmentl Anlytic

More information

CHAPTER 5a. SIMULTANEOUS LINEAR EQUATIONS

CHAPTER 5a. SIMULTANEOUS LINEAR EQUATIONS CHAPTER 5. SIMULTANEOUS LINEAR EQUATIONS A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering by Dr. Ibrhim A. Asskkf Spring 00 ENCE 0 - Computtion Methods in Civil Engineering

More information

4.0 5-Minute Review: Rational Functions

4.0 5-Minute Review: Rational Functions mth 130 dy 4: working with limits 1 40 5-Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Chapter 8 - Practice Problems 1

Chapter 8 - Practice Problems 1 Chpter 8 - Prctice Problems 1 MULTIPLE CHOICE. Choose the one lterntive tht best completes the sttement or nswers the question. A hypothesis test is to be performed. Determine the null nd lterntive hypotheses.

More information

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists. Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix

More information

STA 2023 Test #3 Practice Multiple Choice

STA 2023 Test #3 Practice Multiple Choice STA 223 Test #3 Prctice Multiple Choice 1. A newspper conducted sttewide survey concerning the 1998 rce for stte sentor. The newspper took rndom smple (ssume it is n SRS) of 12 registered voters nd found

More information

Unit 29: Inference for Two-Way Tables

Unit 29: Inference for Two-Way Tables Unit 29: Inference for Two-Wy Tbles Prerequisites Unit 13, Two-Wy Tbles is prerequisite for this unit. In ddition, students need some bckground in significnce tests, which ws introduced in Unit 25. Additionl

More information

COMPARISON OF SOME METHODS TO FIT A MULTIPLICATIVE TARIFF STRUCTURE TO OBSERVED RISK DATA BY B. AJNE. Skandza, Stockholm ABSTRACT

COMPARISON OF SOME METHODS TO FIT A MULTIPLICATIVE TARIFF STRUCTURE TO OBSERVED RISK DATA BY B. AJNE. Skandza, Stockholm ABSTRACT COMPARISON OF SOME METHODS TO FIT A MULTIPLICATIVE TARIFF STRUCTURE TO OBSERVED RISK DATA BY B. AJNE Skndz, Stockholm ABSTRACT Three methods for fitting multiplictive models to observed, cross-clssified

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Biostatistics 102: Quantitative Data Parametric & Non-parametric Tests

Biostatistics 102: Quantitative Data Parametric & Non-parametric Tests Singpore Med J 2003 Vol 44(8) : 391-396 B s i c S t t i s t i c s F o r D o c t o r s Biosttistics 102: Quntittive Dt Prmetric & Non-prmetric Tests Y H Chn In this rticle, we re going to discuss on the

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Geometry Notes SIMILAR TRIANGLES

Geometry Notes SIMILAR TRIANGLES Similr Tringles Pge 1 of 6 SIMILAR TRIANGLES Objectives: After completing this section, you shoul be ble to o the following: Clculte the lengths of sies of similr tringles. Solve wor problems involving

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Economics Letters 65 (1999) 9 15. macroeconomists. a b, Ruth A. Judson, Ann L. Owen. Received 11 December 1998; accepted 12 May 1999

Economics Letters 65 (1999) 9 15. macroeconomists. a b, Ruth A. Judson, Ann L. Owen. Received 11 December 1998; accepted 12 May 1999 Economics Letters 65 (1999) 9 15 Estimting dynmic pnel dt models: guide for q mcroeconomists b, * Ruth A. Judson, Ann L. Owen Federl Reserve Bord of Governors, 0th & C Sts., N.W. Wshington, D.C. 0551,

More information

c. Values in statements are broken down by fiscal years; many projects are

c. Values in statements are broken down by fiscal years; many projects are Lecture 18: Finncil Mngement (Continued)/Csh Flow CEE 498 Construction Project Mngement L Schedules A. Schedule.of Contrcts Completed See Attchment # 1 ll. 1. Revenues Erned 2. Cost of Revenues 3. Gross

More information

MATLAB: M-files; Numerical Integration Last revised : March, 2003

MATLAB: M-files; Numerical Integration Last revised : March, 2003 MATLAB: M-files; Numericl Integrtion Lst revised : Mrch, 00 Introduction to M-files In this tutoril we lern the bsics of working with M-files in MATLAB, so clled becuse they must use.m for their filenme

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Net Change and Displacement

Net Change and Displacement mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the

More information

Sequences and Series

Sequences and Series Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

NOTES AND CORRESPONDENCE. Uncertainties of Derived Dewpoint Temperature and Relative Humidity

NOTES AND CORRESPONDENCE. Uncertainties of Derived Dewpoint Temperature and Relative Humidity MAY 4 NOTES AND CORRESPONDENCE 81 NOTES AND CORRESPONDENCE Uncertinties of Derived Dewpoint Temperture nd Reltive Humidity X. LIN AND K. G. HUBBARD High Plins Regionl Climte Center, School of Nturl Resource

More information

1 Numerical Solution to Quadratic Equations

1 Numerical Solution to Quadratic Equations cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Generalized Inverses: How to Invert a Non-Invertible Matrix

Generalized Inverses: How to Invert a Non-Invertible Matrix Generlized Inverses: How to Invert Non-Invertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax

More information

Addition and subtraction of rational expressions

Addition and subtraction of rational expressions Lecture 5. Addition nd subtrction of rtionl expressions Two rtionl expressions in generl hve different denomintors, therefore if you wnt to dd or subtrct them you need to equte the denomintors first. The

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

MATLAB Workshop 13 - Linear Systems of Equations

MATLAB Workshop 13 - Linear Systems of Equations MATLAB: Workshop - Liner Systems of Equtions pge MATLAB Workshop - Liner Systems of Equtions Objectives: Crete script to solve commonly occurring problem in engineering: liner systems of equtions. MATLAB

More information

Arc Length. P i 1 P i (1) L = lim. i=1

Arc Length. P i 1 P i (1) L = lim. i=1 Arc Length Suppose tht curve C is defined by the eqution y = f(x), where f is continuous nd x b. We obtin polygonl pproximtion to C by dividing the intervl [, b] into n subintervls with endpoints x, x,...,x

More information

Quadratic Equations. Math 99 N1 Chapter 8

Quadratic Equations. Math 99 N1 Chapter 8 Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree

More information

pork.org Pork Industry Productivity Analysis National Pork Board Research Grant Report Dr. Kenneth J. Stalder, Iowa State University

pork.org Pork Industry Productivity Analysis National Pork Board Research Grant Report Dr. Kenneth J. Stalder, Iowa State University pork.org 800-456-7675 Complete REPORT Pork Industry Productivity Anlysis Ntionl Pork Bord Reserch Grnt Report Dr. Kenneth J. Stlder, Iow Stte University Industry Summry The swine industry, like ny industry,

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Mechanics Cycle 1 Chapter 5. Chapter 5

Mechanics Cycle 1 Chapter 5. Chapter 5 Chpter 5 Contct orces: ree Body Digrms nd Idel Ropes Pushes nd Pulls in 1D, nd Newton s Second Lw Neglecting riction ree Body Digrms Tension Along Idel Ropes (i.e., Mssless Ropes) Newton s Third Lw Bodies

More information

Diffraction and Interference of Light

Diffraction and Interference of Light rev 12/2016 Diffrction nd Interference of Light Equipment Qty Items Prt Number 1 Light Sensor CI-6504 1 Rotry Motion Sensor CI-6538 1 Single Slit Set OS-8523 1 Multiple Slit Set OS-8523 1 Liner Trnsltor

More information

1.2 c. = or 58.7% Similarly weight fraction of Se is. = or 41.3%

1.2 c. = or 58.7% Similarly weight fraction of Se is. = or 41.3% 1. c Consider the semiconducting II-VI compound cdmium selenide,. Given the tomic msses of nd, find the weight frctions of nd in the compound nd grms of nd needed to mke 100 grms of. The tomic mss of nd

More information

Stat 301 Review (Test 2)

Stat 301 Review (Test 2) Stt 31 Review (Test 2) Below is tble of the tests tht we covered in chpters 6, 7, 12 nd 13. You will need to know the following for ech of the tests 1. Given problem, which test should be used? 2. How

More information

Education Spending (in billions of dollars) Use the distributive property.

Education Spending (in billions of dollars) Use the distributive property. 0 CHAPTER Review of the Rel Number System 96. An pproximtion of federl spending on eduction in billions of dollrs from 200 through 2005 cn be obtined using the e xpression y = 9.0499x - 8,07.87, where

More information

AMTH247 Lecture 16. Numerical Integration I

AMTH247 Lecture 16. Numerical Integration I AMTH47 Lecture 16 Numericl Integrtion I 3 My 006 Reding: Heth 8.1 8., 8.3.1, 8.3., 8.3.3 Contents 1 Numericl Integrtion 1.1 Monte-Crlo Integrtion....................... 1. Attinble Accurcy.........................

More information

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

Using Definite Integrals

Using Definite Integrals Chpter 6 Using Definite Integrls 6. Using Definite Integrls to Find Are nd Length Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: How

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.

11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π. . Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for

More information

2013 Flax Weed Control Trial

2013 Flax Weed Control Trial 2013 Flx Weed Control Tril Dr. Hether Drby, UVM Extension Agronomist Susn Monhn, Conner Burke, Eric Cummings, nd Hnnh Hrwood UVM Extension Crops nd Soils Technicins 802-524-6501 Visit us on the web: http://www.uvm.edu/extension/cropsoil

More information

The Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof.

The Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof. The Prllelogrm Lw Objective: To tke students through the process of discovery, mking conjecture, further explortion, nd finlly proof. I. Introduction: Use one of the following Geometer s Sketchpd demonstrtion

More information

Contextualizing NSSE Effect Sizes: Empirical Analysis and Interpretation of Benchmark Comparisons

Contextualizing NSSE Effect Sizes: Empirical Analysis and Interpretation of Benchmark Comparisons Contextulizing NSSE Effect Sizes: Empiricl Anlysis nd Interprettion of Benchmrk Comprisons NSSE stff re frequently sked to help interpret effect sizes. Is.3 smll effect size? Is.5 relly lrge effect size?

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Random Variables and Cumulative Distribution

Random Variables and Cumulative Distribution Probbility: One Rndom Vrible 3 Rndom Vribles nd Cumultive Distribution A probbility distribution shows the probbilities observed in n experiment. The quntity observed in given tril of n experiment is number

More information

Content Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem

Content Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem Pythgors Theorem S Topic 1 Level: Key Stge 3 Dimension: Mesures, Shpe nd Spce Module: Lerning Geometry through Deductive Approch Unit: Pythgors Theorem Student ility: Averge Content Ojectives: After completing

More information

Project Recovery. . It Can Be Done

Project Recovery. . It Can Be Done Project Recovery. It Cn Be Done IPM Conference Wshington, D.C. Nov 4-7, 200 Wlt Lipke Oklhom City Air Logistics Center Tinker AFB, OK Overview Mngement Reserve Project Sttus Indictors Performnce Correction

More information

Basically, logarithmic transformations ask, a number, to what power equals another number?

Basically, logarithmic transformations ask, a number, to what power equals another number? Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In

More information

Rational Expressions

Rational Expressions C H A P T E R Rtionl Epressions nformtion is everywhere in the newsppers nd mgzines we red, the televisions we wtch, nd the computers we use. And I now people re tlking bout the Informtion Superhighwy,

More information

Why is the NSW prison population falling?

Why is the NSW prison population falling? NSW Bureu of Crime Sttistics nd Reserch Bureu Brief Issue pper no. 80 September 2012 Why is the NSW prison popultion flling? Jcqueline Fitzgerld & Simon Corben 1 Aim: After stedily incresing for more thn

More information

Solar and Lunar Tides

Solar and Lunar Tides Solr nd Lunr Tides evised, Corrected, Simplified Copyriht Steve Olh, Irvine, CA, 009 solh@cox.net Keywords: Tide, Lunr Tide, Solr Tide, Tidl Force Abstrct Solr nd lunr tides were prt of life since there

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

Continuous probability distributions

Continuous probability distributions Chpter 8 Continuous probbility distributions 8.1 Introduction In Chpter 7, we explored the concepts of probbility in discrete setting, where outcomes of n experiment cn tke on only one of finite set of

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn Interntionl Institute of Technology Thmmst University t Rngsit School of Informtion, Computer nd Communiction Technology COURSE : ECS 204 Bsic Electricl Engineering L INSTRUCTOR : Asst. Prof.

More information

Exponents base exponent power exponentiation

Exponents base exponent power exponentiation Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

More information

Solutions to Section 1

Solutions to Section 1 Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this

More information

Well say we were dealing with a weak acid K a = 1x10, and had a formal concentration of.1m. What is the % dissociation of the acid?

Well say we were dealing with a weak acid K a = 1x10, and had a formal concentration of.1m. What is the % dissociation of the acid? Chpter 9 Buffers Problems 2, 5, 7, 8, 9, 12, 15, 17,19 A Buffer is solution tht resists chnges in ph when cids or bses re dded or when the solution is diluted. Buffers re importnt in Biochemistry becuse

More information

1 of 7 9/14/15, 10:27 AM

1 of 7 9/14/15, 10:27 AM Stuent: Dte: Instructor: Doug Ensle Course: MAT117 1 Applie Sttistics - Ensle Assignment: Online 6 - Section 3.2 1 of 7 9/14/15, 1:27 AM 1. 2 of 7 9/14/15, 1:27 AM The t on the right shows the percent

More information

J4.12 REGIONAL HYDROLOGICAL CYCLE AND WEATHER AND CLIMATE IN THE CONTIGUOUS UNITED STATES

J4.12 REGIONAL HYDROLOGICAL CYCLE AND WEATHER AND CLIMATE IN THE CONTIGUOUS UNITED STATES J4.12 REGIONAL HYDROLOGICAL CYCLE AND WEATHER AND CLIMATE IN THE CONTIGUOUS UNITED STATES 1. INTRODUCTION i Hu 1 nd Song Feng Climte nd Bio-Atmospheric Sciences rogrm School of Nturl Resource Sciences

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Algorithms Chapter 4 Recurrences

Algorithms Chapter 4 Recurrences Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering

More information

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function. Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

Chapter 6 Solving equations

Chapter 6 Solving equations Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign

More information

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep. Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

Two special Right-triangles 1. The

Two special Right-triangles 1. The Mth Right Tringle Trigonometry Hndout B (length of ) - c - (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Right-tringles. The

More information

2011 Organic Soybean Variety Trial

2011 Organic Soybean Variety Trial 2011 Orgnic Soyben Vriety Tril Dr. Hether Drby, UVM Extension Agronomist Hnnh Hrwood, Amber Domin, Roslie Mdden, Eric Cummings, nd Amnd Gervis UVM Extension Crop nd Soil Technicins (802) 524-6501 Visit

More information

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, } ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All

More information

Millikan Oil Drop Data Analysis:

Millikan Oil Drop Data Analysis: Millikn Oil Drop Dt Anlysis: The experiment consists o rising tiny, electriclly chrged oil drop in n electric ield nd then lowering it gin. To rise it you pply constnt electric ield on the drop tht orces

More information

2 If a branch is prime, no other factors

2 If a branch is prime, no other factors Chpter 2 Multiples, nd primes 59 Find the prime of 50 by drwing fctor tree. b Write 50 s product of its prime. 1 Find fctor pir of the given 50 number nd begin the fctor tree (50 = 5 10). 5 10 2 If brnch

More information