# Chapter 10: Temperature and Heat

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving molecule in the substance. C. proportional to the lowest kinetic energy available to a molecule. D. proportional to the average momentum of the fastest 50% of the molecules in the substance. 2. After I dip a cup of water from the ocean, I can conclude that A. the temperature of the water in the cup is the same as the temperature of the water in the ocean. B. the temperatures are the same but the water in the cup has more energy C. the ocean temperature is higher because it has more molecules in it. D. the ocean temperature is higher because it never loses its heat. 3. Heat is a form of energy, and it has long been known that heat energy will naturally flow A. from cold to hot objects. B. from hot to cold objects. C. only from solids to liquids. D. only from liquids to solids. E. only from gases to solids and liquids. 4. The amount of heat is often measured in calories. If I add 1 calorie of heat energy to 1 gram of water, the temperature of the water will A. decrease by 1 C. B. decrease by 1 F. C. stay the same since water has a very high specific heat. D. increase by 1 C. E. increase by 1 F. 5. On a cold winter s morning you awake and step out of bed. One foot is on the tile floor and the other is on a rug on the floor. Which statement is true? A. The tile feels colder than the rug because it really is colder than the rug B. Heat flows from the rug, thru your body and out to the tile - thus the tile feels cold compared to the rug C. The tile feels colder than the rug, because compared to the rug, the tile conducts heat more rapidly away from your foot. D. Actually there is no difference between the rug and the tile so any sensation you experience is imaginary. 6. Two identical objects, one light colored and the other dark colored, are at the same elevated

2 temperature, 50 C. You now plop (yes, plop) them down in a dark, much cooler room. Which object will reach the room s temperature first? A. dark colored B. light colored C. Both reach room temperature at same time. D. As strange as it seems, neither object will ever reach room temperature because energy conservation prevents the loss of energy. 7. Two identical objects, one light colored and the other dark colored are at the same cool temperature. Then, you place them outside, on a warm day, in direct sunlight. Which object will warm up faster? A. The dark one. B. The light one. C. Both warm up at the same rate. D. As strange as it seems, neither object will ever warm up because energy conservation prevents the addition of energy. 8. The lowest possible temperature a body can approach is called A. mighty cold. B. absolute zero. C. triple absolute zero. D. triple point. E. critical temperature. 9. Water freezes at 273 on the scale. A. Fahrenheit B. Celsius C. Rankin D. Kelvin E. Vernier 10. When the temperature of the air in a balloon is lowered, the volume of the balloon A. increases. B. stays the same. C. decreases. D. expands. 11. Objects A and B are at the same temperature. Object A now has its temperature increased by one Celsius degree, while B has its temperature increased by one Fahrenheit degree. Which object now has higher temperature? A. Object A.

3 B. Object B. C. Both have the same temperature. D. Impossible to tell from this data. 12. The three processes by which heat energy is transferred between objects are A. heat, calorie and radiation. B. radiation, temperature, and convection. C. absorption, radiation, and convection. D. radiation, convection, and conduction. E. radiation, absorption, and conduction. 13. A mixture consists of 60 g of ice and 40 g of liquid water, both at 0 C. The amount of heat that must be added to melt all of the ice is about A cal. B cal. C cal. D cal. 14. While studying for this quiz you realize that you still have 100 g of lukewarm coffee at 40 C left in a paper cup. When you pour 50 g of boiling water into the cup, the temperature of the resulting coffee-like mixture will be now A. 50 C. B. 60 C. C. 67 C. D. 70 C. E. 80 C. 15. A box of graham crackers is labeled 120 Calories per serving. Assuming this means 120 kcal, the energy of a serving of the graham crackers is about A. 120 J. B J. C J. D J. 16. The temperature of 500 g of water is to be raised from 10 C to 40 C. The energy needed to do this is about A cal. B cal. C cal.

4 D cal. 17. Which of the following temperatures is the lowest? A. 0 o C B. 0 o F C. 263 K D. All are the same. 18. Absolute zero is the temperature A. on the coldest day recorded at Nome, Alaska. B. of the freezing point of water. C. at which an ideal gas would exert zero pressure. D. of the boiling point of liquid helium. E. of the freezing point of mercury. 19. Four samples of steel, lead, alcohol and glass all have the same mass and are all initially at 20 o C. After 100 calories of heat is added to each sample, the final temperatures are 38.2 o C for the steel, 85.6 o C for the lead, 23.4 o C for the alcohol, and 30 o C for the glass. Which of these four materials has the largest specific heat capacity? A. The steel. B. The lead. C. The alcohol. D. The glass. E. All have same heat capacity, since all absorbed 100 cal of heat. 20. On a cold day, a metal fence post feels colder to the touch than a tree. This sensation of different temperatures is explained by the fact that A. the temperature of the tree is higher. B. the specific heat capacity of wood in the tree is higher. C. the specific heat capacity of the metal is higher. D. the thermal conductivity of the wood in the tree is higher. E. the thermal conductivity of the metal is higher. Answer: E

5 21. The term heat in physics is A. equivalent to temperature. B. equivalent to internal energy. C. any energy transferred to a body that raises the temperature of the body. D. energy transferred to a body because of a difference in temperature. E. the same as work. 22. During the course of a demonstration the professor is called away. When he returns he finds a beaker of water that was at room temperature is now at a slightly higher temperature. There is a stirring rod on the desk and a cigarette lighter. The professor can assume that the temperature increase is due to A. heat added to the system. B. mechanical work done on the system. C. either heat added or mechanical work done. 23. A certain amount of heat is transferred to a system, and the system performs some work on its surroundings. The amount of work done is less than the heat added. Thus A. the internal energy of the system increased. B. the internal energy of the system decreased. C. there has been a violation of the principle of conservation of energy. D. an error has been made somewhere. E. there must have been a phase change. 24. Compare the internal energy of one gram of steam to that of one gram of water if both are at 100 C. A. The internal energy of the water and steam are the same. B. The internal energy of the water will be higher. C. The internal energy of the steam will be higher. 25. An ice cube of mass 100 g and at 0 o C is dropped into a Styrofoam cup containing 200 g of water at 25 o C. The heat of fusion of ice is 80 cal/g and the specific heat capacity of water is 1.0 cal/g C. Assuming the cup doesn't exchange any heat, the final temperature of the system will be which of the following? A. -10 o C. B. 0 o C. C o C. D o C. E. +10 o C.

6 26. Heat is added to an ideal gas and the gas expands. In such a process the temperature A. must always increase. B. will remain the same if the work done equals the heat added. C. must always decrease. D. will remain the same if work done is less than the heat added. E. will remain the same if the work done exceeds the heat added. 27. Hot cider is poured into a metal cup. Shortly thereafter the handle of the cup becomes hot. This is due to the process of A. conduction. B. convection. C. radiation. D. osmosis. 28. A physics student has to make a choice in the color of shingles to put on her house. Considering only energy cost in heating and cooling the house, the decision of a light versus dark color roof will be based upon which of the following? A. A dark roof would be better in the winter but worse in summer. B. A light roof would be better in the winter but worse in summer. C. A light roof would be better in both the winter and summer. D. A dark roof would be better in both the winter and summer. 29. Which of the following units is not an energy unit? A. Calorie. B. Joule. C. Kilowatt-hour. D. Horsepower. E. Kilocalorie. 30. The temperature of a 50 g sample of aluminum is raised from 20 o C to 90 o C when 770 cal of heat is added. The specific heat capacity of the aluminum is A. not calculable from this data B cal/g C o. C cal/g C. D cal/g C. E cal/g C. 31. During a phase change the of a system will remain constant as heat is added. Answer: temperature

7 32. The first law of thermodynamics is an extension of the principle of conservation of that we first met in mechanics. Answer: energy 33. Heat will not be transferred between two bodies that are at the same. Answer: temperature 34. The transfer of heat from a furnace to the house through ducts is by the process of. Answer: convection 35. A student uses a thermometer calibrated in Kelvin units. A temperature change of 10K is equivalent to a change of how many degrees on the Celsius scale? Answer: The internal energy of a system such as helium gas can be identified as the total mechanical energy of the. Answer: atoms

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

### Chapter 4: Transfer of Thermal Energy

Chapter 4: Transfer of Thermal Energy Goals of Period 4 Section 4.1: To define temperature and thermal energy Section 4.2: To discuss three methods of thermal energy transfer. Section 4.3: To describe

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

### Specific Heat (slope and steepness)

1 Specific Heat (slope and steepness) 10 pages. According to the Physical Science text book, the Specific Heat of a material is DEFINED as the following: Specific heat is the amount of heat energy required

### Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

### Temperature. Temperature

Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a per-particle property no upper limit definite limit on lower end Temperature

### 2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

### Energy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work.

Chapter 2 Energy and Matter Energy 2.1 Energy Energy makes objects move. makes things stop. is needed to do work. 1 2 Work Potential Energy Work is done when you climb. you lift a bag of groceries. you

### Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales

Heat and Temperature Thermometers and Temperature Scales The mercury-based one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer

### PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY. Calorimetry

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY Calorimetry Equipment Needed: Large styrofoam cup, thermometer, hot water, cold water, ice, beaker, graduated cylinder,

### 2.0 Heat affects matter in different ways

2.0 Heat affects matter in different ways 2.1 States of Matter and The Particle Model of Matter Matter is made up of tiny particles and exists in three states: solid, liquid and gas. The Particle Model

### Chapter 4 Practice Quiz

Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

### There is no such thing as heat energy

There is no such thing as heat energy We have used heat only for the energy transferred between the objects at different temperatures, and thermal energy to describe the energy content of the objects.

### Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their

### Measuring Temperature

Measuring Temperature The standard metric unit of temperature is the degree Celsius ( C). Water freezes at 0 C. Water boils at 100 C. The Fahrenheit scale is used only in the United States. Why Do We Need

### Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:

Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.

### Thermodynamics is the study of heat. It s what comes into play when you drop an ice cube

Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent

### Calorimetry Lab - Specific Heat Capacity

Introduction Calorimetry Lab - Specific Heat Capacity Experience tells us that if a hot piece of metal is added to water, the temperature of the water will rise. If several different metals having the

### Chapter 2 Matter and Energy

1 Chapter 2 Matter and Energy Matter Matter is the material that makes up all things is anything that has mass and occupies space is classified as either pure substances or mixtures Pure Substances A pure

### Practical Applications of Freezing by Boiling Process

Practical Applications of Freezing by Boiling Process Kenny Gotlieb, Sasha Mitchell and Daniel Walsh Physics Department, Harvard-Westlake School 37 Coldwater Canyon, N. Hollywood, CA 9164 Introduction

### Heat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature

Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature

### 3.3 Phase Changes Charactaristics of Phase Changes phase change

When at least two states of the same substance are present, scientists describe each different state as a phase. A phase change is the reversible physical change that occurs when a substance changes from

### Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice

### Chapter 16 Temperature and Heat

The determination of temperature has long been recognized as a problem of the greatest importance in physical science. It has accordingly been made a subject of most careful attention, and, especially

### Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered

FORMS OF ENERGY LESSON PLAN 2.7 Heat Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven states served

### L A T E N T H E A T O F F U S I O N

Class Date Name Partner(s) L A T E N T H E A T O F F U S I O N Materials LoggerPro Software and Real Time Physics Thermodynamics Experiment Files Stainless Steel Temperature Probes (2) Styrofoam Cup Film

### Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter.

Thermochemistry Experiment 10 Thermochemistry is the study of the heat energy involved in chemical reactions and changes of physical state. Heat energy is always spontaneously transferred from hotter to

### UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

### Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

### Heat and Temperature: Front End Evaluation Report. Joshua Gutwill. October 1999

Heat and Temperature: Front End Evaluation Report Joshua Gutwill October 1999 Keywords: 1 Heat and Temperature Front End Evaluation Report October 28, 1999 Goal:

### ES 106 Laboratory # 2 HEAT AND TEMPERATURE

ES 106 Laboratory # 2 HEAT AND TEMPERATURE Introduction Heat transfer is the movement of heat energy from one place to another. Heat energy can be transferred by three different mechanisms: convection,

### Preview of Period 5: Thermal Energy, the Microscopic Picture

Preview of Period 5: Thermal Energy, the Microscopic Picture 5.1 Temperature and Molecular Motion What is evaporative cooling? 5.2 Temperature and Phase Changes How much energy is required for a phase

### 1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete

### Energy Matters Heat. Changes of State

Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

### Forms of Energy. Freshman Seminar

Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

### THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### OBJECTIVES THE STUDENTS WILL: Participate in cooperative problem solving in a group setting.

ICE CAPADES THE POWER OF INSULATION GRADE LEVEL: Upper Elementary/Middle School (High School with extensions) SUBJECT AREA: Sciences, Mathematics DURATION: Preparation time 30 minutes Activity time: One

### Heat Transfer: Conduction, Convection, and Radiation

Heat Transfer: Conduction, Convection, and Radiation Introduction We have learned that heat is the energy that makes molecules move. Molecules with more heat energy move faster, and molecules with less

### A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

North arolina Testing Program EO hemistry Sample Items Goal 4 1. onsider the spectrum for the hydrogen atom. In which situation will light be produced? 3. Which color of light would a hydrogen atom emit

### Heat Transfer. Phys101 Lectures 35, 36. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation

Phys101 Lectures 35, 36 Heat Transfer Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation Ref: 16-1,3,4,10. Page 1 19-1 Heat as Energy Transfer We often speak

### Science Department Mark Erlenwein, Assistant Principal

Staten Island Technical High School Vincent A. Maniscalco, Principal The Physical Setting: CHEMISTRY Science Department Mark Erlenwein, Assistant Principal - Unit 1 - Matter and Energy Lessons 9-14 Heat,

### Water to Vapor; Water to Ice The Process Is Amazing

Science Project Idea 8 th -Grade Energy Water to Vapor; Water to Ice The Process Is Amazing Setting the Scene: Holding On To Heat If you leave a cup of cold water on a counter, it will warm up very quickly.

### Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

### Use tongs and wear goggles when removing the samples from the pot of boiling water. Protect your eyes against accidental splashes!

Calorimetry Lab Purpose: Students will measure latent heat and specific heat. PLEASE READ the entire handout before starting. You won t know what to do unless you understand how it works! Introduction:

### Section 7. Laws of Thermodynamics: Too Hot, Too Cold, Just Right. What Do You See? What Do You Think? Investigate.

Chapter 6 Electricity for Everyone Section 7 Laws of Thermodynamics: Too Hot, Too Cold, Just Right What Do You See? Learning Outcomes In this section, you will Assess experimentally the final temperature

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it an

Name: Class: Date: Grade 11A Science Related Reading/Physics Conduction, Convention & Radiation Physics Gr11A Pre Reading Activity Using prior knowledge, write the definition for each vocabulary term.

### 5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

### Rusty Walker, Corporate Trainer Hill PHOENIX

Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat

### First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5 Physical Science Overview Materials (matter) come in different forms. Water can be rain falling (liquid)

### Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

### Chapter 17: Change of Phase

Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

### ConcepTest 17.1Degrees

ConcepTest 17.1Degrees Which is the largest unit: one Celsius degree, one Kelvin degree, or one Fahrenheit degree? 1) one Celsius degree 2) one Kelvin degree 3) one Fahrenheit degree 4) both one Celsius

### What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

### (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION

Convection (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION You know from common experience that when there's a difference in temperature between two places close to each other, the temperatures

### TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

### SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

### Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law GOAL AND OVERVIEW A simple calorimeter will be made and calibrated. It will be used to determine the heat of fusion of ice, the specific

### Topic Page Contents Page

Heat energy (11-16) Contents Topic Page Contents Page Heat energy and temperature 3 Latent heat energy 15 Interesting temperatures 4 Conduction of heat energy 16 A cooling curve 5 Convection 17 Expansion

### q = (mass) x (specific heat) x T = m c T (1)

Experiment: Heat Effects and Calorimetry Heat is a form of energy, sometimes called thermal energy, which can pass spontaneously from an object at a high temperature to an object at a lower temperature.

### The Sun and Water Cycle

reflect Have you ever jumped in a puddle or played in the rain? If so, you know you can get very wet. What you may not know is that a dinosaur could have walked through that same water millions of years

TEMPERATURE 2008, 2004, 10 by David A. Katz. All rights reserved. A BRIEF HISTORY OF TEMPERATURE MEASUREMENT Ancient people were physically aware of hot and cold and probably related temperature by the

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Sample Mid-Term 3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If you double the frequency of a vibrating object, its period A) is quartered.

### Project TECHNOcean Lesson/Activity Plan

Heat Transfer Hayley Vatcher Anna Reh-Gingerich Murray Middle, 7th Objective: Students should be able to: Define and describe conduction Define and describe convection List some good conductors, and poor

### Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Lesson Name Heat Transfer: It s So Cool! Presenter(s) Kevin Metcalf, Sarika Goel, David Ojala, Melanie Drake, Carly Anderson Grade Level 3 Standards Connection(s)

### 5 Answers and Solutions to Text Problems

Energy and States of Matter 5 Answers and Solutions to Text Problems 5.1 At the top of the hill, all of the energy of the car is in the form of potential energy. As it descends down the hill, potential

### WILLIAM C. WHITMAN WILLIAM M. JOHNSON JOHN A. TOMCZYK EUGENE SILBERSTEIN

Licensed to: CengageBrain User 2 5 T H A N N I V E R S A R Y REFRIGERATION & AIR CONDITIONING TECHNOLOGY SEVENTH EDITION WILLIAM C. WHITMAN WILLIAM M. JOHNSON JOHN A. TOMCZYK EUGENE SILBERSTEIN Australia

### Physical Science Refresher. Self Study Physical Science Refresher

Self Study Physical Science Refresher Table of Contents 1. Three phases of matter: Solids, Liquids and Gases 2. The effect of heat and pressure on the phases of matter a) expanding and contracting 3. Changing

### Multiple Choice For questions 1-10, circle only one answer.

Test Bank - Chapter 1 The questions in the test bank cover the concepts from the lessons in Chapter 1. Select questions from any of the categories that match the content you covered with students. The

### The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used.

TEKS 5.5B The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to: (B) identify the boiling

### Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

### 14 HEAT AND HEAT TRANSFER METHODS

CHAPTER 14 HEAT AND HEAT TRANSFER METHODS 469 14 HEAT AND HEAT TRANSFER METHODS Figure 14.1 (a) The chilling effect of a clear breezy night is produced by the wind and by radiative heat transfer to cold

### Specific Heat Capacity & Calorimetry

Unit: Thermal Physics Knowledge/Understanding: specific heat capacity calorimetry Skills: solve calorimetry (specific heat) problems Notes: Different objects have different abilities to hold heat. For

### The Equipartition Theorem

The Equipartition Theorem Degrees of freedom are associated with the kinetic energy of translations, rotation, vibration and the potential energy of vibrations. A result from classical statistical mechanics

### Q = mc T f T i ) Q = mc T)

Problem Solving with Heat Heat is quite a complex concept. Heat can be effected by how much of the substance there is, what temperature the substance is at, and what the substance is. We need a unit define

### Heat evolved by the reaction = Heat absorbed by the water + Heat absorbed by the bomb

ENERGY OF A PEANUT AN EXPERIMENT IN CALORIMETRY 2011, 2010, 2002, 1995, by David A. Katz. All rights reserved. Reproduction permitted for educational use provided original copyright is included. INTRODUCTION:

February 3, 2012 1. Pick up your calculations and your lab sheet. 2. Have your temperature calculations out. 1. The average daytime temperature on Venus is 453 C. What is this temperature in degrees Fahrenheit

### Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

### Lab: Heat and Calorimetry

Objectives Lab: Heat and Calorimetry Gain applicable knowledge about calories Compare the calorie content of food samples Introduction Most people are aware that foods contain calories, but what is a calorie?

### Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### Chapter 3. Thermal Energy

Chapter 3 Thermal Energy In order to apply energy conservation to a falling ball or a roller coaster in the previous chapter, we had to assume that friction (with the air or the track) was negligible.

### Chillin Out: Designing an Insulator

SHPE Jr. Chapter May 2015 STEM Activity Instructor Resource Chillin Out: Designing an Insulator Students learn about the three ways heat can be transferred from one object to another. They also learn what

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

### Temperature, Expansion, Ideal Gas Law

Temperature, Expansion, Ideal Gas Law Physics 1425 Lecture 30 Michael Fowler, UVa Everything s Made of Atoms This idea was only fully accepted about 100 years ago in part because of Einstein s analysis

### Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

### Chapter 2 Measurements in Chemistry. Standard measuring device. Standard scale gram (g)

1 Chapter 2 Measurements in Chemistry Standard measuring device Standard scale gram (g) 2 Reliability of Measurements Accuracy closeness to true value Precision reproducibility Example: 98.6 o F 98.5 o

### Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

### Interconversion of potential energy and kinetic energy

1 ENERGY III INTERCONVERSION OF FORMS OF ENERGY ENERGY CHANGES We will consider first the interconversion of potential energy and kinetic energy. We will then consider the interconversion of different

### Kinetic Theory & Ideal Gas

1 of 6 Thermodynamics Summer 2006 Kinetic Theory & Ideal Gas The study of thermodynamics usually starts with the concepts of temperature and heat, and most people feel that the temperature of an object

### Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation

Temperature: 6.D.3 Temperature and Heat Transfer Grade Level 6 Sessions Seasonality Instructional Mode(s) Team Size WPS Benchmarks MA Frameworks Key Words 1 Approximately 1.5 hours (10 minutes for cleanup)

### Teaching Sciences by Ocean Inquiry SMS 491/ EDW 472 Spring 2008

Teaching Sciences by Ocean Inquiry SMS 491/ EDW 472 Spring 2008 HEAT AND TEMPERATURE LAB: Part II 1. Thermal expansion/water thermometer A flask One-hole stopper A long glass tube A container filled with

### Thermodynamics. Thermodynamics 1

Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

### Hot Leaks. See how the temperature of liquids changes the way they flow.

P h y s i c s Q u e s t A c t i v i t i e s Activity 2 1 Hot Leaks See how the temperature of liquids changes the way they flow. Safety: This experiment requires using the hot water tap and straight pins.

### REASONING AND SOLUTION

39. REASONING AND SOLUTION The heat released by the blood is given by Q cm T, in which the specific heat capacity c of the blood (water) is given in Table 12.2. Then Therefore, T Q cm 2000 J 0.8 C [4186