G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS


 Lenard Marsh
 2 years ago
 Views:
Transcription
1 G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS Regul polygon e of inteet to u becue we begin looking t the volume of hexgonl pim o Tethedl nd to do thee type of clcultion we need to be ble to olve fit fo thei e. The tem egul efe to vey pecific type of hpe. It efe to the polygon tht h ll equl ide, ll equl ngle nd the mximum line of ymmety fo tht pticul numbe of ide. Regul polygon cn be incibed in cicle nd becue of thi we pply few new tem to thee polygon. Fit of ll, ech egul polygon h cente nd diu becue they e incibed in the cicle. The othe new tem i the pothem. The pothem i the pependicul ditnce fom the cente to ide of the egul polygon. In the equiltel, que nd hexgon the tingle tht e fomed by the diu, the pothem nd ide e ll pecil ight tingle. In the ce of the equiltel nd hexgon it i  ight tingle nd in the ce of the que 55 ight tingle i fomed. Thee tingle e vey impotnt in helping u detemine the e of thee egul polygon
2 G.GMD.1 STUDENT NOTES WS #5 The wy to viulize e of thee egul polygon i to clculte the e of conguent tingle inide them. We find the e of one tingle nd then multiply the e by 3 (3 tingle) in the ce of n equiltel o by 6 (6 tingle) in the ce of hexgon. Let do few exmple o you cn ee the tep. Given n equiltel with diu of 6 cm, detemine the e. If the diu i 6 cm, then the hot leg (pothem) i 3 cm nd the long leg (½ ide) i 3 3, thu mking the ide of the equiltel So to detemine the e it would be: Ae = 3( Ae of tingle) Ae = 3 ( be) ( height) Ae = 3 (6 3)( 3) Ae = 7 3 cm The kill lened elie when woking with pecil ight tingle come in vey hndy hee!! Given egul hexgon with ide of 8 cm, detemine the e. If the ide i 8 cm, then the hot leg (½ ide) i cm nd the long leg (pothem) i 3. So to detemine the e it would be: Ae = 6( Ae of tingle) 8 3 Ae Ae Ae = 6 ( be) ( height) = 6 (8)( 3) = 96 3 cm 3 8 Thee type of quetion vy concening wht the given infomtion i but they ll eot bck to the pecil ight tingle inide the equiltel tingle, the que o the egul hexgon. Two fomul tht povide hotcut fo e e deived when the ide length i given. Given the ide,, then the long leg i hlf of tht. The pothem i tht vlue divided by 3 which tionlize to the e: 3 6. Now we e edy to clculte 3 Ae = 3 ( ) 6 Ae = 3 cm 3 6
3 G.GMD.1 STUDENT NOTES WS #5 3 Given the ide,, then the hot leg i hlf of tht. The pothem i tht vlued multiplied 3 by 3 which i. Now we e edy to clculte the e: 3 Ae = 6 ( ) Ae = 3 3 cm 3 Inted of leving thee two fomul they e we could hve enged the infomtion to ummize them little diffeently. When we do thi we get nothe wy to think bout the e of egul polygon. Equiltel Fomul 3 Ae = 3 ( ) 6 3 Ae = 3( ) 6 1 Ae = ( peimete )( pothem ) Hexgon Fomul 3 Ae = 6 ( ) 6 3 Ae = 6( ) 6 1 Ae = ( peimete ) pothem ( ) AREAREGULAR POLYGON = 1 (peimete)(pothem) Fo ll of the othe egul polygon, tigonomety i needed becue the ngle within thei tingle e not the pecil one. Let me olve one of thee to demontte the tep. Given egul pentgon with ide length of 8 cm, detemine the e. When you divide the hpe into 5 conguent tingle we get 3/5 = 7 ngle. When dop the ltitude it cete the pothem 36 ight tingle i fomed. So uing tigonomety we cn detemine the pothem vlue. tn 36 = = tn 36 Now we cn detemine the e of the egul pentgon. A = (5 )( Ae of ) A = 5 (8) tn 36 A cm cm 7 7 cm
4 G.GMD.1 STUDENT NOTES WS #5 Find the AREA of ech egul polygon. Hexgon with diu 8 cm Sque with n pothem of 6 cm Equiltel tingle with diu 3cm 8 cm 3 cm 6 cm 3 cm 3 cm cm 6 cm 6 cm A = ½ p A = ½ ( 3)(8)(6) A = 96 3 cm A = ½ p A = ½ (6)()(1) A = 1 cm A = ½ p A = ½ ( 3)(1)(3) A = 36 3 cm
5 G.GMD.1 WORKSHEET #5 NAME: Peiod 1 1. Wht i the centl ngle of egul ) Octgon? b) Hexgon? c) Decgon? d) Tingle?. Find the pothem of ech egul polygon. ) Hexgon with ide of 15 cm EQUILATERAL b) Sque with digonl of 1 cm SQUARE c) Equiltel tingle with ide cm 5 3. Find the diu of ech egul polygon. ) Sque with ide 7 cm 5 5 HEXAGON b) Equiltel tingle with ide of 3 cm c) Hexgon with ide of 8 cm
6 G.GMD.1 WORKSHEET #5. Find the AREA of ech egul polygon. EQUILATERAL ) Sque with diu of16 cm b) Equiltel tingle with n pothem of cm c) Hexgon with peimete of 18 cm SQUARE d) Equiltel tingle with diu of 16 3cm 5 e) Regul Octgon with ide of 1 cm. 5 5 HEXAGON ( dec.)
7 G.GMD.I WORKSHEET #5 NAME: 1. Wht i the centl ngle of egul ei^o t te )Octon? 'tl o b) Hexgon? U lo c) Decgon? 36' d)tingle?. Find th" jlf*tuof ech egul polygon. l ) Hexgon with ide of 15 cm 7,{{A cttt (tl b)sque with digonl of lji cm G7.f c) Equiltel tingle with ide cm tli cu (E) # E'Y,!, q,li 3. Find ech egut potygon. ) Sque with ide 7 cm _(E) b) Equilteltingle with ide of ".6 cm '+ c,^t c) Hexgon with ide of 8 cm eg , = // t
8 G.GMD,7 WORKSHEET #5. Find th<pof ech egul polygon. ) Sque with diu ofllji cm *, /o7,1 cuxl ^Z 6? J L loz'{ b) Equilteltingle with n pothem of cm _(E),? c) Hexgon with peimete of 18 cm T = 7 # x =Lo? = lq.,i\q) B'yl, ft.tf1 c^ G) d) Equilteltingle with diu of 16E cm GI'Y A e) Regul Octgon with ide of 1 cm. t /tt,tl 1{l t.,'yo \ \ lzg VE=qE $,"'  (, fz'f =! g* = Tz.; $= tl+'qt g It. ( dec.) A = L? =,(^.wz' )()()
Lesson 8.1 Areas of Rectangles and Parallelograms
Leon 8.1 Ae of Rectngle nd Pllelogm In Eecie 1 4, find the e of the hded egion. 1.. 1 1 cm 3. 17 cm 4. 9 cm 5 cm 1.5 cm cm 5. Rectngle ABCD h e 684 m nd width 44 m. Find it length. 6. Dw pllelogm with
More informationIntro to Circle Geometry By Raymond Cheong
Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.
More informationLesson 8.1 Areas of Rectangles and Parallelograms
Leon 8.1 e of Rectngle nd Pllelogm 1. Find the e of the hded egion.. Find the e of the hded egion. 17 cm 9 cm 5 cm 8 cm 1.5 cm 13 cm cm cm 3. Rectngle D h e 684 m nd width 44 m. Find it length. 4. Find.
More informationr (1+cos(θ)) sin(θ) C θ 2 r cos θ 2
icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:
More informationCircles and Tangents with Geometry Expressions
icles nd Tngents with eomety xpessions IRLS N TNNTS WITH OMTRY XPRSSIONS... INTROUTION... 2 icle common tngents... 3 xmple : Loction of intesection of common tngents... 4 xmple 2: yclic Tpezium defined
More informationLesson 8.1 Areas of Rectangles and Parallelograms
Leon 8.1 Are of Rectngle nd Prllelogrm In Eercie 1 4, find the re of the hded region. 1.. 1 cm 1 cm. 17 cm 4. 9 cm 5 cm 1.5 cm 1 cm cm cm 5. Rectngle ABCD h re 684 m nd width 44 m. Find it length. 6. Drw
More informationSummary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
More informationSECTION 54 Trigonometric Functions
Tigonometic Functions 78. Engineeing. In Polem 77, though wht ngle in dins will the ck wheel tun if the font wheel tuns though dins? The c length on cicle is esy to compute if the coesponding centl ngle
More informationMath 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 5
Mth 5: Clculus II Mth/Sci mjos) MWF m / pm, Cmpion 35 Witten homewok 5 6.6, p. 458 3,33), 6.7, p. 467 8,3), 6.875), 7.58,6,6), 7.44,48) Fo pctice not to tun in): 6.6, p. 458,8,,3,4), 6.7, p. 467 4,6,8),
More informationOrbits and Kepler s Laws
Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how
More information(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?
Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the
More informationLaplace s Equation on a Disc
LECTURE 15 Lplce s Eqution on Disc Lst time we solved the Diichlet poblem fo Lplce s eqution on ectngul egion. Tody we ll look t the coesponding Diichlet poblem fo disc. Thus, we conside disc of dius 1
More informationMAGNETIC FIELD AROUND CURRENTCARRYING WIRES. point in space due to the current in a small segment ds. a for field around long wire
MAGNETC FELD AROUND CURRENTCARRYNG WRES How will we tckle this? Pln: 1 st : Will look t contibution d to the totl mgnetic field t some point in spce due to the cuent in smll segment of wie iotsvt Lw
More informationLesson 12.1 Trigonometric Ratios
Lesson 12.1 rigonometric Rtios Nme eriod Dte In Eercises 1 6, give ech nswer s frction in terms of p, q, nd r. 1. sin 2. cos 3. tn 4. sin Q 5. cos Q 6. tn Q p In Eercises 7 12, give ech nswer s deciml
More informationPythagoras theorem and trigonometry (2)
HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in rightngled tringles. These
More informationCurvature. (Com S 477/577 Notes) YanBin Jia. Oct 8, 2015
Cuvtue Com S 477/577 Notes YnBin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.
More informationLines and Angles. 2. Straight line is a continuous set of points going on forever in both directions:
Lines nd Angles 1. Point shows position. A 2. Stright line is continuous set of points going on forever in oth directions: 3. Ry is line with one endpoint. The other goes on forever. G 4. Line segment
More informationFigure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
More informationPhysics 110 Spring 2006 Forces in 1 and 2Dimensions Their Solutions
Phic 110 Spring 006 orce in 1 nd Dienion heir Solution 1. wo orce 1 nd ct on 5kg. I the gnitude o 1 nd re 0 nd 15 repectivel wht re the ccelertion o ech o the e elow?.. 0; ( 0 ) + ( 15 ) 1 5kg 15 @ θ
More informationDouble Integrals over General Regions
Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing
More informationExam in physics, Elgrunder (Electromagnetism), 20140326, kl 9.0015.00
Umeå Univesitet, Fysik 1 Vitly Bychkov Em in physics, Elgunde (Electomgnetism, 146, kl 9.15. Hjälpmedel: Students my use ny book(s. Mino notes in the books e lso llowed. Students my not use thei lectue
More informationBasically, logarithmic transformations ask, a number, to what power equals another number?
Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In
More information15.6. The mean value and the rootmeansquare value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the rootmensqure vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
More informationChapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.11 T) i to ue a lage cuent flowing though a wie.
More informationGRAVITATION 1. BASIC FORCES IN NATURE
GRAVITATION. BASIC ORCES IN NATURE POINTS TO REMEMBER. Bsing on the ntue nd eltive stength the bsic foces in ntue e clssified into fou ctegoies. They e ) Gvittionl foce ) Electomgnetic foce 3) Stong Nucle
More informationSHAPES AND SHAPE WORDS!
1 Pintbl Activity Pg 1 SAPES AND SAPE WORDS! (bst fo 1 o plys) Fo ch child (o pi of childn), you will nd: wo copis of pgs nd Cyons Scissos Glu stick 10 indx cds Colo nd Mk Shp Cds! Giv ch child o pi of
More informationVolumes of solids of revolution
Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the xxis. There is strightforwrd technique which enbles this to be done, using
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationAP Physics Gravity and Circular Motion
AP Phyic Gity nd icul Motion Newton theoy i ey iple. Gity i foce of ttction between ny two object tht he. Two object itting on dektop ttct ech othe with foce tht we cll gity. They don t go flying togethe
More informationLines and angles. Name. Use a ruler and pencil to draw: a 2 parallel lines. c 2 perpendicular lines. b 2 intersecting lines. Complete the following:
Lines nd s 1 Use ruler nd pencil to drw: 2 prllel lines 2 intersecting lines c 2 perpendiculr lines 2 Complete the following: drw in the digonls on this shpe mrk the interior s on this shpe c mrk equl
More informationv o a y = = * Since H < 1m, the electron does not reach to the top plate.
. The uniom electic ield between two conducting chged pltes shown in the igue hs mgnitude o.40 N/C. The plte seption is m, nd we lunch n electon om the bottom plte diectl upwd with v o 6 m/s. Will the
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationLet us recall some facts you have learnt in previous grades under the topic Area.
6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us
More informationGFI MilEssentils & GFI MilSecuity vs Bcud Spm Fiewll GFI Softwe www.gfi.com GFIMilEssentils & GFI MilSecuity vs Bcud Spm Fiewll GFI MilEssentils 12 & GFI MilSecuity 10 Bcud Spm Fiewll Who we e Integtes
More informationand thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 24925 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
More information32. The Tangency Problem of Apollonius.
. The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 6070 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More information4.0 5Minute Review: Rational Functions
mth 130 dy 4: working with limits 1 40 5Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two
More informationGeometry 71 Geometric Mean and the Pythagorean Theorem
Geometry 71 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationLesson 4.1 Triangle Sum Conjecture
Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.
More informationGeometry and Measure. 12am 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm
Reding Scles There re two things to do when reding scle. 1. Mke sure you know wht ech division on the scle represents. 2. Mke sure you red in the right direction. Mesure Length metres (m), kilometres (km),
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationThings to Remember. r Complete all of the sections on the Retirement Benefit Options form that apply to your request.
Retiement Benefit 1 Things to Remembe Complete all of the sections on the Retiement Benefit fom that apply to you equest. If this is an initial equest, and not a change in a cuent distibution, emembe to
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationN V V L. R a L I. Transformer Equation Notes
Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 witeup. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationRandom Variables and Distribution Functions
Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using
More informationSkills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
More informationArithmetic Sequences
Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece
More informationRIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
More informationDETERMINANTS. ] of order n, we can associate a number (real or complex) called determinant of the matrix A, written as det A, where a ij. = ad bc.
Chpter 4 DETERMINANTS 4 Overview To every squre mtrix A = [ ij ] of order n, we cn ssocite number (rel or complex) clled determinnt of the mtrix A, written s det A, where ij is the (i, j)th element of
More informationLesson 10. Parametric Curves
Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationSurface Area and Volume
Surfce Are nd Volume Student Book  Series J Mthletics Instnt Workooks Copyright Surfce re nd volume Student Book  Series J Contents Topics Topic  Surfce re of right prism Topic 2  Surfce re of right
More informationUNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More informationPHYSICS 151 Notes for Online Lecture #10
PHYSICS 5 Note for Online Lecture # Kinetic decribe the otion Dynic decribe the cue of the otion orce  Up to now, we ve been nlyzing otion, but not conidering how otion occur. Now we re redy to tke into
More information4.4 VOLUME AND SURFACE AREA
160 CHAPTER 4 Geomety 4.4 VOLUME AND SURFACE AREA Textbook Refeence Section 8.4 CLAST OBJECTIVES Calculate volume and uface aea Infe fomula fo meauing geometic figue Select applicable fomula fo computing
More informationScreentrade Car Insurance Policy Summary
Sceentde C Insunce Policy Summy This is summy of the policy nd does not contin the full tems nd conditions of the cove, which cn be found in the policy booklet nd schedule. It is impotnt tht you ed the
More information4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first nonzero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
More informationLecture 3 Basic Probability and Statistics
Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationGFI EventsMnge vs Netikus.net EventSenty GFI Softwe www.gfi.com GFI EventsMnge vs Netikus.net EventSenty GFI EventsMnge EventSenty Who we e Suppot fo MS SQL Seve Suppot fo MSDE / MS SQL Expess Suppot fo
More information1. Description of Linear Prediction
Liner Prediction nd LevinsonDurbin lgorithm Cedric Collomb http://ccollomb.free.fr/ Copyright 9. ll ights eserved. Creted: Februry 3, 9 Lst Modified: ovember, 9 Contents. Description of Liner Prediction....
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationArc Length. P i 1 P i (1) L = lim. i=1
Arc Length Suppose tht curve C is defined by the eqution y = f(x), where f is continuous nd x b. We obtin polygonl pproximtion to C by dividing the intervl [, b] into n subintervls with endpoints x, x,...,x
More information9.1 PYTHAGOREAN THEOREM (right triangles)
Simplifying Rdicls: ) 1 b) 60 c) 11 d) 3 e) 7 Solve: ) x 4 9 b) 16 80 c) 9 16 9.1 PYTHAGOREAN THEOREM (right tringles) c If tringle is right tringle then b, b re the legs * c is clled the hypotenuse (side
More informationArea Between Curves: We know that a definite integral
Are Between Curves: We know tht definite integrl fx) dx cn be used to find the signed re of the region bounded by the function f nd the x xis between nd b. Often we wnt to find the bsolute re of region
More informationAnswer, Key Homework 6 David McIntyre 45123 Mar 25, 2004 1
Answe, Key Homewok 6 vid McInye 4513 M 5, 004 1 This pinou should hve 0 quesions. Muliplechoice quesions my coninue on he nex column o pge find ll choices befoe mking you selecion. The due ime is Cenl
More informationc. Values in statements are broken down by fiscal years; many projects are
Lecture 18: Finncil Mngement (Continued)/Csh Flow CEE 498 Construction Project Mngement L Schedules A. Schedule.of Contrcts Completed See Attchment # 1 ll. 1. Revenues Erned 2. Cost of Revenues 3. Gross
More informationProblem Set # 9 Solutions
Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new highspeed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More informationAnswer, Key Homework 10 David McIntyre 1
Answer, Key Homework 10 Dvid McIntyre 1 This printout should hve 22 questions, check tht it is complete. Multiplechoice questions my continue on the next column or pge: find ll choices efore mking your
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More information92.131 Calculus 1 Optimization Problems
9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle
More informationChapter 9: Quadratic Equations
Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.
More informationPlane figure geometry
2 lne figure geometry ontents: E F G H I Turning Mesuring ngles lssifying nd nming ngles omplementry nd supplementry ngles ngles in revolution isecting ngles onstructing 9 ngles to line lne shpes oints
More informationStandardized Coefficients
Standadized Coefficient Ta. How do ou decide which of the X ae mot impotant fo detemining? In thi handout, we dicu one poile (and contoveial) anwe to thi quetion  the tandadized egeion coefficient. Fomula.
More informationMaths Word Searches. List of Contents. Word Search 1. Word Search 2. Word Search 3. Word Search 4. Word Search 5. Word Search 6.
Maths Word earches List of Contents Word earch 1 Word earch 2 Word earch 3 Word earch 4 Word earch 5 Word earch 6 Word earch 7 Word earch 8 Maths Word earch 1 The Word List at the bottom (from CE to TWO)
More informationGFI MilEssentils & GFI MilSecuity vs Symntec Bightmil 6 & Anti Vius GFI Softwe www.gfi.com GFI MilEssentils & GFI MilSecuity vs Symntec Bightmil 6 & Anti Vius GFI MilEssentils & GFI MilSecuity Bightmil
More informationLecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
More informationRatio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
More informationCypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:
Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More informationr Curl is associated w/rotation X F
13.5 ul nd ivegence ul is ssocited w/ottion X F ivegence is F Tody we define two opetions tht cn e pefomed on vecto fields tht ply sic ole in the pplictions of vecto clculus to fluid flow, electicity,
More informationSolution to Problem Set 1
CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let
More informationThe Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx
The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the singlevrible chin rule extends to n inner
More informationExample A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More informationWell say we were dealing with a weak acid K a = 1x10, and had a formal concentration of.1m. What is the % dissociation of the acid?
Chpter 9 Buffers Problems 2, 5, 7, 8, 9, 12, 15, 17,19 A Buffer is solution tht resists chnges in ph when cids or bses re dded or when the solution is diluted. Buffers re importnt in Biochemistry becuse
More informationSECTION 53 Angles and Their Measure
53 Angle and Thei Meaue 357 APPLICATIONS Appoximating. Poblem 93 and 9 efe to a equence of numbe geneated a follow: If an nd egula polygon i incibed in a cicle of adiu, then it can be hown that the aea
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More information11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.
. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for
More informationChapter 22 The Electric Field II: Continuous Charge Distributions
Chpte The lectic Field II: Continuous Chge Distibutions Conceptul Poblems [SSM] Figue 7 shows n Lshped object tht hs sides which e equl in length. Positive chge is distibuted unifomly long the length
More information