13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory"

Transcription

1 Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation, vapor pressure, boiling point 13.3 The Nature of Solids 13.4 Changes of State sublimation, phase diagrams The skunk releases its spray! Within seconds you smell that all-too-familiar foul odor. You will discover some general characteristics of gases that help explain how odors travel through the air, even on a windless day. What is Kinetic Theory? * Based on the research of Robert Boyle ( ) A theory that envisions molecules in motion Best describes properties and behaviors of gases * Imagines particles of a gas like billiard balls, moving and crashing into each and the walls of a container in a three-dimensional space. Kinetic Theory and a Model for Gases The word kinetic refers to motion. The energy an object has because of its motion is called kinetic energy. According to the kinetic theory, all matter consists of tiny particles that are in constant motion. Kinetic Molecular Theory :» The particles in a gas are considered to be small, hard spheres with an insignificant volume.» The motion of the particles in a gas is rapid, constant, and random.» All collisions between particles in a gas are perfectly elastic. Kinetic Theory and a Model for Gases Principles of Kinetic Theory 1. Gases consist of tiny (submicroscopic) particles. a) Particles in a gas are in rapid, constant motion. b) Gas particles travel in straight-line paths c) The gas fills the container 1

2 2. Gas particles are very far apart; the volume occupied by a gas consists mostly of empty space (typically about 99.9% empty). 3. Gas particles are not attracted to each other (like ions are.) 4. Gas particles move randomly in all directions, traveling in straight lines. 5. The higher the average speed of the particles, the higher the temperature of that substance. Absolute temperature: T based on average particle speed; measured in Kelvin (K) Absolute zero (0 K): particles are not moving; there is no T below 0 K. K = C Gas particles collide with each other and with the walls of the container without losing energy. Gas Pressure Gas pressure results from the force exerted by a gas per unit surface area of an object. An empty space with no particles and no pressure is called a vacuum. Atmospheric pressure results from the collisions of atoms and molecules in air with objects. Gas pressure is the result of simultaneous collisions of billions of rapidly moving particles in a gas with an object. Pressure = the collision of gas particles with a surface Gas Pressure Gas Pressure A barometer is a device that is used to measure atmospheric pressure. The SI unit of pressure is the pascal (Pa). One standard atmosphere (atm) is the pressure required to support 760 mm of mercury in a mercury barometer at 25 C. 2

3 Kinetic Energy and Temperature The particles in any collection of atoms or molecules at a given temperature have a wide range of kinetic energies. Most of the particles have kinetic energies somewhere in the middle of this range. Kinetic Energy and Temperature Absolute zero (0 K, or C) is the temperature at which the motion of particles theoretically ceases. Particles would have no kinetic energy at absolute zero. Absolute zero has never been produced in the laboratory. Average Kinetic Energy and Kelvin Temperature The Kelvin temperature of a substance is directly proportional to the average kinetic energy of the particles of the substance. Section Quiz. Section Quiz. 1. According to the kinetic theory, the particles in a gas a) are attracted to each other. b) are in constant random motion. c) have the same kinetic energy. d) have a significant volume. 2. The pressure a gas exerts on another object is caused by a) the physical size of the gas particles. b) collisions between gas particles and the object. c) collisions between gas particles. d) the chemical composition of the gas. Section Quiz. 3. The average kinetic energy of the particles in a substance is directly proportional to the a) Fahrenheit temperature. b) Kelvin temperature. c) molar mass of the substance. d) Celsius temperature. The Nature of Liquids Hot lava oozes and flows, scorching everything in its path, and occasionally overrunning nearby houses. When the lava cools, it solidifies into rock. The properties of liquids are related to intermolecular interactions. You will learn about some of the properties of liquids. 3

4 A Model for Liquids Substances that can flow are referred to as fluids. Both liquids and gases are fluids. A Model for Liquids What factors determine the physical properties of a liquid? The interplay between the disruptive motions of particles in a liquid and the attractions among the particles determines the physical properties of liquids. Liquid particles are in constant motion, but they have weak attractive forces holding them together: These forces make liquids stick together withing a fixed volume. The forces are weak enough that the particles can flow past one another, so the liquid does not have a fixed shape. Evaporation The conversion of a liquid to a gas or vapor is called vaporization. When such a conversion occurs at the surface of a liquid that is not boiling, the process is called evaporation. In an open container, molecules that evaporate can escape from the container. In a closed container, the molecules cannot escape. They collect as a vapor above the liquid. Some molecules condense back into a liquid Evaporation What is the relationship between evaporation and kinetic energy? Notice that while most particles have roughly the same ave. KE, a few have much less and a few have much more. Those with enough KE to break away from the weak attractive forces within the liquid will do so and change into a gaseous state. Vapor Pressure Vapor pressure is a measure of the force exerted by a gas above a liquid. If gas escapes a liquid in a sealed container, the vapor particles will collide with the container creating vapor pressure above the liquid, while other vapor particles will condense (return to the liquid state) Vapor Pressure When can a dynamic equilibrium exist between a liquid and its vapor? In a system at constant vapor pressure, a dynamic equilibrium exists between the vapor and the liquid. The system is in equilibrium because the rate of evaporation of liquid equals the rate of condensation of vapor. 4

5 Vapor Pressure Vapor Pressure and Temperature Change An increase in the temperature of a contained liquid increases the vapor pressure. The particles in the warmed liquid have increased kinetic energy. As a result, more of the particles will have the minimum kinetic energy necessary to escape the surface of the liquid. Boiling Point Under what conditions does boiling occur? When a liquid is heated to a temperature at which particles throughout the liquid have enough kinetic energy to vaporize, the liquid begins to boil. The temperature at which the vapor pressure of the liquid is just equal to the external pressure on the liquid is the boiling point (bp). Because a liquid boils when its vapor pressure is equal to the external pressure, liquids don t always boil at the same temperature. At a lower external pressure, the boiling point decreases. At a higher external pressure, the boiling point increases. Boiling Point Altitude and Boiling Point Boiling Point Normal Boiling Point Because a liquid can have various boiling points depending on pressure, the normal boiling point is defined as the boiling point of a liquid at a pressure of kpa (or 1 atm). Boiling is a Cooling Process The particles that escape a liquid when it boils are the ones with the highest kinetic energy, so as they leave, the average kinetic energy (temperature) of the molecules left behind drops. Section Quiz 1. In liquids, the attractive forces are a) very weak compared with the kinetic energies of the particles. b) strong enough to keep the particles confined to fixed locations in the liquid. c) strong enough to keep the particles from evaporating. d) strong enough to keep particles relatively close together. 5

6 Section Quiz 2. Which one of the following is a process that absorbs energy? a) freezing b) condensation c) evaporation d) solidifying Section Quiz 3. In a sealed gas-liquid system at constant temperature eventually a) there will be no more evaporation. b) the rate of condensation decreases to zero. c) the rate of condensation exceeds the rate of evaporation. d) the rate of evaporation equals the rate of condensation. Section Quiz 4. Where must particles have enough kinetic energy to vaporize for boiling to occur? a) at the surface of the liquid b) at the bottom of the container c) along the sides of the container d) throughout the liquid Section Quiz 5. The boiling point of a liquid a) increases at higher altitudes. b) decreases at higher altitudes. c) is the same at all altitudes. d) decreases as the pressure increases The Nature of Solids In 1985, scientists discovered a new form of carbon. They called this form of carbon buckminsterfullerene, or buckyball for short. You will learn how the arrangement of particles in solids determines some general properties of solids Solids Particles in solids are in constant motion, but are packed together so tightly that they are not free to move past eachother. They are locked in a rigid 3D pattern and can only vibrate in place. The general properties of solids reflect the orderly arrangement of their particles and the fixed locations of their particles 6

7 13.3 Crystal Structure and Unit Cells In a crystal, the particles are arranged in an orderly, repeating, three-dimensional pattern called a crystal lattice. The shape of a crystal reflects the arrangement of the particles within the solid 13.3 Crystal Structure and Unit Cells Most solids are crystals, meaning that their particles are arranged in an orderly 3D pattern. The smallest group of particles that retains the shape of the crystal is called a unit cell. Crystal Systems A crystal has sides, or faces. Crystals are classified into seven crystal systems. Solids without a crystal structure are amorphous. Melting The melting point (mp) is the temperature at which a solid changes into a liquid. If a solid is heated, its particles with increase in Kinetic energy. A solid has reached its melting point when the particles have enough KE to break out of their fixed positions and turn into a liquid Section Quiz 1. A solid will melt when a) all the particles have the same kinetic energy. b) bonds form between the particles. c) disruptive vibrations overcome attractive forces. d) attractions overcome disruptive vibrations Changes of State Familiar weather events can remind you that water exists on Earth as a liquid, a solid, and a vapor. As water cycles through the atmosphere, the oceans, and Earth s crust, it undergoes repeated changes of state. You will learn what conditions can control the state of a substance. Sublimation The change of a substance from a solid to a vapor without passing through the liquid state is called sublimation. Sublimation occurs in solids with vapor pressures that exceed atmospheric pressure at or near room temperature. When solid iodine is heated, the crystals sublime, going directly from the solid to the gaseous state. When the vapor cools, it goes directly from the gaseous to the solid state. 7

8 Phase Diagrams A phase diagram is a graph that gives the conditions of temperature and pressure at which a substance exists as solid, liquid, and gas (vapor). The lines between phases give the conditions at which those two phases exist in equilibrium. Six Phase Changes B.P. GAS C.P. The triple point describes the only set of conditions at which all three phases can exist in equilibrium with one another Temp ( C) M.P. LIQUID SOLID F.P Section Quiz. 1. Identify the change of state that occurs when solid CO 2 changes to CO 2 gas as it is heated. a) condensation b) freezing c) vaporization d) sublimation 13.4 Section Quiz. 2. Sublimation occurs in solids if the vapor pressure at or near room temperature a) exceeds atmospheric pressure. b) equals atmospheric pressure. c) is less than atmospheric pressure. d) is less than half the atmospheric pressure Section Quiz. 3. What is the significance of a line in a phase diagram? a) Only one phase is present. b) Two phases are in equilibrium. c) Three phases are in equilibrium. d) The distinction between two phases disappears Section Quiz. 4. What is the significance of the triple point in a phase diagram? a) Temperature and pressure are equal. b) Two phases are in equilibrium. c) Three phases are in equilibrium. d) The distinction among three phases disappears. 8

9 Vocabulary Checklist kinetic energy, kinetic molecular theory, gas pressure, atmospheric pressure, vacuum, barometer, pascal, standard temperature (1 atm=101.3 kpa= 760 mm Hg) concept average kinetic energy of particles is directly proportional to the Kelvin temperature of the substance vaporization, evaporation, vapor pressure, boiling point, normal boiling point 13.3 melting point 13.4 sublimation, triple point 13.4 concept phase diagram 9

2/15/2013. Chapter 13

2/15/2013. Chapter 13 Chapter 13 The skunk releases its spray! Within seconds you smell that all-too-familiar foul odor. You will discover some general characteristics of gases that help explain how odors travel through the

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389) 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion. Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Chapter 3 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 3 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: _ Date: _ ID: A Chapter 3 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which state of matter has a definite volume but a variable

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

More information

Kinetic Theory. Bellringer. Kinetic Theory, continued. Visual Concept: Kinetic Molecular Theory. States of Matter, continued.

Kinetic Theory. Bellringer. Kinetic Theory, continued. Visual Concept: Kinetic Molecular Theory. States of Matter, continued. Bellringer You are already familiar with the most common states of matter: solid, liquid, and gas. For example you can see solid ice and liquid water. You cannot see water vapor, but you can feel it in

More information

The particulate nature of matter

The particulate nature of matter The particulate nature of matter Solids, liquids and gases The kinetic theory of matter Explaining the states of matter Changes of state An unusual state of matter An unusual change of state Heating and

More information

Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others?

Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others? CHAPTER 5: Gases Chemistry of Gases Pressure and Boyle s Law Temperature and Charles Law The Ideal Gas Law Chemical Calculations of Gases Mixtures of Gases Kinetic Theory of Gases Real Gases Gases The

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

Unit 3: States of Matter Practice Exam

Unit 3: States of Matter Practice Exam Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

More information

1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws. Heat and Temperature 1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.

More information

The Gas, Liquid, and Solid Phase

The Gas, Liquid, and Solid Phase The Gas, Liquid, and Solid Phase When are interparticle forces important? Ron Robertson Kinetic Theory A. Principles Matter is composed of particles in constant, random, motion Particles collide elastically

More information

FXA 2008. Candidates should be able to : Describe solids, liquids and gases in terms of the spacing, ordering and motion of atoms or molecules.

FXA 2008. Candidates should be able to : Describe solids, liquids and gases in terms of the spacing, ordering and motion of atoms or molecules. UNIT G484 Module 3 4.3.1 Solid, liquid and gas 1 Candidates should be able to : DESCRIPTION OF SOLIDS, LIQUIDS AND GASES Describe solids, liquids and gases in terms of the spacing, ordering and motion

More information

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse

More information

Chapter 3. Table of Contents. Chapter 3. Objectives. Chapter 3. Kinetic Theory. Section 1 Matter and Energy. Section 2 Fluids

Chapter 3. Table of Contents. Chapter 3. Objectives. Chapter 3. Kinetic Theory. Section 1 Matter and Energy. Section 2 Fluids States of Matter Table of Contents Objectives Summarize the main points of the kinetic theory of matter. Describe how temperature relates to kinetic energy. Describe four common states of matter. List

More information

Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to

Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to Kinetic Energy and (Kelvin) Temperature Temperature is a Kinetic Energy and (Kelvin) Temperature(2) The Kelvin temperature scale is called the Absolute Zero - Zero degrees on the 1. Highly 2. Low 3. Fills

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Why? The kinetic-molecular theory is a model or a mental image of how particles of matter behave. Knowledge of the kinetic-molecular theory allows us to predict the action of solids, liquids and gases

More information

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

More information

Chapter 13 The Chemistry of Solids

Chapter 13 The Chemistry of Solids Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Metallic & Ionic Solids Crystal Lattices Regular 3-D arrangements of equivalent LATTICE POINTS in space. Lattice

More information

Thermal Properties of Matter

Thermal Properties of Matter Chapter 18 Thermal Properties of Matter PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 18 To relate the

More information

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

More information

CHM Kinetic Theory of Gases (r14) Charles Taylor 1/6

CHM Kinetic Theory of Gases (r14) Charles Taylor 1/6 CHM 110 - Kinetic Theory of Gases (r14) - 2014 Charles Taylor 1/6 Introduction We've talked about the gas laws and how they were derived from experiment. As scientists, we would like to figure out why

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Gases A Gas Has neither a definite volume nor shape. Uniformly fills any container.

More information

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

More information

An increase in temperature causes an increase in pressure due to more collisions.

An increase in temperature causes an increase in pressure due to more collisions. SESSION 7: KINETIC THEORY OF GASES Key Concepts In this session we will focus on summarising what you need to know about: Kinetic molecular theory Pressure, volume and temperature relationships Properties

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

Temperature and Heat

Temperature and Heat Temperature and Heat Foundation Physics Lecture 2.4 26 Jan 10 Temperature, Internal Energy and Heat What is temperature? What is heat? What is internal energy? Temperature Does a glass of water sitting

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner Grade Level/Subject APS Science Curriculum Unit Planner Enduring Understanding Chemistry Stage 1: Desired Results Topic 3: Kinetics: The Kinetic Theory can explain the phases of matter, the energetics

More information

THE BEHAVIOR OF GASES

THE BEHAVIOR OF GASES 12 THE BEHAVIOR OF GASES Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Test 6: Phases of Matter Review Questions

Test 6: Phases of Matter Review Questions Name: Wednesday, January 16, 2008 Test 6: Phases of Matter Review Questions 1. According to the kinetic theory of gases, which assumption is correct? 1. Gas particles strongly attract each other. 3. The

More information

Boltzmann Distribution Law

Boltzmann Distribution Law Boltzmann Distribution Law The motion of molecules is extremely chaotic Any individual molecule is colliding with others at an enormous rate Typically at a rate of a billion times per second We introduce

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

1. Which graph shows the pressure-temperature relationship expected for an ideal gas? 1) 3)

1. Which graph shows the pressure-temperature relationship expected for an ideal gas? 1) 3) 1. Which graph shows the pressure-temperature relationship expected for an ideal gas? 2. Under which conditions does a real gas behave most like an ideal gas? 1) at low temperatures and high pressures

More information

Gas - a substance that is characterized by widely separated molecules in rapid motion.

Gas - a substance that is characterized by widely separated molecules in rapid motion. Chapter 10 - Gases Gas - a substance that is characterized by widely separated molecules in rapid motion. Mixtures of gases are uniform. Gases will expand to fill containers (compare with solids and liquids

More information

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

More information

Unit 2 Energy & States of Matter Part 1 - Objectives

Unit 2 Energy & States of Matter Part 1 - Objectives Unit 2 Energy & States of Matter Part 1 - Objectives 1. Relate observations of diffusion to particle motion and collision in the gas and liquid phases. 2. Relate observations regarding the addition of

More information

Chapter 2 Student Reading

Chapter 2 Student Reading Chapter 2 Student Reading Atoms and molecules are in motion We warm things up and cool things down all the time, but we usually don t think much about what s really happening. If you put a room-temperature

More information

3.3 Phase Changes Charactaristics of Phase Changes phase change

3.3 Phase Changes Charactaristics of Phase Changes phase change When at least two states of the same substance are present, scientists describe each different state as a phase. A phase change is the reversible physical change that occurs when a substance changes from

More information

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

More information

The Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann Distribution The Maxwell-Boltzmann Distribution Gases are composed of atoms or molecules. These atoms or molecules do not really interact with each other except through collisions. In many cases, we may think of a

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

Thermodynamics [ENGR 251] [Lyes KADEM 2007]

Thermodynamics [ENGR 251] [Lyes KADEM 2007] CHAPTER II Properties of Pure Substances II.1. What is a pure substance? A pure substance is defined as a substance that has a fixed chemical composition (example: water; Co 2 ; nitrogen; ). A mixture

More information

Chapter 4 Practice Quiz

Chapter 4 Practice Quiz Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

More information

Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

More information

Chapter 3 Process Variables. Mass and Volume

Chapter 3 Process Variables. Mass and Volume Chapter 3 Process Variables Process: to a chemical engineer, the set of tasks or operations that accomplish a chemical or material transformation to produce a product Feed or inputs: raw materials and

More information

Density, Pressure and Change of State

Density, Pressure and Change of State Density, Pressure and Change of State Syllabus points: 5.1 use the following units: degrees Celsius ( o C), kelvin (K), joule (J), kilogram (kg), kilogram/metre 3 (kg/m 3 ), metre (m), metre 2 (m 2 ),

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Particle volume - The volume of an individual gas particle is small compaired to that of its container. Therefore, gas particles are considered to have mass, but no volume. There

More information

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

ESSAY. Write your answer in the space provided or on a separate sheet of paper. Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

More information

HNRS 227 Fall 2008 Chapter 4. Do You Remember These? iclicker Question. iclicker Question. iclicker Question. iclicker Question

HNRS 227 Fall 2008 Chapter 4. Do You Remember These? iclicker Question. iclicker Question. iclicker Question. iclicker Question HNRS 227 Fall 2008 Chapter 4 Heat and Temperature presented by Prof. Geller Do You Remember These? Units of length, mass and time, and metric Prefixes Density and its units The Scientific Method Speed,

More information

2.0 Heat affects matter in different ways

2.0 Heat affects matter in different ways 2.0 Heat affects matter in different ways 2.1 States of Matter and The Particle Model of Matter Matter is made up of tiny particles and exists in three states: solid, liquid and gas. The Particle Model

More information

Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter.

Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter. Assessment Chapter Test A States of Matter MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. Boyle s law explains the relationship between volume and pressure for a fixed

More information

THE IDEAL GAS LAW AND KINETIC THEORY

THE IDEAL GAS LAW AND KINETIC THEORY Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant

More information

Gas Thermometer and Absolute Zero

Gas Thermometer and Absolute Zero Chapter 1 Gas Thermometer and Absolute Zero Name: Lab Partner: Section: 1.1 Purpose Construct a temperature scale and determine absolute zero temperature (the temperature at which molecular motion ceases).

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

2. Room temperature: C. Kelvin. 2. Room temperature:

2. Room temperature: C. Kelvin. 2. Room temperature: Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

More information

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS]

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] OpenStax-CNX module: m38210 1 States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

More information

Kinetic Molecular Theory and Gas Laws

Kinetic Molecular Theory and Gas Laws Kinetic Molecular Theory and Gas Laws I. Handout: Unit Notes II. Modeling at the Atomic Scale I. In another unit you learned about the history of the atom and the different models people had of what the

More information

Science Department Mark Erlenwein, Assistant Principal

Science Department Mark Erlenwein, Assistant Principal Staten Island Technical High School Vincent A. Maniscalco, Principal The Physical Setting: CHEMISTRY Science Department Mark Erlenwein, Assistant Principal - Unit 1 - Matter and Energy Lessons 9-14 Heat,

More information

THE KINETIC THEORY OF GASES

THE KINETIC THEORY OF GASES Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Chapter 17 States of Matter

Chapter 17 States of Matter Chapter 17 States of Matter Section 17.1 Solids, Liquids, and Gases Terms: States of matter Kinetic Theory of Matter Crystal Plasma Thermal Expansion After swimming on a hot day, Eli was having a refreshing

More information

Final Exam Review Questions PHY Final Chapters

Final Exam Review Questions PHY Final Chapters Final Exam Review Questions PHY 2425 - Final Chapters Section: 17 1 Topic: Thermal Equilibrium and Temperature Type: Numerical 12 A temperature of 14ºF is equivalent to A) 10ºC B) 7.77ºC C) 25.5ºC D) 26.7ºC

More information

General Properties of Gases. Properties of Gases. K is for Kelvin. C is for degrees Celsius. F is for degrees Fahrenheit PROPERTIES OF GASES GAS LAWS

General Properties of Gases. Properties of Gases. K is for Kelvin. C is for degrees Celsius. F is for degrees Fahrenheit PROPERTIES OF GASES GAS LAWS PROPERTIES OF GASES or GAS LAWS 1 General Properties of Gases There is a lot of empty space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely. Gases diffuse and

More information

Surface Analysis Maps

Surface Analysis Maps Notes 1 Weather Maps The purpose of a weather map is to give a graphical or pictorial image of weather to a meteorologist. As a forecasting tool, weather maps allow a meteorologist to see what is happening

More information

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12. Gases and the Kinetic-Molecular Theory CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

Phases of Matter Multiple Choice Quiz

Phases of Matter Multiple Choice Quiz Phases of Matter Multiple Choice Quiz Name: Date: Class: 1 All of the following are phases (states) of matter EXCEPT: 5 Water is different from other substances because: A solid B liquid C gas D putty

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

Welcome to the World of Chemistry

Welcome to the World of Chemistry Welcome to the World of Chemistry The Language of Chemistry CHEMICAL ELEMENTS - pure substances that cannot be decomposed by ordinary means to other substances. Aluminum Bromine Sodium The Language of

More information

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below. UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

More information

What is matter? Chapter 2 DID YOU KNOW? Cxt HEAD TO FOLLOW

What is matter? Chapter 2 DID YOU KNOW? Cxt HEAD TO FOLLOW Chapter 2 What is matter? Figure 2.1 Our Sun is a ball of glowing hydrogen and helium gas. At the bottom left you can see a solar prominence. The Sun ejects a massive plume of gas into space. The plume

More information

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their

More information

Energy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work.

Energy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work. Chapter 2 Energy and Matter Energy 2.1 Energy Energy makes objects move. makes things stop. is needed to do work. 1 2 Work Potential Energy Work is done when you climb. you lift a bag of groceries. you

More information

Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B. Multiple Choice Questions Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

More information

Copper, Zinc and Brass (an alloy of Cu and Zn) have very similar specific heat capacities. Why should this be so?

Copper, Zinc and Brass (an alloy of Cu and Zn) have very similar specific heat capacities. Why should this be so? Thermal Properties 1. Specific Heat Capacity The heat capacity or thermal capacity of a body is a measure of how much thermal energy is required to raise its temperature by 1K (1 C). This will depend on

More information

Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales

Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales Heat and Temperature Thermometers and Temperature Scales The mercury-based one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer

More information

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed. Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.

More information

Exam 4 Practice Problems false false

Exam 4 Practice Problems false false Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

More information

The Equipartition Theorem

The Equipartition Theorem The Equipartition Theorem Degrees of freedom are associated with the kinetic energy of translations, rotation, vibration and the potential energy of vibrations. A result from classical statistical mechanics

More information

Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

More information

Name Matter Questions Date:

Name Matter Questions Date: Name Matter Questions Date: 1. Which substance has a definite shape and a definite volume at STP? 1) NaCl(aq) 2) Cl2(g) 3) CCl4( ) 4) AlCl3(s) 2. Which two particle diagrams represent mixtures of diatornic

More information

Using role-play to demonstrate ideas of particle theory and address common misconceptions

Using role-play to demonstrate ideas of particle theory and address common misconceptions Using role-play to demonstrate ideas of particle theory and address common misconceptions 15 minutes Task D Slide 2.8 Show slide 2.8 to introduce task D. Task D Using role-play to demonstrate ideas of

More information

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature 1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have

More information

Sample Exercise 10.1 Converting Pressure Units

Sample Exercise 10.1 Converting Pressure Units Sample Exercise 10.1 Converting Pressure Units (a) Convert 0.357 atm to torr. (b) Convert 6.6 10 2 torr to atmospheres. (c) Convert 147.2 kpa to torr. Solution Analyze In each case we are given the pressure

More information

Thermodynamics: The Kinetic Theory of Gases

Thermodynamics: The Kinetic Theory of Gases Thermodynamics: The Kinetic Theory of Gases Resources: Serway The Kinetic Theory of Gases: 10.6 AP Physics B Videos Physics B Lesson 5: Mechanical Equivalent of Heat Physics B Lesson 6: Specific and Latent

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

CHAPTER 3 PROPERTIES OF NATURAL GASES

CHAPTER 3 PROPERTIES OF NATURAL GASES CHAPTER 3 PROPERTIES OF NATURAL GASES The behavior of natural gas, whether pure methane or a mixture of volatile hydrocarbons and the nonhydrocarbons nitrogen, carbon dioxide, and hydrogen sulfide, must

More information