Kinetic Theory. Energy. Transfers and Efficiency. The National Grid

Size: px
Start display at page:

Download "Kinetic Theory. Energy. Transfers and Efficiency. The National Grid"

Transcription

1 AQA P1 Revision

2 Infrared Radiation Heating and Insulating Buildings Kinetic Theory Energy Transfers and Efficiency Energy Transfer by Heating Transferring Electrical Energy Generating Electricity The National Grid Waves Reflection Sound Red Shift and the Big Bang Theory

3 Infrared Radiation a) All objects emit and absorb infrared radiation. b) The hotter an object is the more infrared radiation it radiates in a given time. c) Dark, matt surfaces are good absorbers and good emitters of infrared radiation. d) Light, shiny surfaces are poor absorbers and poor emitters of infrared radiation. e) Light, shiny surfaces are good reflectors of infrared radiation.

4 Emitting Infrared Radiation All objects emit (give out) some thermal radiation. Certain surfaces are better at emitting thermal radiation than others. best emitter worst emitter matt black white silver Matt black surfaces are the best emitters of radiation. Shiny surfaces are the worst emitters of radiation. Which type of kettle would cool down faster: a black kettle or a shiny metallic kettle?

5 Absorbing Infrared Radiation Infrared waves heat objects that absorb (take in) them. best emitter matt black best absorber white worst emitter silver worst absorber Matt black surfaces are the best absorbers of radiation. Shiny surfaces are the worst emitters because they reflect most of the radiation away. Why are solar panels that are used for heating water covered in a black outer layer?

6 Infrared Radiation Exam Questions

7 Kinetic Theory a) The use of kinetic theory to explain the different states of matter. b) The particles of solids, liquids and gases have different amounts of energy.

8 Kinetic Theory As you heat a substance, the heat energy is transferred to the particles in the substance as kinetic energy. This causes the particles to move further apart, decreasing the density of the substance.

9 Kinetic Theory A loss of heat energy will cause the opposite effect.

10 Kinetic Theory Exam Questions

11 Energy Transfer by Heating a) The transfer of energy by conduction, convection, evaporation and condensation involves particles, and how this transfer takes place. b) The factors that affect the rate of evaporation and condensation. c) The rate at which an object transfers energy by heating depends on: surface area and volume the material from which the object is made the nature of the surface with which the object is in contact. d) The bigger the temperature difference between an object and its surroundings, the faster the rate at which energy is transferred by heating.

12 Energy Transfer by Heating solid liquid gas Particles that are very close together can transfer heat energy as they vibrate. This type of heat transfer is called conduction. Conduction is the method of heat transfer in solids but not liquids and gases.

13 Energy Transfer by Heating Warmer regions of a fluid are more dense than cooler regions of the same fluid. The warmer regions will rise because they are more dense. The cooler regions will sink as they are less dense. This is how heat transfer takes place in fluids and is called convection. The steady flow between the warm and cool sections of a fluid, such as air or water, is called a convection current.

14 Energy Transfer by Heating The Earth is warmed by heat energy from the Sun. How does this heat energy travel from the Sun to the Earth? infrared waves There are no particles between the Sun and the Earth, so the heat cannot travel by conduction or by convection. The heat travels to Earth by infrared waves. These are similar to light waves and are able to travel through empty space.

15 Energy Transfer by Heating How is a vacuum flask able to keep hot drinks hot and cold drinks cold? 2. The plastic (or cork) lid is an insulator and the screw top prevents convection currents escaping from the flask. 1. There is a vacuum between two layers of glass or steel, which prevents heat leaving or entering by conduction. 3. The walls have silvery surfaces, which prevent heat leaving or entering by radiation.

16 Energy Transfer by Heating Heat loss through evaporation.

17 Energy Transfer by Heating Quick Quiz

18 Energy Transfer by Heating Exam Questions

19 Energy Transfer by Heating Exam Questions

20 Heating and Insulating Buildings a) U-values measure how effective a material is as an insulator. b) The lower the U-value, the better the material is as an insulator. c) Solar panels may contain water that is heated by radiation from the Sun. This water may then be used to heat buildings or provide domestic hot water. d) The specific heat capacity of a substance is the amount of energy required to change the temperature of one kilogram of the substance by one degree Celsius. Energy transferred = mass x specific heat capacity x temperature change

21 Heating and Insulating Buildings A thermogram shows the distribution of heat over the surface of a house. It highlights where heat is being lost. The white, yellow and red areas are the warmest, so these are the worst insulated parts of the house. The blue and green areas are the coolest, so these are the best insulated parts of the house.

22 Heating and Insulating Buildings

23 Heating and Insulating Buildings The specific heat capacity of a material is the amount of energy required to raise 1 kg of the material by 1 C. It can be used to work out how much energy is needed to raise the temperature of a material by a certain amount: energy specific heat = mass x capacity x temperature change Energy is measured in joules (J). Mass is measured in kilograms (kg). Temperature change is measured in C. Specific heat capacity is measured in J/kg C.

24 Heating and Insulating Buildings Using the specific heat capacity of water (4200 J/kg C), how much energy is needed to increase the temperature of 600 g of water by 80 C in a kettle? Note: mass = 600 g = 0.6 kg energy specific heat = mass x capacity x temperature change energy = 0.6 x 4200 x 80 = J

25 Heating and Insulating Buildings Exam Questions

26 Energy Transfers and Efficiency a) Energy can be transferred usefully, stored, or dissipated, but cannot be created or destroyed. b) When energy is transferred only part of it may be usefully transferred, the rest is wasted. c) Wasted energy is eventually transferred to the surroundings, which become warmer. The wasted energy becomes increasingly spread out and so becomes less useful. d) To calculate the efficiency of a device using:

27 Energy Transfers and Efficiency The energy efficiency of a device can be calculated using this formula: energy efficiency = useful output energy total input energy Useful energy is measured in joules (J). Total energy is measured in joules (J). Energy efficiency does not have any units. It is a number between 0 and 1 which can be converted into a percentage by multiplying by 100.

28 Energy Transfers and Efficiency All the energy transfers (useful and wasted) that are associated with a device can be represented by a Sankey diagram. A Sankey diagram uses arrows to represent all the output energies. The thickness of each arrow is proportional to the amount of energy involved at that stage. 100 J electrical energy (input) Filament light bulb 90 J heat energy (wasted) 10 J light energy (output) Energy efficient light bulb 20 J 10 J electrical light energy energy (input) 10 J (output) heat energy (wasted)

29 Energy Transfers and Efficiency Exam Questions

30 Transferring Electrical Energy a) Examples of energy transfers that everyday electrical appliances are designed to bring about. b) The amount of energy an appliance transfers depends on how long the appliance is switched on and its power. c) To calculate the amount of energy transferred from the mains using: Energy transferred = power x time d) To calculate the cost of mains electricity given the cost per kilowatt-hour.

31 Transferring Electrical Energy The amount of electrical energy (i.e. the amount of electricity) used by an appliance depends on its power and how long the electricity is used for. electrical energy = power x time Power is measured in kilowatts (kw) and the time is measured in hours (h), so what are the units of electricity measured in? 1 unit of electricity = 1 unit of electrical energy = 1 kilowatt hour (kwh) Example: How many units of electricity is 17.6 kwh? 17.6 units

32 Transferring Electrical Energy Electricity costs money, which is why every home has an electricity meter. The meter records how much electricity is used in a house in units of electrical energy. The units of electrical energy are called kilowatt hours (kwh). The cost of an electricity bill is calculated from the number of units used.

33 Transferring Electrical Energy The cost of electricity is the number of units of electrical energy multiplied by the cost per unit. cost = number of units x cost per unit Example: How much would 10 units of electricity cost at a price of 9p per unit? cost = 10 units x 9 p/unit = 90 p

34 Transferring Electrical Energy A kettle uses 45.2 kwh of energy. If electricity costs 10 p per unit, how much does it cost to use the kettle? Number of units: number of units of electricity = number of kilowatt hours = 45.2 units Cost of electricity: cost = number of units x cost per unit = 45.2 units x 10 p / unit = 452 p or 4.52

35 Transferring Electrical Energy Exam Questions

36 Transferring Electrical Energy Exam Questions

37 Generating Electricity a) In some power stations an energy source is used to heat water. The steam produced drives a turbine that is coupled to an electrical generator. Energy sources include: the fossil fuels (coal, oil and gas) which are burned to heat water or air uranium and plutonium, when energy from nuclear fission is used to heat water biofuels that can be burned to heat water. b) Water and wind can be used to drive turbines directly. c) Electricity can be produced directly from the Sun s radiation. d) In some volcanic areas hot water and steam rise to the surface. The steam can be tapped and used to drive turbines. This is known as geothermal energy. e) Small-scale production of electricity may be useful in some areas and for some uses, e.g. hydroelectricity in remote areas and solar cells for roadside signs. f) Using different energy resources has different effects on the environment. These effects include: the release of substances into the atmosphere, the production of waste materials, noise and visual pollution, the destruction of wildlife habitats.

38 Generating Electricity Energy resources can be classified into two groups. Renewable Non-renewable Renewable energy resources can be replaced or regenerated and will never run out (at least not for a very long time). Examples: wind and solar. Non-renewable energy resources will eventually run out once used they cannot be used again. Examples: coal and oil.

39 Generating Electricity

40 Generating Electricity

41 Generating Electricity Exam Questions

42 Generating Electricity Exam Questions

43 The National Grid a) Electricity is distributed from power stations to consumers along the National Grid. b) For a given power increasing the voltage reduces the current required and this reduces the energy losses in the cables. c) The uses of step-up and step-down transformers in the National Grid.

44 The National Grid Power station Step up transformer Step down transformer Homes The voltage is altered in The National Grid with the use of step-up and step-down transformers. The voltage is stepped up when it leaves the power station to reduce the current - this reduces the amount of energy loss The voltage is then stepped down before it reaches our homes

45 The National Grid Exam Questions

46 Waves a) Waves transfer energy. b) Waves may be either transverse or longitudinal. c) Electromagnetic waves are transverse, sound waves are longitudinal and mechanical waves may be either transverse or longitudinal. d) All types of electromagnetic waves travel at the same speed through a vacuum (space). e) Electromagnetic waves form a continuous spectrum. f) Longitudinal waves show areas of compression and rarefaction. g) Waves can be reflected, refracted and diffracted. h) Waves undergo a change of direction when they are refracted at an interface. i) The terms frequency, wavelength and amplitude. j) All waves obey the wave equation: v = f x k) Radio waves, microwaves, infrared and visible light can be used for communication.

47 Transverse Waves Vibrations Vibrations Wave Direction The vibrations are at 90 O or right angles to the direction of the waves.

48 Transverse Waves Certain parts of a transverse wave have special names. The high points of a transverse wave are called peaks and the low points of a transverse wave are called troughs. peak trough

49 Transverse Waves The wavelength of any wave is the distance between two matching points on neighbouring waves. wavelength wavelength wavelength The wavelength is the same whichever two matching points are used to measure this distance. The symbol used to represent wavelength is.

50 Transverse Waves The amplitude of any wave is the maximum distance a point moves from its rest position. amplitude amplitude The amplitude of a transverse wave is the height of a peak or trough from the wave s rest position of the wave. The larger the amplitude, the greater the energy of the wave.

51 Transverse Waves The frequency is the number of waves passing any point each second. frequency = number of waves past a point / time frequency is measured in hertz (Hz) 1 wave per second = 1 Hz If this set of transverse waves pass a point in one second, what is the frequency? 4 Hz

52 Longitudinal Waves Vibrations Wave Direction The vibrations are parallel to the direction of the waves.

53 Longitudinal Waves Where the particles in a longitudinal wave bunch together are called compressions, where they spread out are called rarefactions.

54 Longitudinal Waves The wavelength of a longitudinal wave is measured from one compression to another, or one rarefaction to another. wavelength wavelength

55 Waves For any set of waves, the wave speed (v) can be calculated from the frequency (f) and wavelength ( ) using this formula: wave speed = frequency x wavelength v = f x What are the units of speed, frequency and wavelength? Wave speed is measured in metres per second (m/s). Frequency is measured in hertz (Hz). Wavelength is measured in metres (m).

56 Waves These waves are travelling across the surface of a pond. The length of each wave is 0.25 m. Two waves pass the duck each second, so the frequency is 2 Hz. This means that the waves travel 0.5 m each second, so the speed of the waves is 0.5 m/s. From this example, the connection between speed, frequency and wavelength is: speed = frequency x wavelength 0.5 m/s = 2 Hz x 0.25 m

57 Waves Exam Questions

58 Waves Exam Questions

59 Reflection a) The normal is a construction line perpendicular to the reflecting surface at the point of incidence b) The angle of incidence is equal to the angle of reflection. c) The image produced in a plane mirror is virtual, upright and laterally inverted.

60 A plane mirror reflects light regularly so it produces a clear image, which is the same size as the object. The image appears the same distance behind the mirror as the object is in front of it. Reflection What is different about the image compared to the object? When an object is reflected in a plane mirror, left appears as right and right appears as left. This type of reversal is called lateral inversion.

61 Reflection Exam Questions

62 Sound a) Sound waves are longitudinal waves and cause vibrations in a medium, which are detected as sound. b) The pitch of a sound is determined by its frequency and loudness by its amplitude. c) Echoes are reflections of sounds.

63 Sound Sound waves can be studied with this type of equipment. loudspeaker oscilloscope signal generator A loudspeaker converts signals from the signal generator into sound waves. A signal generator produces different types of signals. An oscilloscope shows wave patterns and allows us to see sound.

64 Sound A sound can be quiet or loud. quiet sound loud sound On an oscilloscope trace, the loudness of a sound is shown by the height of the wave. This is called the amplitude. Which word should be crossed out in this sentence? The larger the amplitude of the wave on the trace, the louder/quieter the sound.

65 Sound Which trace represents the loudest sound? A Sound A is the loudest. B Sound A has the largest amplitude (i.e. the tallest waves), so it is the loudest of these two sounds.

66 Sound A sound can be high or low this is the pitch of the sound. low pitch sound high pitch sound On an oscilloscope trace, the pitch of a sound is shown by how many waves there are. This is called the frequency. Which word should be crossed out in this sentence? The greater the number of waves across the oscilloscope trace, the lower/higher the frequency and pitch.

67 Sound Which trace represents the sound with the highest pitch? A Sound B has the highest pitch. B Sound B has the most number of waves across the oscilloscope it has the highest frequency and so has the highest pitch.

68 Sound What happens when a sound wave meets a hard flat surface? The sound wave is reflected back from the surface. This is called an echo.

69 Sound Exam Questions

70 Red Shift and the Big Bang Theory a) If a wave source is moving relative to an observer there will be a change in the observed wavelength and frequency. This is known as the Doppler effect. b) There is an observed increase in the wavelength of light from most distant galaxies. The further away the galaxies are, the faster they are moving, and the bigger the observed increase in wavelength. This effect is called red-shift. c) How the observed red-shift provides evidence that the universe is expanding and supports the Big Bang theory (that the universe began from a very small initial point). d) Cosmic microwave background radiation (CMBR) is a form of electromagnetic radiation filling the universe. It comes from radiation that was present shortly after the beginning of the universe. e) The Big Bang theory is currently the only theory that can explain the existence of CMBR.

71 Red Shift and the Big Bang Theory The Doppler effect means that sound moving away from an observer appears to be lower in frequency. The same thing happens with light from distant galaxies, which appears to be shifted towards the low frequency, red end of the spectrum. This means the distant galaxies must be moving away from the Earth. It has also been observed that the further away a galaxy is, the greater the amount of red shift. This means that very distant galaxies must be moving faster than near, all of which is evidence for the Big Bang theory.

72 Red Shift and the Big Bang Theory The observation of red shift is a key piece of evidence for the Big Bang theory about the origin of the Universe. This states that the Universe began with a colossal explosion 13,700 million years ago and has been expanding ever since. The other key piece of evidence for the Big Bang theory is cosmic microwave background radiation (CMBR). CMBR is radiation remaining from the Big Bang explosion and fills the whole of the Universe.

73 Red Shift and the Big Bang Theory The Big Bang is the most widely recognised scientific theory on how the Universe began. It states that the Universe began from a very small, very dense and very hot initial point. It burst outwards in a great explosion, and all matter and space was created in the Big Bang. It is even thought that this was the moment when time began.

74 Red Shift and the Big Bang Theory The first piece of evidence for the Big Bang is from data collected on red-shift. Red-shift shows us that galaxies which are furthest away from us are moving faster than galaxies closer to us. The galaxies are a bit like coloured sparks from an exploding firework. The sparks moving fastest travel the furthest. If you could run time backward you would see the sparks all starting in one point. The same is true for galaxies.

75 Red Shift and the Big Bang Theory In the 1960s two scientists called Wilson and Penzias noticed that a form of microwave radiation was affecting their readings. The electromagnetic radiation was everywhere and is now called cosmic microwave background radiation (CMBR). CMBR is explained as being heat left over from the Big Bang. As the Universe exploded, it cooled and the radiation was stretched out. Today this radiation is in the microwave region of the electromagnetic spectrum

76 Red Shift and the BBT Exam Questions

77 Red Shift and the BBT Exam Questions

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Physics P1 Physics Unit Physics P1 Friday 12 June 2015 General

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Q1. (a) The block diagram shows the important parts of a coal burning power station. Use words from the box to complete the block diagram

Q1. (a) The block diagram shows the important parts of a coal burning power station. Use words from the box to complete the block diagram Q. (a) The block diagram shows the important parts of a coal burning power station. Use words from the box to complete the block diagram boiler condenser furnace generator (b) The diagram shows the energy

More information

Physics Unit 1 Revision (higher tier)

Physics Unit 1 Revision (higher tier) Physics Unit Revision (higher tier) Energy There are 9 different forms of energy: Light Heat Chemical Kinetic (movement) Electrical Elastic (Gravitational) potential Nuclear Sound Energy is never created

More information

Big bang, red shift and doppler effect

Big bang, red shift and doppler effect Big bang, red shift and doppler effect 73 minutes 73 marks Page of 26 Q. (a) Scientists have observed that the wavelengths of the light from galaxies moving away from the Earth are longer than expected.

More information

Semester 2. Final Exam Review

Semester 2. Final Exam Review Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Chapter 17: Change of Phase

Chapter 17: Change of Phase Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

More information

P1 4. Waves and their uses

P1 4. Waves and their uses P 4. Waves and their uses P 8 minutes 8 marks Answer all questions using any and all resources. Page of 38 Q. Diagram shows four of the seven types of wave in the electromagnetic spectrum. Diagram J K

More information

Energy Transformations

Energy Transformations Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

In science, energy is the ability to do work. Work is done when a force causes an

In science, energy is the ability to do work. Work is done when a force causes an What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated

More information

Module 2.2. Heat transfer mechanisms

Module 2.2. Heat transfer mechanisms Module 2.2 Heat transfer mechanisms Learning Outcomes On successful completion of this module learners will be able to - Describe the 1 st and 2 nd laws of thermodynamics. - Describe heat transfer mechanisms.

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

More information

Friday 20 January 2012 Morning

Friday 20 January 2012 Morning THIS IS A NEW SPECIFICATION H Friday 20 January 2012 Morning GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A A181/02 Modules P1 P2 P3 (Higher Tier) *A131500112* Candidates answer on the Question Paper. A calculator

More information

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

Green Heating. Pupil Research Brief. Teachers Notes. Syllabus Coverage Subject Knowledge and Understanding. Route through the Brief UPIL ESEARCHER

Green Heating. Pupil Research Brief. Teachers Notes. Syllabus Coverage Subject Knowledge and Understanding. Route through the Brief UPIL ESEARCHER R P UPIL ESEARCHER Green Heating I NITIATIVE Pupil Research Brief Teachers Notes Syllabus Coverage Subject Knowledge and Understanding all types of electromagnetic radiation form a continuous spectrum

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

Energy transfers (Particle theory, conduction, convection, IR, evaporation)

Energy transfers (Particle theory, conduction, convection, IR, evaporation) Energy transfers (Particle theory, conduction, convection, IR, evaporation) 88 minutes 88 marks Page of 72 Q. (a) The diagrams, X, Y and Z, show how the particles are arranged in the three states of matter.

More information

Convection, Conduction & Radiation

Convection, Conduction & Radiation Convection, Conduction & Radiation There are three basic ways in which heat is transferred: convection, conduction and radiation. In gases and liquids, heat is usually transferred by convection, in which

More information

GATEWAY SCIENCE B651/01 PHYSICS B Unit 1 Modules P1 P2 P3 (Foundation Tier)

GATEWAY SCIENCE B651/01 PHYSICS B Unit 1 Modules P1 P2 P3 (Foundation Tier) F GENERAL CERTIFICATE OF SECONDARY EDUCATION GATEWAY SCIENCE B651/01 PHYSICS B Unit 1 Modules P1 P2 P3 (Foundation Tier) *CUP/T63931* Candidates answer on the question paper A calculator may be used for

More information

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

More information

Q1. (a) The graph shows the temperature inside a flat between 5 pm and 9 pm. The central heating was on at 5 pm.

Q1. (a) The graph shows the temperature inside a flat between 5 pm and 9 pm. The central heating was on at 5 pm. Q. (a) The graph shows the temperature inside a flat between 5 pm and 9 pm. The central heating was on at 5 pm. (i) What time did the central heating switch off? () (ii) Closing the curtains reduces heat

More information

Y10 Foundation Revision 101 Questions!

Y10 Foundation Revision 101 Questions! Y0 Foundation Revision 0 Questions! Q. The diagrams show the cross-section of three double glazed windows. The gap between the two sheets of glass can be filled with either air or a mixture of air and

More information

A/A* Model Answers Physics P1

A/A* Model Answers Physics P1 A/A* Model Answers Physics P1 Name:... Heat transfer Explain, in terms of particles, how heat is transferred through the glass wall of a boiling tube. (2 marks) particles vibrate with a bigger / stronger

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

MAKING SENSE OF ENERGY Electromagnetic Waves

MAKING SENSE OF ENERGY Electromagnetic Waves Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

More information

Chapter 4: Transfer of Thermal Energy

Chapter 4: Transfer of Thermal Energy Chapter 4: Transfer of Thermal Energy Goals of Period 4 Section 4.1: To define temperature and thermal energy Section 4.2: To discuss three methods of thermal energy transfer. Section 4.3: To describe

More information

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Sample Mid-Term 3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If you double the frequency of a vibrating object, its period A) is quartered.

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

Energy - Heat, Light, and Sound

Energy - Heat, Light, and Sound Science Benchmark: 06:06 Heat, light, and sound are all forms of energy. Heat can be transferred by radiation, conduction and convection. Visible light can be produced, reflected, refracted, and separated

More information

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What

More information

What Is Heat? What Is Heat?

What Is Heat? What Is Heat? What Is Heat? Paul shivered inside the wood cabin. It was cold outside, and inside the cabin it wasn t much warmer. Paul could hear the rain beating down on the roof. Every few minutes there would be a

More information

UNIT 1 GCSE PHYSICS 1.1.1 Infrared Radiation 2011 FXA

UNIT 1 GCSE PHYSICS 1.1.1 Infrared Radiation 2011 FXA 1 All objects emit and absorb thermal radiation. The hotter an object is the infrared radiation it radiates in a given time. It is continually being transferred to and from all objects. The hotter the

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Topic Page Contents Page

Topic Page Contents Page Heat energy (11-16) Contents Topic Page Contents Page Heat energy and temperature 3 Latent heat energy 15 Interesting temperatures 4 Conduction of heat energy 16 A cooling curve 5 Convection 17 Expansion

More information

Time allowed: 1 hour 45 minutes

Time allowed: 1 hour 45 minutes GCSE PHYSICS Foundation Tier Paper 1F F Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the Physics Equation Sheet (enclosed). Instructions Answer

More information

Mark Scheme (Results) March 2012. GCSE Physics 5PH1H/01

Mark Scheme (Results) March 2012. GCSE Physics 5PH1H/01 Mark Scheme (Results) March 2012 GCSE Physics 5PH1H/01 Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning company. We provide a wide range of

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Forms of Energy. Freshman Seminar

Forms of Energy. Freshman Seminar Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency

More information

The Three Heat Transfer Modes in Reflow Soldering

The Three Heat Transfer Modes in Reflow Soldering Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared

More information

Station #1 Interpreting Infographs

Station #1 Interpreting Infographs Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles

More information

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete

More information

Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

More information

ES 106 Laboratory # 2 HEAT AND TEMPERATURE

ES 106 Laboratory # 2 HEAT AND TEMPERATURE ES 106 Laboratory # 2 HEAT AND TEMPERATURE Introduction Heat transfer is the movement of heat energy from one place to another. Heat energy can be transferred by three different mechanisms: convection,

More information

Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

Pretest Ch 20: Origins of the Universe

Pretest Ch 20: Origins of the Universe Name: _Answer key Pretest: _2_/ 58 Posttest: _58_/ 58 Pretest Ch 20: Origins of the Universe Vocab/Matching: Match the definition on the left with the term on the right by placing the letter of the term

More information

KS3 revision booklet Physics

KS3 revision booklet Physics NAME KS3 revision booklet Physics Use this booklet to help you revise the physics you have studied in Key Stage 3. There are some ideas about how you can test yourself in the back of this booklet. Why

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

Exam on Heat and Energy

Exam on Heat and Energy Exam on Heat and Energy True/False Indicate whether the statement is true or false. 1. Energy is the ability to cause change. 2. Energy is measured in joules. 3. When you ride a playground swing, your

More information

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Radiation Radiation: Heat energy transmitted by electromagnetic waves Q t = εσat 4 emissivity

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Section 15.1 Energy and Its Forms (pages 446 452)

Section 15.1 Energy and Its Forms (pages 446 452) Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.

More information

Forms of Energy: Multiple Transformations : Teacher Notes

Forms of Energy: Multiple Transformations : Teacher Notes Forms of Energy: Multiple Transformations : Teacher Notes Introduction The focus of the investigation is to further define energy and realize that chains of energy transformations can occur. The VoltageCurrent,

More information

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence PHYSICAL WORLD Heat & Energy GOD S DESIGN 4th Edition Debbie & Richard Lawrence God s Design for the Physical World is a complete physical science curriculum for grades 3 8. The books in this series are

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

Chapter 4 Forms of energy

Chapter 4 Forms of energy Chapter 4 Forms of energy Introduction This chapter compromises a set of activities that focuses on the energy sources and conversion. The activities illustrate The concept and forms of energy; The different

More information

CPI Links Content Guide & Five Items Resource

CPI Links Content Guide & Five Items Resource CPI Links Content Guide & Five Items Resource Introduction The following information should be used as a companion to the CPI Links. It provides clarifications concerning the content and skills contained

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

Do-Now. 1.) Get out notebook.

Do-Now. 1.) Get out notebook. Do-Now 1.) Get out notebook. 2.) Answer the following questions on the first clean sheet in your notebook. 1.) What are renewable resources? 2.) What are nonrenewable resources? Alternative Sources of

More information

Energy Matters Heat. Changes of State

Energy Matters Heat. Changes of State Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

More information

CRT Science Review #1 Physical Science: Matter

CRT Science Review #1 Physical Science: Matter CRT Science Review #1 Physical Science: Matter Standard: Matter Matter has various states with unique properties that can be used as the basis for organization. The relationship between the properties

More information

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude. practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

More information

T E A C H E R S N O T E S

T E A C H E R S N O T E S T E A C H E R S N O T E S Focus: Students explore energy: its sources, forms, and transformations. Students also consider the benefits of energy-efficient technologies and energy conservation. Learning

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

More information

Science Tutorial TEK 6.9C: Energy Forms & Conversions

Science Tutorial TEK 6.9C: Energy Forms & Conversions Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

Activity 1: 2 butter cartons, scissors, cling film, thermometer, water, a sunny spot and a shady spot.

Activity 1: 2 butter cartons, scissors, cling film, thermometer, water, a sunny spot and a shady spot. Equipment: Activity 1: 2 butter cartons, scissors, cling film, thermometer, water, a sunny spot and a shady spot. Activity 2: 3 thermometers, black paper, white paper Suggested Class Level: 3rd 6th Preparation:

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Introduction to Chapter 27

Introduction to Chapter 27 9 Heating and Cooling Introduction to Chapter 27 What process does a hot cup of coffee undergo as it cools? How does your bedroom become warm during the winter? How does the cooling system of a car work?

More information

Big Bang and Steady State Theories - Past exam questions (6 mark)

Big Bang and Steady State Theories - Past exam questions (6 mark) Big Bang and Steady State Theories - Past exam questions (6 mark) (1) * Scientists believe that the Universe is expanding. Describe how careful observation of electromagnetic radiation from distant galaxies

More information

Conventional Energy Sources

Conventional Energy Sources 9.2 Conventional Energy Sources Key Question: What benefits and problems come with common sources of energy? Hints The word plant here is not the kind that grows out of the ground. In this section, plants

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors

More information

Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types of energy: kinetic energy

More information

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros: P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation

More information

Multiple Choice For questions 1-10, circle only one answer.

Multiple Choice For questions 1-10, circle only one answer. Test Bank - Chapter 1 The questions in the test bank cover the concepts from the lessons in Chapter 1. Select questions from any of the categories that match the content you covered with students. The

More information

MARKING SCHEME PHYSICS SCIENCE UNIT P1 ADDITIONAL SCIENCE UNIT P2 MS2 2.00

MARKING SCHEME PHYSICS SCIENCE UNIT P1 ADDITIONAL SCIENCE UNIT P2 MS2 2.00 MS.00 GENERAL CERTIFICATE OF SECONDARY EDUCATION TYSTYSGRIF GYFFREDINOL ADDYSG UWCRADD MARKING SCEME PYSICS SCIENCE UNIT P ADDITIONAL SCIENCE UNIT P JANUARY 008 INTRODUCTION The marking schemes which follow

More information

Lecture 30 - Chapter 6 Thermal & Energy Systems (Examples) 1

Lecture 30 - Chapter 6 Thermal & Energy Systems (Examples) 1 Potential Energy ME 101: Thermal and Energy Systems Chapter 7 - Examples Gravitational Potential Energy U = mgδh Relative to a reference height Increase in elevation increases U Decrease in elevation decreases

More information

(Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION

(Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION Convection (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION You know from common experience that when there's a difference in temperature between two places close to each other, the temperatures

More information

XX. Introductory Physics, High School

XX. Introductory Physics, High School XX. Introductory Physics, High School High School Introductory Physics Test The spring 2013 high school Introductory Physics test was based on learning standards in the Physics content strand of the Massachusetts

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered

Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered FORMS OF ENERGY LESSON PLAN 2.7 Heat Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven states served

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information