# 2.0 Heat affects matter in different ways

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 2.0 Heat affects matter in different ways 2.1 States of Matter and The Particle Model of Matter Matter is made up of tiny particles and exists in three states: solid, liquid and gas. The Particle Model of Matter is a scientific description of the tiny particles that make up all things. The key elements in this model are: All matter is made of tiny particles too small to be seen The particles are always moving The particles have spaces between them Adding heat to matter makes the particles move faster Changes of State: Water Substances such as water (or wax) can undergo observable changes through all three states of matter - solid liquid and gas. Ice is the solid state of water at 0 o C The melting point of water is 0 o C The boiling point of water is 100 o C Condensation occurs when water changes from a gas to a liquid Heat and the Particle Model Any pure substance can exist in all three states of matter. Solid Liquid Gas Particles are closely packed together Particles can slip past each other Particles have lots of space between them The Effect of Heat on Particles When heat is added to a substance, the particles move faster. When heat is lost from a substance the particles move slower. The motion of the particles increases when the temperature increases. The motion of the particles decreases when the temperature decreases. Heat energy transfers from high temperature matter to low temperature matter. Heat can affect matter by causing it to change state.

2 How The Particle Model Explains Changes of State During a phase change, the average energy of the particles remains the same, but, the particles are rearranging themselves. Solid The particles are tightly packed together. Solids have a fixed shape. Heating a Solid Particles become less organized as their energy increases, so the substance changes from a solid to a liquid to a gas. The space between the particles increases, so its volume increases. Melting a Solid Particles move very quickly and attractions between the particles break down, so the solid melts into a liquid state. Liquid In a liquid, the particles are moving very quickly. The particles have more kinetic energy Liquids take the shape of their containers Heating a Liquid At the surface, some of the particles are able to escape into the air, while others do not have enough energy to escape and remain in the liquid. As the liquid expands, its volume increases As high energy particles escape, the average energy of the remaining particles is less and so the liquid cools. The cool liquid then cools the surface on which it is resting. This is called evaporative cooling. It is common and useful in many situations: Joggers cooling down as their sweaty clothes dry out; Water cools down a roof on hot summer day; A wet cloth is placed on your forehead when you have a fever. Boiling a Liquid The attractions between the particles are very weak More and more high energy particles escape, and the liquid changes into a gas Gas Particles move very quickly with a lot of kinetic energy Particles fill up the space of the container they are in. Large spaces between the particles. Gas to a Liquid to a Solid As the energy of the particles becomes less, the particles rearrange themselves more orderly, so a gas changes to a liquid and then to a solid, when even more energy is lost the particles are slowing down. The total energy of the particles changes - by increasing or decreasing, because the particles are not increasing or decreasing their speed, just their arrangement. The average energy doesn't change. The energy change is hidden from a thermometer and is called 'hidden heat' or 'latent heat'.

3 2.2 Heat and Temperature Temperature is a measure of how hot or cold matter is. Temperature indicates the average energy (speed) kinetic energy - of the particles in motion in a substance. The amount of temperature change, when thermal energy is added to the particles is another property that particles in different materials have. Different materials will increase or decrease their average energy depending on how much thermal energy is provided. Heat Capacity is the amount of thermal energy that warms or cools an object by 1 o C (it depends on the mass and the type of particle the object is made of). Specific Heat Capacity is the amount of thermal energy that warms or cools 1 gram, of a specific type of particle, by 1 o C. Total Kinetic Energy The thermal energy of a substance is the total kinetic energy of all the particles the substance contains. Energy is the measure of a substance's ability to do work - or cause changes. There are two important elements that occur: Changes happen when there is a difference of energy (every useful energy system has a high-energy source that powers the changes) Energy is always transferred in the same direction: from a high-energy source (hot) to something of lower energy (cold). Energy Transfers Heat is the energy that transfers from one substance to another because of the difference in kinetic energy. The average energy of the particles - the temperature of the substance - is affected, by increasing or decreasing. The change in temperature depends on the number of particles affected. The Difference Between Heat and Temperature Energy is not a substance. It cannot be seen, weighed or take up space. Energy is a condition or quality that a substance has. Energy is a property or quality of an object or substance that gives it the ability to move, do work or cause change. Understanding The Difference Thermal Energy is the total kinetic energy of all the particles in a substance Heat is the energy that transfers from a substance whose particles have a higher kinetic energy to a substance who particles have a lower kinetic energy. Temperature is a measure of the average kinetic energy of the particles in a substance. Measuring Temperature With Thermometers A relative idea about temperature is that it tells you how hot or cold something is. This can be done by using our senses: Touch (sensitive nerve endings on your skin can detect changes in temperature); Sight (the color of the material giving off heat). Relative ways to determine the temperature are not always reliable or safe. Thermometers are more reliable devices that measure temperature. The Italian scientist Galileo invented the first air thermometer around 1600 and it has, and will continue to be, improved upon.

4 History Of Thermometers 200 B.C. The first thermometers were called thermoscopes 1590 s Several inventors invented a version of the thermoscope at the same time, Italian inventor Santorio Santorio was the first inventor to put a numerical scale on the instrument. Galileo Galilei invented a rudimentary water thermometer in 1593 which, for the first time, allowed temperature variations to be measured s Early thermometers (like the one Galileo invented) did not have any scale (markings with numbers) to determine precise temperature s 1701 Ole Romer created one of the first practical thermometers, which used red wine as the temperature indicator. The temperature scale for his thermometer had 0 representing the temperature of a salt and ice mixture (at about 259 K), 7½ representing the freezing point of water ( K), and 60 representing the boiling point of water ( K). Daniel Gabriel Fahrenheit ( ) was the German physicist who invented the alcohol thermometer in In 1714, Fahrenheit invented the first mercury thermometer, the modern thermometer. And in 1724, he introduced the temperature scale that bears his name - Fahrenheit Scale The 1st precise scale was developed by Anders Celsius in He used 'degree' as the unit of temperature. Centigrade means "consisting of, or divided into, 100 degrees". All of his standards for comparison, to make his markings (on his scale), were based on the properties of water. 0 o was assigned the temperature at which ice melts at sea level 100 o was assigned the temperature at which liquid water boils at sea level The region between (above and below, as well) these two extremes was separated into 100 equal units (degrees) The two fixed temperatures that Celsius chose can be used to calibrate a thermometer. The Celsius temperature scale is also referred to as the "centigrade" scale. The term "Celsius" was adopted in 1948 by an international conference on weights and measures 1852 Lord Kelvin invented the Kelvin Scale in The Kelvin Scale measures the ultimate extremes of hot and cold. Kelvin developed the idea of absolute temperature, what is called the "Second Law of Thermodynamics", and developed the dynamical theory of heat. Absolute zero is the coldest possible temperature o and is used by scientists. The markings on the scale are not called degrees, but are simply called kelvins. (0 o Celsius is equal to o Kelvin) 1861 The electrical-resistance-thermometer was invented in Germany. It used an electrical current to measure temperature. English physician, Sir Thomas Allbutt invented the first medical thermometer used for taking the temperature of a person in s Theodore Hannes Benzinger invented the ear thermometer. David Phillips invented the infra-red ear thermometer in s Dr. Jacob Fraden, invented the world's best-selling ear thermometer, the Thermoscan Human Ear Thermometer.

5 2.3 Heat Affects the Volume of Solids, Liquids, and Gases Observing The Effect of Heat Cracks in rock, due to ice Fitting a nut to a bolt Hot water opens a jar lid Boiling water cracks the cold mug Thermal expansion is the process of expansion of a substance caused by an increase in thermal energy. Expansion and Contraction in Solids Expansion and Contraction in Liquids Expansion and Contraction in Gases Solids can become longer or shorter depending on the temperature (average energy of the particles). When the particles in a liquid are heated, their average energy increases and they need more room, so they expand. When the particles in a liquid are cooled, the volume decreases, or contracts, because the particles need less room. This is demonstrated by the liquid used in a thermometer. As the liquid expands and contracts, it moves up and down the inside tubing ( the bore ) of the thermometer. When the particles in a gas are heated, their average energy increases and they need more room, so they expand. When the particles in a gas are cooled, the volume decreases, or contracts, because the particles need less room. Under extremely high temperature conditions (like the temperatures inside the Sun, particles can be split into what makes them up (electrons and ions). This creates a fourth state of matter called plasma. Heat Affects the Volume of Solids, Liquids and Gases As the average energy of particles increases, the space between the particles increases. They expand (increase their volume) as the temperature increases. As the average energy of particles decreases, the space between the particles decreases. They contract (decrease their volume) as the temperature decreases. Shape and Size Compressibility (volume) Solids Liquids Gases Keep their shape and size Cannot be compressed (fixed volume) Take the shape of the container Almost incompressible (fixed volume) No definite shape or size Can be compressed (volume changes)

6 2.4 Heat Transfers by Conduction Conduction In solids, where the particles are closely packed together, thermal energy can be transferred from one particle to another very easily. Thermal conduction is the process of transferring thermal energy by the direct collisions of the particles. The space between the particles, in different solids, determines how quickly these collisions can take place. Good conducting materials are those materials where there is little space between the particles - like most metals. Poor conductors, like glass and wood are called heat insulators. These insulators when wrapped around an object slow down the rate of thermal conduction. Conductors Metals are good conductors of heat, so they are used extensively in cooking, because they transfer heat efficiently from the stove top or oven to the food. Hot and cold packs are used to treat muscle injuries. The Radiator of a car transfers heat away from the engine, so that the gasoline being used will not ignite. (Antifreeze is used to achieve this). Applications Insulators Insulators are materials that do not easily allow heat transfer 2.5 Heat Transfers by Convection and Radiation Understanding Convection Thermal energy can be transferred in fluids, by the circular motion of the particles, called convection. In convection, the warmer particles transfer their energy to the cooler particles as they move in a circular pattern, called, a convection current. A simple experiment The convection oven is one of the many practical applications of convection. The heat inside the oven helps to provide uniform beating as the convection current transfers the heat evenly inside. Convection Currents in Air Birds and para-gliders make use of 'thermals' to help them soar and glide - helping them to conserve energy when they migrate. Heating occurs through convection currents in a fluid, such as radiator water heating - flowing from the basement to heat a radiator on a floor above. Convection currents are also involved in creating the force of magnetism that surrounds the earth. Lava lamps are good examples to convection currents in action. As are the convection box and aquarium

### Unit 3 Heat and Temperature

REVIEW Key Concepts Unit 3 Heat and Temperature 1.0 Technologies for Obtaining and Controlling Heat Heat technologies have evolved over time Culture and technology are linked Evolution has integrated heat-related

### Science Focus 7 - Unit 3 Teaching Notes

Science Focus 7 - Unit 3 Teaching Notes Topic 1 Using Energy from Heat (p. 188-191) Examples of using Thermal energy for heating and cooking: Open fires Wood-burning fireplaces Modern Buildings Pioneer

### Kinetic Molecular Theory. A theory is a collection of ideas that attempts to explain certain phenomena.

Kinetic Molecular Theory A theory is a collection of ideas that attempts to explain certain phenomena. A law is a statement of specific relationships or conditions in nature. After centuries of questioning

### Temperature and Energy. Temperature and Energy, continued. Visual Concept: Measuring Temperature. Temperature Scales. Temperature Scales, continued

Temperature and Energy What does temperature have to do with energy? The temperature of a substance is proportional to the average kinetic energy of the substance s s particles. temperature: a measure

### TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

### Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

### Page 1. Name:

Name: 1) Which process requires the addition of energy to water? A) vaporization of water B) condensation of water C) freezing of water D) cooling of water 2) According to the Earth Science Reference Tables,

### Learning Pack for Heat and Temperature Unit 3 (Science In Action 7)

1 2 Focus in Action UNIT LEARNING PACKS These booklets are designed to provide Grade 7 students with all the resources needed to review or reinforce concepts, covered in the Alberta Science Curriculum,

### Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

### Evolution of the Thermometer

Evolution of the Thermometer A thermometer is a device that gauges temperature by measuring a temperature-dependent property, such as the expansion of a liquid in a sealed tube. The Greco-Roman physician

### ES 106 Laboratory # 2 HEAT AND TEMPERATURE

ES 106 Laboratory # 2 HEAT AND TEMPERATURE Introduction Heat transfer is the movement of heat energy from one place to another. Heat energy can be transferred by three different mechanisms: convection,

Convection, Conduction & Radiation There are three basic ways in which heat is transferred: convection, conduction and radiation. In gases and liquids, heat is usually transferred by convection, in which

Name: Class: Date: Grade 11A Science Related Reading/Physics Conduction, Convention & Radiation Physics Gr11A Pre Reading Activity Using prior knowledge, write the definition for each vocabulary term.

### Unit 2 Lesson 3 Thermal Energy and Heat Essential Question: What is the relationship between heat and temperature?

Big Idea: Energy exits in different forms and can change from one form to another, but energy is always conserved. Unit 2 Lesson 3 Thermal Energy and Heat Essential Question: What is the relationship between

### Chapter 10: Temperature and Heat

Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving

### Chapter 4: Transfer of Thermal Energy

Chapter 4: Transfer of Thermal Energy Goals of Period 4 Section 4.1: To define temperature and thermal energy Section 4.2: To discuss three methods of thermal energy transfer. Section 4.3: To describe

### Q1. Complete the boxes on the chart to show what happens to the energy from the Sun.

Q. Complete the boxes on the chart to show what happens to the energy from the Sun. (Total 3 marks) Q2. The diagram shows four identical pieces of aluminium. Each had been painted with a different type

### What Is Heat? What Is Heat?

What Is Heat? Paul shivered inside the wood cabin. It was cold outside, and inside the cabin it wasn t much warmer. Paul could hear the rain beating down on the roof. Every few minutes there would be a

### Chapter 15 Temperature, Heat, and Expansion

Chapter 15 Temperature, Heat, and Expansion Although the temperature of these sparks exceeds 2000ºC, the heat they impart when striking my skin is very small. Temperature and heat are different concepts.

### The Thermometer. Key Stage 3 Science. Cross Curricular KS3 History Shipbuilding.

The Thermometer AGE RANGES: 12-14 TASK: OBJECTIVES: Explore how a liquid changes its volume relative to its temperature. Students design their own bulb thermometer for testing in the classroom. Investigate

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### Chapter 16 Heat Transfer

Chapter 16 Heat Transfer Conduction Convection Radiation John Suchocki demonstrates the low conductivity of red-hot coals with his bare feet. 1 Three different ways of heat transmission Heat transfers

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

### Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface.

CHAPTER 12 LESSON 2 Earth s Atmosphere Energy Transfer in the Atmosphere Key Concepts How does energy transfer from the Sun to Earth and to the atmosphere? How are air circulation patterns within the atmosphere

### Kinetic Energy, Heat, and Temperature

7.3 Kinetic Energy, Heat, and Temperature Key Question: What is the relationship between kinetic energy and temperature of a substance? A book on a table might be sitting still, but all the particles that

### HNRS 227 Fall 2008 Chapter 4. Do You Remember These? iclicker Question. iclicker Question. iclicker Question. iclicker Question

HNRS 227 Fall 2008 Chapter 4 Heat and Temperature presented by Prof. Geller Do You Remember These? Units of length, mass and time, and metric Prefixes Density and its units The Scientific Method Speed,

### Thermal Energy OBJECTIVES

10 Thermal Energy You are aware that energy is required for all types of activities. In the previous lesson you have learnt about mechanical form of energy. Heat is also a form of energy, called thermal

### Heating the Atmosphere. Dr. Michael J Passow

Heating the Atmosphere Dr. Michael J Passow Heat vs. Temperature Heat refers to energy transferred from one object to another Temperature measures the average kinetic energy in a substance. When heat energy

### Chapter 10 Study Questions

Chapter 10 Study Questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following temperatures is the lowest? a. 100ºC c.

### Temperature and Heat Welcome to Thermodynamics

Temperature and Heat Welcome to Thermodynamics (or welcome to heat transfer) Up to now: mass, length, time, current The fourth quantity in physics: Temperature and related another form of energy, HEAT

### Experiment 4-Heat of Fusion and Melting Ice Experiment

Experiment 4-Heat of Fusion and Melting Ice Experiment In this lab, the heat of fusion for water will be determined by monitoring the temperature changes while a known mass of ice melts in a cup of water.

### Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A.

Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Copyright 2012 Pearson Education Inc. Goals

### Thermal Energy. Write down two things you do to make yourself feel warmer.

chapter 36 section 2 Heat Thermal Energy Before You Read Write down two things you do to make yourself feel warmer. What You ll Learn compare thermal energy and heat three ways heat moves what insulators

### thermo practice test

Name: ate: 1. If only the respective tempreatures of two objects are known, what additional information can be determined?. how much heat the objects contain 3. ase your answer(s) to the following question(s)

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered

FORMS OF ENERGY LESSON PLAN 2.7 Heat Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven states served

### Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Radiation Radiation: Heat energy transmitted by electromagnetic waves Q t = εσat 4 emissivity

### Chapter 17 States of Matter

Chapter 17 States of Matter Section 17.1 Solids, Liquids, and Gases Terms: States of matter Kinetic Theory of Matter Crystal Plasma Thermal Expansion After swimming on a hot day, Eli was having a refreshing

### 1. I, II, III, and IV. 2. II and III only. 3. I and IV only. 4. II and IV only. 5. II, III and IV only. 6. I and III only. 7.

Version 001 HW 09 TJC Hewitt Conceptual Fundamantals sizemore (Phys1405-2012-fall-tjc-jts) 1 This print-out should have 21 questions. Multiple-choice questions may continue on the next column or page find

### Q1. A student did two experiments on radiation. The apparatus he used is shown in the diagram.

Q. A student did two experiments on radiation. The apparatus he used is shown in the diagram. Experiment The student put the same volume of cold water into the two cans. He then switched on the heater.

### TEMPERATURE AND MOLECULAR MOTION

From http://www.physchem.co.za/heat/temperature.htm, http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/spht.html and http://www.efunda.com/formulae/heat_transfer/home/overview.cfm TEMPERATURE AND MOLECULAR

### 13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

### The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used.

TEKS 5.5B The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to: (B) identify the boiling

### Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales

Heat and Temperature Thermometers and Temperature Scales The mercury-based one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer

### Specific Heat Capacity and Latent Heat Mixed Questions

Specific Heat Capacity and Latent Heat Mixed Questions 1. 12 000 J of heat energy raises the temperature of a 2kg block of a metal from 20 0 C to 30 0 C. What is the specific heat capacity of the metal?

### Energy Transfer in the Atmosphere

Energy Transfer in the Atmosphere Essential Questions How does energy transfer from the sun to Earth and the atmosphere? How are air circulation patterns with the atmosphere created? Vocabulary Radiation:

### Understanding Solar Energy Teacher Page

Understanding Solar Energy Teacher Page Student Objective The student: will be able to calculate the calorie heat gain for several different containers given containers of several different materials will

### PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY. Calorimetry

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY Calorimetry Equipment Needed: Large styrofoam cup, thermometer, hot water, cold water, ice, beaker, graduated cylinder,

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

### What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

TEMPERATURE 2008, 2004, 10 by David A. Katz. All rights reserved. A BRIEF HISTORY OF TEMPERATURE MEASUREMENT Ancient people were physically aware of hot and cold and probably related temperature by the

### All energy can be in one of two forms: Potential energy (PE) or Kinetic energy (KE)

Energy All energy can be in one of two forms: Potential energy (PE) or Kinetic energy (KE) Potential energy is stored energy-- energy ready to go. Examples: A lawn mower filled with gasoline, a car on

### Chapter 6 Water and Ocean Structure

Chapter 6 Water and Ocean Structure Some basic concepts: Compounds substances that contain two or more different elements in fixed proportions Element a substance composed of identical particles that cannot

### Chemistry 51 Chapter 2 ENERGY & HEAT

ENERGY & HEAT Energy is defined as the capacity of matter to do work. There are two types of energy: 1. Potential (stored) 2. Kinetic (moving) Energy possesses many forms (chemical, electrical, thermal,

### Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

### The specific heat capacity of a material is defined as the energy needed to raise the temperature of 1 kg of the material by 1 o C.

High Demand Questions QUESTIONSHEET 1 The specific heat capacity of a material is defined as the energy needed to raise the temperature of 1 kg of the material by 1 o C. material iron aluminium copper

### Types of Energy. What is Energy? Forms of Energy

Types of Energy What is Energy? Energy is all around us. But what, exactly, is energy? Energy makes change possible. We use it to do things for us. It helps us heat our homes and move our cars. It allows

### Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc.

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law Units of Chapter 17 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal

### HEAT. Heat is measured in Joules, (J). Heat is a form of Energy and can do work. Expansion happens when objects get hot.

HEAT Heat is measured in Joules, (J). Heat is a form of Energy and can do work. Expansion happens when objects get hot. Contraction happens when objects get cold. Advantages: Thermometers use expanding

### Temperature. Bởi: OpenStaxCollege

Temperature Bởi: OpenStaxCollege The concept of temperature has evolved from the common concepts of hot and cold. Human perception of what feels hot or cold is a relative one. For example, if you place

### thermometer Encyclopedic Entry

This website would like to remind you: Your browser (Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Encyclopedic Entry For the complete encyclopedic

### Heat and Temperature practice questions SOLUTIONS

Heat and Temperature practice questions SOLUTIONS 1. Poor Pluto. One day you're the ninth planet. The next day your the first dwarf planet. To help Pluto with obvious problems of self esteem, we have invented

### Lesson 2 Thermal Energy Transfers

Lesson 2 Student Labs and Activities Page Launch Lab 28 Content Vocabulary 29 Lesson Outline 30 MiniLab 32 Content Practice A 33 Content Practice B 34 School to Home 35 Key Concept Builders 36 Enrichment

### FIRST GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF FIRST GRADE WATER WEEK 1. PRE: Investigating the water cycle. LAB: Experiencing surface tension. POST: Discovering how water

### UNIT 1 GCSE PHYSICS 1.1.1 Infrared Radiation 2011 FXA

1 All objects emit and absorb thermal radiation. The hotter an object is the infrared radiation it radiates in a given time. It is continually being transferred to and from all objects. The hotter the

### AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

### Unit 2: Energy Key Ideas:

Unit 2: Energy Key Ideas: 2.1 Observe, identify, and describe a variety of forms of energy: sound, mechanical, heat, electrical, and chemical 2.2 Identify the evidence for energy transformations and how

### Introduction to Chapter 26

9 Heating and Cooling Introduction to Chapter 26 In this chapter, you will learn how heat and temperature are measured. Many people believe that heat and temperature are the same thing, but these two properties

### Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_17_2012 Topics for Chapter 17

### The Three Heat Transfer Modes in Reflow Soldering

Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared

### 1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete

### UNIT 1 GCSE PHYSICS Energy Transfer by Heating 2011 FXA HEAT TRANSFER PROCESS COLD

11 The transfer of energy by conduction, convection, evaporation and condensation involves particles, and how this transfer takes place. How the arrangement and movement of particles determine whether

### Calculating Work. Thermodynamics. Isobaric Process. Isochoric (isovolumetric) Work from Graph: Example 1 2/27/2012. Chapter 15

Pressure (X105 N/m2) Pressure (X105 N/m2) 2/27/2012 Thermodynamics Chapter 15 Calculating Work Work = area under Pressure vs. Volume graph W = Fd F = PA W=PAd W = P V Calculus link V 2 W = - p dv V 1 Isochoric

### TEST NAME: Matter TEST ID: GRADE:05 SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom

TEST NAME: Matter TEST ID: 49717 GRADE:05 SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom Matter Page 1 of 30 Student: Class: Date: 1. What is the MAJOR role of the Sun in the water cycle?

### Thermodynamics is the study of heat. It s what comes into play when you drop an ice cube

Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent

### Water to Vapor; Water to Ice The Process Is Amazing

Science Project Idea 8 th -Grade Energy Water to Vapor; Water to Ice The Process Is Amazing Setting the Scene: Holding On To Heat If you leave a cup of cold water on a counter, it will warm up very quickly.

### Heat Transfer: Conduction, Convection, and Radiation

Heat Transfer: Conduction, Convection, and Radiation Introduction We have learned that heat is the energy that makes molecules move. Molecules with more heat energy move faster, and molecules with less

### Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

### Thermal Energy. Thermal Energy. Chemical Bonds. Chemical Bonds. Chemical Bonds. Chemical Bonds. Ordered motion doesn t contribute to thermal energy

Disordered Kinetic and potential energies of individual atoms Presence of thermal energy gives an object temperature Ordered motion doesn t contribute to thermal energy total kinetic energy - whole object

### Unit 2 Frayer Models

Unit 2 Frayer Models The energy of an object that is due to the object s motion. Can be transferred from one moving object to another. Moving a soccer ball. A football passing through the field goal post.

### Exploring Heat Energy (60 min) Introductory Session with slideshow, animations, activities, and Keep the Hot Cocoa Hot Team Challenge

1 6 Introductory Session with slideshow, animations, activities, and Keep the Hot Cocoa Hot Team Challenge (8 min) Start with the Exploring Heat Energy slideshow. (Note: slide numbers refer to the pdf

### Temperature and. Chapter 5: Temperature and Heat. Thermometer. Bimetallic Strip and Thermal Expansion. Temperature Scales Celsius, Kelvin, Fahrenheit

Temperature Chapter 5 Chapter 5: Temperature and Heat Temperature and Homework: All questions Heat on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter.

### Mechanisms of Heat Transfer. Amin Sabzevari

Mechanisms of Heat Transfer Amin Sabzevari Outline Definition of Heat and Temperature Conduction, Convection, Radiation Demonstrations and Examples What is Heat? Heat is the spontaneous flow of energy

### Properties of Water. reflect. look out! what do you think?

reflect Water is found in many places on Earth. In fact, about 70% of Earth is covered in water. Think about places where you have seen water. Oceans, lakes, and rivers hold much of Earth s water. Some

### HNRS 227 Lecture 5 and 6 Chapter 4 and Chapter 5. Heat and Temperature Wave Motion and Sound presented by Prof. Geller

HNRS 227 Lecture 5 and 6 Chapter 4 and Chapter 5 Heat and Temperature Wave Motion and Sound presented by Prof. Geller Recall from Chapters 1, 2, 3 Units of length, mass and time, and metric Prefixes Density

### A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

### P1 Learning Outcome Questions

P1 Learning Outcome Questions Question 1. Do hot things or warm things cool down more quickly? 2. In which direction does heat energy always move? Answer Hot things cool down more quickly From a warmer

Forms of Energy There are many types of energy. Kinetic energy is the energy of motion. Potential energy is energy that results from position, such as the energy in water going over a dam. Electrical energy

### CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

### MAKING SENSE OF ENERGY Electromagnetic Waves

Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

### same number of particles as every cubic centimeter of air outside the bottle.

Particles A ir is matter. It has mass and occupies space. Air is a mixture of many gases. Air is approximately four-fifths nitrogen and one-fifth oxygen. All the other gases, including carbon dioxide and

### Preview of Period 5: Thermal Energy, the Microscopic Picture

Preview of Period 5: Thermal Energy, the Microscopic Picture 5.1 Temperature and Molecular Motion What is evaporative cooling? 5.2 Temperature and Phase Changes How much energy is required for a phase

### Instruction Manual and Experiment Guide F. Basic Calorimetry Set TD-8557A

Instruction Manual and Experiment Guide 012-03060F Basic Calorimetry Set TD-8557A Al Cu W Table of Contents Introduction......................................................................... 1 Notes

### Infrared Thermometer Guidance

Infrared Thermometer Guidance Infrared thermometers can be used to answer a range of questions, including: - What is the temperature of the clouds? - What is the greenhouse effect? - If it is sunny, how

### 2.1 Properties of Matter > Chapter 2 Matter and Change. 2.1 Properties of Matter. 2.2 Mixtures 2.3 Elements and Compounds 2.4 Chemical Reactions

21 Properties of Matter > 1 Copyright Pearson Education, Inc, or its affiliates All Rights Reserved Chapter 2 Matter and Change 21 Properties of Matter 22 Mixtures 23 Elements and Compounds 24 Chemical

### Sixth Grade Energy, Heat, and Energy Transfer Assessment

Sixth Grade Energy, Heat, and Energy Transfer Assessment 1a. Which of the following is not one of the six forms of energy? Circle the answer. electrical chemical petroleum wave (light, sound) mechanical

### Grade 7 - Heat and Temperature Unit Test

Grade 7 - Heat and Temperature Unit Test Student Class 1. This type of Thermal Energy source can be used to cook food, but they are hard to control, dangerous and messy. A. open fires B. fireplaces C.

### Energy Heats Maine. Heat Transfer Scenes

Energy Heats Maine 1G G2 Energy Heats Maine Energy Heats Maine 3G G4 Energy Heats Maine Energy Heats Maine 5G G6 Energy Heats Maine Energy Heats Maine 7G G8 Energy Heats Maine Energy Heats Maine 9G G10

### The particulate nature of matter

The particulate nature of matter Solids, liquids and gases The kinetic theory of matter Explaining the states of matter Changes of state An unusual state of matter An unusual change of state Heating and