16. Mean Square Estimation

Size: px
Start display at page:

Download "16. Mean Square Estimation"

Transcription

1 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble d epesets uow dom vble he poblem s to obt good estmte fo tems of the obsevtos Let ˆ ϕ ϕ 6- epeset such estmte fo Note tht ϕ c be le o ole fucto of the obsevto Clely ˆ ϕ epesets the eo the bove estmte d the sque of 6-

2 the eo Sce s dom vble epesets the me sque eo Oe sttegy to obt good estmto would be to mme the me sque eo by vyg ove ll possble foms of ϕ d ths pocedue gves se to the Mmto of the Me Sque o MMS cteo fo estmto hus ude MMS cteothe estmto ϕ s chose such tht the me sque eo s t ts mmum Net we show tht the codtol me of gve s the best estmto the bove sese heoem: Ude MMS cteo the best estmto fo the uow tems of s gve by the codtol me of gves hus ˆ ϕ 6-3 Poof : Let ˆ ϕ epeset estmte of tems of he the eo d the me sque ˆ eo s gve by ˆ ϕ 6-4

3 Sce [ ] [ we c ewte 6-4 s ] 6-5 ϕ [ ϕ ] whee the e epectto s wth espect to d the oute oe s wth espect to hus [ ϕ ] ϕ f o obt the best estmto ϕ we eed to mme 6-6 wth espect to ϕ I 6-6 sce f ϕ d the vble ϕ ppes oly the tegd tem mmto of the me sque eo 6-6 wth espect to ϕ s equvlet to mmto of ϕ wth espect to ϕ d 6-6 3

4 Sce s fed t some vlue ϕ s o loge dom d hece mmto of ϕ s equvlet to hs gves ϕ ϕ 6-7 o ϕ But ϕ 6-8 ϕ ϕ 6-9 sce whe ϕ s fed umbe ϕ Usg 6-9 4

5 6-8 we get the desed estmto to be ˆ ϕ hus the codtol me of gve epesets the best estmto fo tht mmes the me sque eo he mmum vlue of the me sque eo s gve by 6- m [ ] v v 6-3 As emple suppose s the uow he the best MMS estmto s gve by ˆ Clely f the deed ˆ 3 s the best estmto fo 6-5

6 tems of hus the best estmto c be ole Net we wll cosde less tvl emple mple : Let y < < y < f y othewse whee > s sutble omlto costt o deteme the best estmte fo tems of we eed y f f y dy y ydy f < < hus f y y y f y ; < < y < f / 6-3 Hece the best MMS estmto s gve by y 6

7 7 Oce g the best estmto s ole I geel the best estmto s dffcult to evlute d hece et we wll eme the specl subclss of best le estmtos Best Le stmto I ths cse the estmto s le fucto of the obsevtos hus whee e uow quttes to be detemed he me sque eo s gve by ˆ 3 3 y dy y dy y dy y f y y ϕ 6-4 ˆ l ˆ 6-5 ˆ l

8 ˆ l 6-6 d ude the MMS cteo should be chose so tht the me sque eo s t ts mmum possble vlue Let epeset tht mmum possble vlue he m 6-7 o mme 6-6 we c equte hs gves 6-8 But 6-9 8

9 6- Substtutg 6-9 to 6-8 we get o the best le estmto must stsfy 6- Notce tht 6- epesets the estmto eo d epesets the dt hus fom 6- the eo s othogol to the dt fo the best le estmto hs s the othogolty pcple I othe wods the le estmto 6-5 the uow costts must be selected such tht the eo 9

10 s othogol to evey dt fo the best le estmto tht mmes the me sque eo Iteestgly geel fom of the othogolty pcple holds good the cse of ole estmtos lso Nole Othogolty Rule: Let h epeset y fuctol fom of the dt d the best estmto fo gve Wth e we shll show tht mplyg tht e hs follows sce eh eh h [ h h h ] h [ [ h ] h ] h 6-

11 hus the ole veso of the othogolty ule the eo s othogol to y fuctol fom of the dt he othogolty pcple 6- c be used to obt the uows the le cse Fo emple suppose d we eed to estmte tems of lely hus Fom 6- the othogolty ule gves hus o d ˆ l

12 6-3 c be solved to obt tems of the cosscoeltos he mmum vlue of the me sque eo 6-7 s gve by But usg 6- the secod tem 6-4 s eo sce the eo s othogol to the dt whee e chose to be optmum hus the mmum vlue of the me sque eo s gve by d 6-3 m m m m m l 6-4

13 whee e the optmum vlues fom 6- Sce the le estmte 6-5 s oly specl cse of the geel estmto ϕ 6- the best le estmto tht stsfes 6- cot be supeo to the best ole estmto Ofte the best le estmto wll be feo to the best estmto 6-3 hs ses the followg questo Ae thee stutos whch the best estmto 6-3 lso tus out to be le? I those stutos t s eough to use 6- d obt the best le estmtos sce they lso epeset the best globl estmtos Such s the cse f d e dstbuted s jotly Guss We summe ths the et theoem d pove tht esult heoem: If d e jotly Guss eo 6-5 3

14 me dom vbles the the best estmte fo tems of s lwys le Poof : Let ˆ ϕ 6-6 epeset the best possbly ole estmte of d l ˆ 6-7 the best le estmte of he fom 6- l s othogol to the dt hus Also fom

15 Usg we get 6-3 Fom 6-3 we obt tht d e eo me ucoelted dom vbles fo But tself epesets Guss dom vble sce fom 6-8 t epesets le combto of set of jotly Guss dom vbles hus d e jotly Guss d ucoelted dom vbles As esult d e depedet dom vbles hus fom the depedece 6-3 But fom 6-3 d hece fom Substtutg 6-8 to 6-33 we get 5

16 o Fom 6-6 ϕ epesets the best possble estmto d fom 6-8 epesets the best le estmto hus the best le estmto s lso the best possble ovell estmto the Guss cse Net we tu ou tteto to pedcto poblems usg le estmtos Le Pedcto Suppose e ow d s uow hus d ths epesets oe-step pedcto poblem If the uow s the t epesets -step hed pedcto poblem Retug bc to the oe-step pedcto let ˆ epeset the best le pedcto he l

17 7 whee the eo s othogol to the dt e Usg we get Suppose epesets the smple of wde sese sttoy 6-35 ˆ ˆ

18 8 stochstc pocess so tht hus 6-38 becomes pdg 6-4 fo we get the followg set of le equtos Smlly usg 6-5 the mmum me sque eo s gve by R t

19 9 he equtos 6-4 togethe wth 6-4 c be epeseted s Let

20 Notce tht s Hemt oeplt d postve defte Usg 6-44 the uows 6-43 c be epeseted s Let of colum Lst 6-45

21 he fom 6-45 hus >

22 d q 6-49 epesets the best le pedcto coeffcets d they c be evluted fom the lst colum of 6-45 Usg these he best oe-step hed pedcto 6-35 te the fom d fom 6-48 the mmum me sque eo s gve by the ety of Fom 6-36 sce the oe-step le pedcto eo 6-49 ˆ

23 3 we c epeset 6-5 fomlly s follows hus let them fom the bove fgue we lso hve the epesetto he flte epesets AR flte d ths shows tht le pedcto leds to uto egessve AR model A 6-5 A A H 6-53

24 4 he polyoml c be smplfed usg o see ths we ewte s o smplfy 6-54 we c me use of the followg mt detty A A ] [ ] [ A 6-54 CA B D C A I AB I D C B A 6-55

25 5 g detemts we get I ptcul f we get Usg wth B CA D A D C B A 6-56 D C B A A B CA 6-57 ] [ B A C

26 6 we get Refeg bc to 6-43 usg Cme s ule to solve fo we get A 6-58

27 7 o hus the polyoml 6-58 educes to he polyoml 6-53 c be ltetvely epeseted s 6-6 d fct epesets stble > A A ~ AR A H

28 AR flte of ode whose put eo sgl s whte ose of costt spectl heght equl to d output s / It c be show tht A hs ll ts eos > povded > thus estblshg stblty Le pedcto o Fom 6-59 the me sque eo usg smples s gve by > 6-6 Suppose oe moe smple fom the pst s vlble to evlute e e vlble Poceedg s bove the ew coeffcets d the me sque eo c be detemed Fom

29 Usg othe mt detty t s esy to show tht Sce > we must hve s o fo evey > s < Fom 6-63 we hve o s 6-63 s s < 6-64 sce s hus the me sque eo deceses s moe < d moe smples e used fom the pst the le pedcto I geel fom 6-64 the me sque eos fo the oe-step pedcto fom mootoc ocesg sequece 9

30 whose lmtg vlue Clely coespods to the educble eo le pedcto usg the ete pst smples d t s elted to the powe spectum of the udelyg pocess though the elto whee S ω epesets the powe spectum of Fo y fte powe pocess we hve d sce > hus 6-65 π ep l S ω dω π π 6-66 π π S ω dω < S ω l S ω S ω π π π l S ω d ω S ω d ω < π

31 Moeove f the powe spectum s stctly postve t evey Fequecy e the fom 6-66 S ω > - π < ω < π 6-68 d hece π π l S ω dω > π ep l S ω dω > e π π e Fo pocesses tht stsfy the stct postvty codto 6-68 lmost eveywhee the tevl π π the fl mmum me sque eo s stctly postve see 6-7 e Such pocesses e ot completely pedctble eve usg the ete set of pst smples o they e heetly stochstc 3

32 sce the et output cots fomto tht s ot coted the pst smples Such pocesses e ow s egul stochstc pocesses d the powe spectum s stctly postve S ω ω π π Powe Spectum of egul stochstc Pocess Covesely f pocess hs the followg powe spectum S ω π ω ω ω π such tht S ω ω the fom 6-7 < ω < ω 3

33 Such pocesses e completely pedctble fom the pst dt smples I ptcul cos ω t φ 6-7 s completely pedctble fom ts pst smples sce of le spectum S ω S ω cossts ω ω ω 6-7 s shpe detemstc stochstc pocess 33

Comments on Methods of Parameter Estimation in Survey Sampling. Ed Stanek

Comments on Methods of Parameter Estimation in Survey Sampling. Ed Stanek toducto Commet o Method of Pmete Etmto Suve Smplg Ed Ste We t to detf d udetd dffeet ppoche to etmto uve mplg, tegtg the ppoche to the RP model ppoche Revew of the Fte Populto RP Fmewo We defe fte populto

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Sequences and Series

Sequences and Series Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

More information

Geometric Sequences. Definition: A geometric sequence is a sequence of the form

Geometric Sequences. Definition: A geometric sequence is a sequence of the form Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece

More information

Linear recurrence relations with constant coefficients

Linear recurrence relations with constant coefficients Liea ecuece elatios with costat coefficiets Recall that a liea ecuece elatio with costat coefficiets c 1, c 2,, c k c k of degee k ad with cotol tem F has the fom a c 1 a 1 + c 2 a 2 + + c k a k + F k

More information

FIRST YEAR CALCULUS W W L CHEN

FIRST YEAR CALCULUS W W L CHEN FIRST YEAR CALCULUS W W L CHEN c W W L Che, 994, 2008. This chapte is available fee to all idividuals, o the udestadig that it is ot to be used fo fiacial gai, ad may be dowloaded ad/o photocopied, with

More information

Section 3.3: Geometric Sequences and Series

Section 3.3: Geometric Sequences and Series ectio 3.3: Geometic equeces d eies Geometic equeces Let s stt out with defiitio: geometic sequece: sequece i which the ext tem is foud by multiplyig the pevious tem by costt (the commo tio ) Hee e some

More information

Randomized Load Balancing by Joining and Splitting Bins

Randomized Load Balancing by Joining and Splitting Bins Radomzed Load Baacg by Jog ad Spttg Bs James Aspes Ytog Y 1 Itoducto Cosde the foowg oad baacg sceao: a ceta amout of wo oad s dstbuted amog a set of maches that may chage ove tme as maches o ad eave the

More information

Revenue Management for Online Advertising: Impatient Advertisers

Revenue Management for Online Advertising: Impatient Advertisers Reveue Maagemet fo Ole Advetsg: Impatet Advetses Kst Fdgesdott Maagemet Scece ad Opeatos, Lodo Busess School, Reget s Pak, Lodo, NW 4SA, Uted Kgdom, kst@lodo.edu Sam Naaf Asadolah Maagemet Scece ad Opeatos,

More information

CURVE FITTING. Be able to curve fit data using several types of curves. Polynomial Curve Fitting. Exponential Curve Fitting. Logarithmic Curve Fitting

CURVE FITTING. Be able to curve fit data using several types of curves. Polynomial Curve Fitting. Exponential Curve Fitting. Logarithmic Curve Fitting Fttg Equtos to Dt Ths odule troduces Curve Fttg d prtculr the Lest Squres ethod. Curve fttg, le Iterpolto, s collecto of ethods used to represet set of dt b equto. Ule Iterpolto, curve fttg ethods do ot

More information

Principle of Mathematical Induction

Principle of Mathematical Induction Secto. Prcple of Mthemtcl Iducto.. Defto Mthemtcl ducto s techque of proof used to check ssertos or clms bout processes tht occur repettvely ccordg to set ptter. It s oe of the stdrd techques of proof

More information

T(n/4) T(n/4) T(n/4) Level n. (n/2) (n/2) (n/2)......

T(n/4) T(n/4) T(n/4) Level n. (n/2) (n/2) (n/2)...... Wrtte Assgmet Aswer Key CISC 65 Dr. Jerry A. Smth Problem 0 pts Use recurso tree to determe good symptotc upper boud o the recurrece 3! / " +. Use the substtuto method to verfy your swer. he recurso looks

More information

The Binomial Theorem 5! ! ! 3 2 1! 1. Factorials

The Binomial Theorem 5! ! ! 3 2 1! 1. Factorials The Biomial Theoem Factoials The calculatios,, 6 etc. ofte appea i mathematics. They ae called factoials ad have bee give the otatio!. e.g. 6! 6!!!!! We also defie 0! Combiatoics- Pemutatios ad Combiatios

More information

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5 Mth 5: Clculus II Mth/Sci mjos) MWF m / pm, Cmpion 35 Witten homewok 5 6.6, p. 458 3,33), 6.7, p. 467 8,3), 6.875), 7.58,6,6), 7.44,48) Fo pctice not to tun in): 6.6, p. 458,8,,3,4), 6.7, p. 467 4,6,8),

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem If

More information

FUZZY RELATIONS and COMPOSITION OF FUZZY RELATIONS

FUZZY RELATIONS and COMPOSITION OF FUZZY RELATIONS Fu eltos FUZZ ELIONS d COMPOSIION OF FUZZ ELIONS Fu relto geerles clsscl relto to oe tht llows prtl membershp d descrbes reltoshp tht holds betwee two or more objects. Emple: fu relto Fred descrbe the

More information

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample Uodeed Samples wthout Replacemet osde populato of elemets a,,..., a a. y uodeed aagemet of elemets s called a uodeed sample of sze. Two uodeed samples ae dffeet oly f oe cotas a elemet ot cotaed the othe.

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

N V V L. R a L I. Transformer Equation Notes

N V V L. R a L I. Transformer Equation Notes Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions

More information

BINOMIAL THEOREM --1

BINOMIAL THEOREM --1 www.sakshieducatio.com BINOMIAL THEOREM -- Biomial :- A epessio which cotais two tems is called a biomial Pascal Tiagle:- Ide coefficiet 4 4 6 4 Theoem :- I each ow st ad last elemets emaiig tems ae obtaied

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

Chapter 11 Regression Analysis

Chapter 11 Regression Analysis Chapter Regresso Aalyss Defto: Whe the values of two varables are measured for each member of a populato or sample, the resultg data s called bvarate. Whe both varables are quattatve, we may represet the

More information

Random Variables and Distribution Functions

Random Variables and Distribution Functions Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Interpolants. Interpolation. Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate.

Interpolants. Interpolation. Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate. /4/7 Iterpolto Gve set o dscrete vlues,,,,,, d ucto tht tches these vlues ectl The resultg ucto c the e used to estte the vlue o t vlue o tht s ot gve Iterpolts Polols re the ost coo choce o terpolts ecuse

More information

Topic 33: Green s Functions I Solution to Poisson s Equation with Specified Boundary Conditions

Topic 33: Green s Functions I Solution to Poisson s Equation with Specified Boundary Conditions Topic 33: een s Functions I olution to Poisson s Eqution with pecified Boundy Conditions This is the fist of five topics tht del with the solution of electomgnetism poblems though the use of een s functions.

More information

BASIC NON-PARAMETRIC STATISTICAL TOOLS*

BASIC NON-PARAMETRIC STATISTICAL TOOLS* BAIC NON-PARAMRIC AIICAL OOL* Pepaed fo GCMA 00 Pete M. Quesada Gegoy. Rash * xamples peseted these otes wee obtaed fom Pme of Bostatstcs by tato. Glatz (McGaw Hll ext; IBN: 0070468) Odal Data valuatg

More information

In the question below suppose that a word is any string of seven letters of the alphabet, with repeated letters allowed.

In the question below suppose that a word is any string of seven letters of the alphabet, with repeated letters allowed. 163 Dscrete Mathematcs Revew Use the followg to aswer questo 1: I the questo below suppose that a word s ay strg of seve letters of the alphabet, wth repeated letters allowed 1 How may words beg wth A

More information

BINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand

BINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand BINOMIAL THEOREM Itoductio Whe we epad ( + ) ad ( + ), we get ad ( + ) = ( + )( + ) = + + + = + + ( + ) = ( + )( + ) = ( + )( + + ) = + + + + + = + + + 4 5 espectively Howeve, whe we ty to epad ( + ) ad

More information

THE GEOMETRIC SERIES

THE GEOMETRIC SERIES Mthemtics Revisio Guides The Geometic eies Pge of M.K. HOME TUITION Mthemtics Revisio Guides Level: A / A Level AQA : C Edexcel: C OCR: C OCR MEI: C THE GEOMETRIC ERIE Vesio :. Dte: 8-06-0 Exmples 7 d

More information

Chapter 3: Inference about Population Proportions

Chapter 3: Inference about Population Proportions Chpter 3: Iferece bout Populto Proportos We re ofte cocered wth mg fereces bout populto proportos For exmple: - Accordg to recet Gllup poll, 60% of Amercs re dsstsfed wth the wy thgs re gog the Uted Sttes

More information

Investment Science Chapter 3

Investment Science Chapter 3 Ivestmet Scece Chapte 3 D. James. Tztzous 3. se P wth 7/.58%, P $5,, a 7 84, to obta $377.3. 3. Obseve that sce the et peset value of X s P, the cash flow steam ave at by cyclg X s equvalet

More information

C C = 130. Solution Marks Remarks. for. for. a a. (3) 2. (a) or equivalent. (b) for using the result of (a) 1A.

C C = 130. Solution Marks Remarks. for. for. a a. (3) 2. (a) or equivalent. (b) for using the result of (a) 1A. 0 Mock Pper (Compulsory Prt) - Pper (Mrkg Scheme) ( ) 0 y y. 8 8 y y for p p p p q pq ( b ) b or ( ) 8( 0) y for p q p pq or q q p y 8 (). () 6 ( )( ) or equvlet 6 b b ( )( ) b ( ) for usg the result of

More information

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of

More information

Orbits and Kepler s Laws

Orbits and Kepler s Laws Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how

More information

Online Appendix: Measured Aggregate Gains from International Trade

Online Appendix: Measured Aggregate Gains from International Trade Ole Appedx: Measured Aggregate Gas from Iteratoal Trade Arel Burste UCLA ad NBER Javer Cravo Uversty of Mchga March 3, 2014 I ths ole appedx we derve addtoal results dscussed the paper. I the frst secto,

More information

Arithmetic Sequences

Arithmetic Sequences Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

More information

Laplace s Equation on a Disc

Laplace s Equation on a Disc LECTURE 15 Lplce s Eqution on Disc Lst time we solved the Diichlet poblem fo Lplce s eqution on ectngul egion. Tody we ll look t the coesponding Diichlet poblem fo disc. Thus, we conside disc of dius 1

More information

= , R indicates what is the fraction of the total

= , R indicates what is the fraction of the total Aswe key to homewok o. Questo ) a) ( )( Y Y ) ( ) x y 948.6 65.5 x.44784 Y 56. 588..44784 3 3 39.696 SSR 888.6 b) R. 8 R dcates what s the facto of the total SST 33.7 vaato that ca be explaed by the model.

More information

BINOMIAL THEOREM. Mathematics is a most exact science and its conclusions are capable of absolute proofs. C.P. STEINMETZ

BINOMIAL THEOREM. Mathematics is a most exact science and its conclusions are capable of absolute proofs. C.P. STEINMETZ Chapte 8 BINOMIAL THEOREM Maematics is a most eact sciece ad its coclusios ae capable of absolute poofs. C.P. STEINMETZ 8. Itoductio I ealie classes, we have leat how to fid e squaes ad cubes of biomials

More information

Continuous Functions and Riemann Sums

Continuous Functions and Riemann Sums mth the re problem d riem sums, prt ii Cotiuous Fuctios d Riem Sums I Exmple 0 we sw tht lim Lower = lim Upper for the fuctio f x = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM

More information

SAMPLE MOMENTS. x r f(x) x r f(x) dx

SAMPLE MOMENTS. x r f(x) x r f(x) dx SAMPLE MOMENTS. POPULATION MOMENTS.. Momets about the org raw momets. The rth momet about the org of a radom varable X, deoted by µ r, s the expected value of X r ; symbolcally, µ r EX r x x r fx for r

More information

Recurrence Relations

Recurrence Relations CMPS Aalyss of Algorthms Summer 5 Recurrece Relatos Whe aalyzg the ru tme of recursve algorthms we are ofte led to cosder fuctos T ( whch are defed by recurrece relatos of a certa form A typcal example

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

Convergence Analysis of Iterative Methods

Convergence Analysis of Iterative Methods We wt to swer two questos: Coergece Alyss of Iterte Methods. Whe wll the Jco or Guss-Sedel Methods wor? Tht s, uder wht codtos 3 wll they produce sequece of ppromtos,,,, K whch coerge to the true soluto?.

More information

Formulas for the Remainder Term in Taylor Series

Formulas for the Remainder Term in Taylor Series Formuls for the Reminder Term in Tylor Series In Section. we considered functions f with derivtives of ll orders nd their Tylor series The nth prtil sum of this Tylor series is the nth-degree Tylor polynomil

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr 3

More information

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Gaussian Elimination Autar Kaw

Gaussian Elimination Autar Kaw Gussi Elimitio Autr Kw After redig this chpter, you should be ble to:. solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the pitflls of the Nïve Guss elimitio method,. uderstd the effect

More information

32. The Tangency Problem of Apollonius.

32. The Tangency Problem of Apollonius. . The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 60-70 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok

More information

Exercises for Section 1.1: Norm and Inner Product

Exercises for Section 1.1: Norm and Inner Product Exercses for Secton 1.1: Norm nd Inner Product 1. Defne the l 1 -norm on R n by x 1 = nd defne the sup-norm on R n by x, =1 x = sup x }. Show tht these stsfy Theorem??. Proof. () It should be cler tht

More information

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity) Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of

More information

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS? WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they

More information

Simultaneous Linear Equations. Numerical Methods for the STEM undergraduate

Simultaneous Linear Equations.  Numerical Methods for the STEM undergraduate Smultaeous Lear Equatos http://m.mathforcollege.com Numercal Methods for the STEM udergraduate The sze of matrx 4 9 5 6 6 7 7 8 4 8 s. 4.. 4 4. 4 4 % % % % The c etty of the matrx 4. 6 7 8 [C] 9 4 5 6.

More information

Pointwise Approximation Theorems for Combinations of Bernstein Polynomials with Inner Singularities

Pointwise Approximation Theorems for Combinations of Bernstein Polynomials with Inner Singularities Appled Mathematcs 89-97 do:46/am447 Pblshed Ole Apl (http://scrpog/oal/am) Potse Appomato Theoems o ombatos o Beste Polyomals th Ie Sglates Wemg L L Zhag Depatmet o Mathematcs Hagzho Daz Uvesty Hagzho

More information

Two special Right-triangles 1. The

Two special Right-triangles 1. The Mth Right Tringle Trigonometry Hndout B (length of ) - c - (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Right-tringles. The

More information

11.2 Logarithmic Functions

11.2 Logarithmic Functions .2 Logrithmic Functions In the lst section we delt with the eponentil function. One thing tht we notice from tht discussion is tht ll eponentil functions pss the horizontl line test. Tht mens tht the eponentil

More information

iff s = r and y i = x i for i = 1,, r.

iff s = r and y i = x i for i = 1,, r. Combiatoics Coutig A Oveview Itoductoy Example What to Cout Lists Pemutatios Combiatios. The Basic Piciple Coutig Fomulas The Biomial Theoem. Example As I was goig to St. Ives I met a ma with seve wives

More information

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 60-69] Asteios Pntoktos Associte Pofesso

More information

LA01. All use is subject to licence. LA01 v Documentation date: 8th February SUMMARY 2 HOW TO USE THE PACKAGE

LA01. All use is subject to licence. LA01 v Documentation date: 8th February SUMMARY 2 HOW TO USE THE PACKAGE PACKAGE SPECIFICAION 1 SUMMARY Solves the lea pogammg poblem, fds x={x } subect to the lea costats whee x 0 =1,2,...,. f(x) = a x b =1 a x = b =1 whch mmzes the lea fucto c x =1 =1,2,...,l =l+1,.,m he

More information

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

Intro to Circle Geometry By Raymond Cheong

Intro to Circle Geometry By Raymond Cheong Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

More information

Appendix A: A Vector Approach to Linear Regression. y y M M. x n. y n

Appendix A: A Vector Approach to Linear Regression. y y M M. x n. y n Appedx A: A Vecto Appoach to Lea Regesso he questo most ofte asked whe studets beg the stud of lea egesso ad cuve fttg s, "wh do we mmze the sum of the squaes of the eos?". Squag the eos seems lke a atfcal

More information

Numerical Integration. Lecture Objectives. Numerical Integration. Ch. 21

Numerical Integration. Lecture Objectives. Numerical Integration. Ch. 21 Numerl tegrto Ch. Leture Ojetves To solve vrous types o egeerg prolems usg umerl tegrto To e le to determe whh type o tegrto tehque to use or spe ppltos ost eet Numerl tegrto Very ommo operto egeerg, Emples?

More information

Least-squares Fit of a Continuous Piecewise Linear Function

Least-squares Fit of a Continuous Piecewise Linear Function Les-squres F of Couous Pecewse Ler Fuco Nkol Golovcheko 3-Augus-4 Absrc The er descrbes lco of he les-squres mehod o fg couous ecewse ler fuco. I shows h he soluo s uque d he bes f c be foud whou resorg

More information

Finance Practice Problems

Finance Practice Problems Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter Sstematc Samplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

Overview. Eingebettete Systeme. Model of periodic tasks. Model of periodic tasks. Echtzeitverhalten und Betriebssysteme

Overview. Eingebettete Systeme. Model of periodic tasks. Model of periodic tasks. Echtzeitverhalten und Betriebssysteme Overvew Egebettete Systeme able of some kow preemptve schedulg algorthms for perodc tasks: Echtzetverhalte ud Betrebssysteme 5. Perodsche asks statc prorty dyamc prorty Deadle equals perod Deadle smaller

More information

EFFICIENT GENERATION OF CFD-BASED LOADS FOR THE FEM-ANALYSIS OF SHIP STRUCTURES

EFFICIENT GENERATION OF CFD-BASED LOADS FOR THE FEM-ANALYSIS OF SHIP STRUCTURES EFFICIENT GENERATION OF CFD-BASED LOADS FOR THE FEM-ANALYSIS OF SHIP STRUCTURES H Ese ad C Cabos, Gemasche Lloyd AG, Gemay SUMMARY Stegth aalyss of shp stuctues by meas of FEM eques ealstc loads. The most

More information

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function Ieaoa Joa of Scece ad Eee Reeach IJSER Vo Ie Decembe -4 5687 568X Geeazed Dffeece Seece Sace O Semomed Sace B Ocz Fco A.Sahaaa Aa ofeo G Ie of TechooCombaoeIda. Abac I h aewe defe he eece ace o emomed

More information

LINEAR ALGEBRA, VECTOR ALGEBRA AND ANALYTICAL GEOMETRY

LINEAR ALGEBRA, VECTOR ALGEBRA AND ANALYTICAL GEOMETRY ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» VV Koev INER GEBR VECTOR GEBR ND NYTIC GEOMETRY

More information

Future Value of an Annuity

Future Value of an Annuity Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%

More information

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Cuvtue Com S 477/577 Notes Yn-Bin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.

More information

= 1 lim sup{ sn : n > N} )

= 1 lim sup{ sn : n > N} ) ATH 104, SUER 2006, HOEWORK 4 SOLUTION BENJAIN JOHNSON Due July 12 Assgmet: Secto 11: 11.4(b)(c), 11.8 Secto 12: 12.6(c), 12.12, 12.13 Secto 13: 13.1 Secto 11 11.4 Cosder the sequeces s = cos ( ) π 3,

More information

The simple linear Regression Model

The simple linear Regression Model The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveed oreover, the effcec cluster samplg depeds o sze of the cluster As the sze creases, the effcec decreases

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

Valuation of Floating Rate Bonds 1

Valuation of Floating Rate Bonds 1 Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned

More information

CS537. Numerical Analysis

CS537. Numerical Analysis CS537 Nuercl Alss Lecture 6 Lest Sures d Curve Ftt Professor Ju Zh Deprtet of Coputer Scece Uverst of Ketuc Leto KY 456 633 Aprl 6 5 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

6.1. Determine which strategies are dominated in the following normal-form games. Player 2. Player 2 L R

6.1. Determine which strategies are dominated in the following normal-form games. Player 2. Player 2 L R ECO 7404, Homework Le Cabrera 6.. eterme whch strateges are domated the followg ormal-form games. Player Player L R L C R Player Player 3, 3, 0 4, 8, - (a) U 5, 9 0, 4, 3 M 3, 0, 9,, 8 0, 8, 4 (b) (a)

More information

Goals. Economics To review items used throughout the text. Appendix A: A Review of Some Statistical Concepts

Goals. Economics To review items used throughout the text. Appendix A: A Review of Some Statistical Concepts Goals Ecoomcs 337 Apped A: A Revew of Some Statstcal Cocepts To revew tems used throughout the tet. Mathematcal operators Statstcal cocepts Ths wll establsh a laguage to help us troduce ew materal Apped

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Chapter 2 Factors: How Time and Interest Affect Money

Chapter 2 Factors: How Time and Interest Affect Money Chapter 2 Ecoomc Factors Chapter 2 Factors: How Tme ad Iterest ffect Moey INEN 303 Sergy Buteko Idustral & Systems Egeerg Texas &M Uversty Sgle Paymet Trasactos (F/P ad P/F) Uform-Seres Trasactos (P/,

More information

A black- line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system.

A black- line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system. Grde Level/Course: Algebr Lesso/Uit Pl Nme: Geometric Sequeces Rtiole/Lesso Abstrct: Wht mkes sequece geometric? This chrcteristic is ddressed i the defiitio of geometric sequece d will help derive the

More information

Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost

Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost Ameica Joual of Applied Scieces (8: 3-7, 005 ISS 546-939 005 Sciece Publicatios Peiodic Review Pobabilistic Multi-Item Ivetoy System with Zeo Lead Time ude Costaits ad Vayig Ode Cost Hala A. Fegay Lectue

More information

Circles and Tangents with Geometry Expressions

Circles and Tangents with Geometry Expressions icles nd Tngents with eomety xpessions IRLS N TNNTS WITH OMTRY XPRSSIONS... INTROUTION... 2 icle common tngents... 3 xmple : Loction of intesection of common tngents... 4 xmple 2: yclic Tpezium defined

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

5 Continuous random variables

5 Continuous random variables 5 Cotiuous rdom vribles We devite from the order i the boo for this chpter, so the subsectios i this chpter do ot correspod to those i the text. 5.1 Desities of cotiuous rdom vrible Recll tht i geerl rdom

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

Repulsive Gravitational Force Field

Repulsive Gravitational Force Field Repulsve Gvttol Foce Feld F De Aquo Copyht 0 by F De Aquo. All Rhts Reseved. A ethod s poposed ths ppe to eete epulsve vttol foce feld whch c stoly epel tel ptcles d photos of y fequecy. By epell ptcles

More information

The Casino Experience. Let us entertain you

The Casino Experience. Let us entertain you The Csio Expeiee Let us eteti you The Csio Expeiee If you e lookig fo get ight out, Csio Expeiee is just fo you. 10 The Stight Flush Expeiee 25 pe peso This is get itodutio to gmig tht sves you moey Kik

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

Opinion Makers Section

Opinion Makers Section Goupe de Taal Euopée Ade Multctèe à la Décso Euopea Wog Goup Multple Ctea Decso Adg Sée 3, º8, autome 008. Sees 3, º 8, Fall 008. Opo Maes Secto Hamozg poty weghts ad dffeece judgmets alue fucto mplemetato

More information

Section 4.3. By the Mean Value Theorem, for every i = 1, 2, 3,..., n, there exists a point c i in the interval [x i 1, x i ] such that

Section 4.3. By the Mean Value Theorem, for every i = 1, 2, 3,..., n, there exists a point c i in the interval [x i 1, x i ] such that Difference Equtions to Differentil Equtions Section 4.3 The Fundmentl Theorem of Clculus We re now redy to mke the long-promised connection between differentition nd integrtion, between res nd tngent lines.

More information

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information