Factors of sums of powers of binomial coefficients


 Abner Goodwin
 3 years ago
 Views:
Transcription
1 ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the f,0 = + 1, f,1 = 2, f,2 = ( ), ad it is possible to show (Wilf, persoal commuicatio, usig techiues i [8]) that for 3 a 9, there is o closed form for f,a as a sum of a fixed umber of hypergeometric terms. Similarly, usig asymptotic techiues, de Bruij has show [1] that if a 4, the h,a has o closed form, where ( ) a h,a = ( 1) (clearly, h +1,a = 0). I this paper we will prove that while o closed form may exist, there are iterestig divisibility properties of f,2a ad h,a. We will illustrate some of the techiues which may be applied to prove these sorts of results. Our mai results are: Theorem 1. For all positive ad a, 2 ( ( 1) ) a is divisible by ( ). Theorem 2. For all positive itegers a, m, j, [ ] a ( 1) j 1991 Mathematics Subject Classificatio: 05A10, 05A30, 11B65. [17]
2 18 N. J. Cali is divisible by t(, ), where the [ ] t(, ) is a aalogue of the odd part of ( ). are the biomial coefficiets, ad 2. Bacgroud. I attemptig to exted the results of previous wor [2], we were led to cosider factorizatios of sums of powers of biomial coefficiets. It uicly became clear that for eve expoets, small primes occurred as divisors i a regular fashio (Propositio 3), ad that this result could be exteded (Propositio 7) to odd expoets ad alteratig sums. Further ivestigatio revealed (Propositio 8) that for all alteratig sums, the primes dividig h,a coicided with those dividig ( ). This led us to cojecture, ad subseuetly to prove, Theorem 1; as part of our proof we obtai (Theorem 2) a correspodig result for biomial coefficiets. 3. Noalteratig sums Propositio 3. For every iteger m 1, if p is a prime i the iterval 2a( + 1) 1 < p < = + 1 m 2ma 1 m m m(2ma 1) the p f,2a. I particular, f,2a is divisible by all primes p for which 2a( + 1) 1 < p < = a 1 2a 1. The followig lemma will eable us to covert iformatio about divisors of f,a which are greater tha ito iformatio about divisors less tha. Lemma 4. Let = s s be the expasio of i base p (ad similarly for = s s ). The f,a (mod p). i=0 f i,a P r o o f. By Lucas Theorem (see for example Graville [6]), ( ) ( ) i (mod p) i=0 i where as usual, ( i ) i 0 (mod p) if i > i. Hece all the terms i the sum over for which i > i for some i disappear, givig as claimed. f,a = ( i i=0 i =0 ) a ( i i s s 1 s =0 s 1 =0... ) a (mod p) 0 0 =0 i=0 ( i i f i,a (mod p) i=0 ) a (mod p)
3 Sums of powers of biomial coefficiets 19 Corollary 5. If l < p ad p f l,a the p f l+jp,a for all positive itegers j. We are ow i a positio to prove Propositio 3. We proceed i two stages: first, the case whe < p. Lemma 6. Let p be a prime i the iterval < p < (2a(+1) 1)/(2a 1). The p f,2a. P r o o f. Let p = + r where r > 0. The we have ( ) 2a p r ( ) 2a p r f,2a = (mod p) p r ( ) 2a r + 1 ( 1) 2a (mod p) p r ( ) 2a r + 1 (mod p) p r ( ) 2a ( + 1)( + 2)... ( + r 1) (mod p). (r 1)! If we write x (0) = 1 ad x (r) for the polyomial x(x + 1)... (x + r 1), the this last sum becomes p r ( ) ( + 2a 1)(r 1). (r 1)! We ow observe that the polyomials x (0), x (1),..., x (d) form a iteger basis for the space of all iteger polyomials of degree at most d. Hece there exist itegers c 0, c 1,..., c (r 1)(2a 1) so that Thus f,2a (( + 1) (r 1) ) 2a 1 = 1 p r (r 1)! 2a (r 1)(2a 1) j=0 (r 1)(2a 1) j=0 (r 1)(2a 1) 1 (r 1)! 2a j=0 c j ( + r) (j). c j ( + 1) (r 1) ( + r) (j) p r c j ( + 1) (r+j 1) (r 1)(2a 1) 1 (p r + 1) (r+j) (r 1)! 2a c j. r + j j=0
4 20 N. J. Cali Now, if r + (r 1)(2a 1) < p, the each of the terms i the sum is divisible by p, ad (r 1)! is ot divisible by p; hece f,2a is divisible by p. But ad r + (r 1)(2a 1) = 2ra 2a + 1 = 2pa a 2a + 1 2pa a 2a + 1 < p if ad oly if 2a( + 1) 1 p < 2a 1 completig the proof of the lemma. Now, suppose that = (m 1)p + l with l > 0 ad 2a(l + 1) 1 l < p <. 2ma 1 The, by Lemma 6, p divides f l,2a ad hece by Corollary 5, p divides f,2a. But l < p if ad oly if < mp, ad 2a(l + 1) 1 p < 2a 1 if ad oly if 2a( (m 1)p) 1 p <, 2a 1 that is, if 2a( + 1) 1 p <. 2ma 1 Thus, if 2a( + 1) 1 < p < m 2ma 1 the p divides f,2a, completig the proof of Propositio Alteratig sums. We ote that o similar result holds for the case of odd powers of biomial coefficiets (with the trivial exceptio of a = 1). Ideed, except for the power of 2 dividig f,2a+1 (which we discuss i Lemma 12), the factorizatios of sums of odd powers seem to exhibit o structure; for example, f 28,3 = However, for alteratig sums of odd powers, we have Propositio 7. p divides h,2a+1 for primes i the itervals (2a + 1)( + 1) 1 < p < = + 1 m m(2a + 1) 1 m m m(2a + 1) 1.
5 Sums of powers of biomial coefficiets 21 P r o o f. Ideed, by examiig the proof of Propositio 3, we see that if we defie ( ( )) a g,a = ( 1) so that g,2a = f,2a ad g,2a+1 = h,2a+1, the g,a is divisible by all primes i each of the itervals ( + 1)a 1 < p < m ma 1 so Propositios 3 ad 7 are really the same result. For all alteratig sums we have Propositio 8. If p ( ) the p h,a. P r o o f. Clearly 2 divides h,a if ad oly if 2 divides the middle term, ( ) a, ( as all of the other terms cacel (mod 2). Sice 2 divides ), 2 divides h,a. Now let p be a odd prime dividig ( ) ; we will show that p divides h,a. By Kummer s theorem, at least oe of the digits of writte i base p is odd (sice if all are eve, the there are o carries i computig + = i base p). Let the digits of i base p be () s, () s 1,..., () 1, () 0. The as i Lemma 4, 2 ( ) a ( () i ( ) a ) ( 1) ( 1) ()i i i=0 i =0 (sice p is odd, ( 1) = ( 1) s ). Now, sice p ( ), at least oe of the digits of i base p is odd; but the the correspodig term i the product is zero, ad so p h,a, completig the proof of Propositio 8. After computig some examples, it is atural to cojecture (ad the, of course, to prove!) Theorem The mai theorems. We will prove Theorem 1 by cosiderig  biomial coefficiets. Defiitios. Let be a positive iteger. Throughout we will deote the umber of 1 s i the biary expasio of by l() (so that 2 l() ( ) ). We further defie the followig polyomials i a idetermiate : θ () = 1 1 = (the aalogue of ), φ () = d (1 d ) µ(/d) i
6 22 N. J. Cali (the th cyclotomic polyomial i ),! = θ i () (the aalogue of!), ad (the aalogue of ( ) ). Further, defie ad r(x, ) = j x [ ] = i=1!! ( )! (1 j ) = (1 )!, s(x, ) = t(, ) = 2j+1 x s(, ) s(/2, )s(/4, )s(/8, ).... (1 2j+1 ) Note that the apparetly ifiite product i the deomiator is i fact fiite, sice s(x, ) = 1 if x < 1. We ow mae some useful observatios about t(, ). First, so t(, ) = = = s(, ) = r(, ) r(/2, 2 ), s(, ) s(/2, ) 2 s(/2, ) s(/4, ) 2 s(/4, ) s(/8, ) 2 r(, ) r(/2, ) 2 r(/2, ) r(/4, ) 2 r(/4, ) r(/8, ) 2 r(/2, 2 ) r(/4, 2 ) 2 r(/4, 2 ) r(/8, 2 ) 2 r(, ) r(/2, ) 2 r(/2, ) r(/4, ) 2 r(/2, 2 ) r(/4, 2 ) 2 r(/8, 2 ) r(/16, 2 ) 2 r(/4, ) r(/8, ) 2 r(/4, 2 ) r(/8, 2 ) 2 s(/8, ) s(/16, ) r(/8, ) r(/16, ) 2 r(/8, 2 ) r(/16, 2 ) 2 where agai, the apparetly ifiite product is i fact fiite. Now, sice r(x, ) r(x/2, ) 2 r(x, 2 ) r(x/2, 2 ) 2 { 1 if x is eve, 1 2 if x is odd,...
7 as 1, we see that Sums of powers of biomial coefficiets 23 lim t(, ) = 1 Further, t( + 1, ) has a factor 1, so ( ) 2 l. lim t( + 1, ) = 0. 1 I other words, sice 2 l ( ), we may regard t(, ) as the aalogue of the largest odd factor of ( ). Lemma 9. We have t(, ) = m φ m() where the product is over those odd m for which /m is odd. P r o o f. Clearly, if m is eve the φ m () does ot divide t(, ). Suppose m is odd; the φ m () divides s(, ) exactly /m /2 times, ad hece φ m () divides t(, ) m /2 2m /2 /2... 4m 2 j /2... m times. Now, by cosiderig the biary expasio of /m, it is immediate that this is 0 if /m is eve, ad 1 if /m is odd. Lemma 10. Let m,, be oegative itegers ad write = m +, = m +, = ( ) m + ( ), where, are the least oegative residues of, (mod m). The [ ] [ ] ( ) (mod φ m ()) where [ ] is tae to be 0 if <. P r o o f. See [3], [4] or [7]. Proof of Theorem 2. It is eough to show that if m ad = /m are odd, the [ ] a φ m () ( 1) j. But, from Lemma 10, [ ] a [ ] ( 1) j a ( ) a =0 =0 ( 1) + j (mod φ m ()) ( [ ] a )( ( ) a ) = ( 1) j ( 1) mj =0 =0 ad sice m ad are odd, the secod sum is zero, ad we are doe.
8 24 N. J. Cali We observe ow that both sides of Theorem 2 are iteger polyomials; thus whe we evaluate them at = 1, the left had side (if ozero) will divide ( the right had side. But we have already observed that t(, 1) = ) /2 l, ad hece we have proved Corollary 11. ( ) 2 ( ) a 2 l() ( 1). To prove Theorem 1 it remais to show that 2 ( ) a 2 l() ( 1). We prove a stroger result by iductio. ad Lemma 12. For all positive itegers a ad, ( ) a 2 l() 2 l() ( ) a ( 1). P r o o f. The assertio is clearly true whe = 1. Assume ow that it holds for all values less tha. For each 1 i l(), let m = 2 i ad let,,,, ( ), ( ) be defied as i Lemma 10. Writig ( [ ] a )( ( ) a ) w i () = we have [ ] a w i () (mod φ 2 i()). By our iductio hypothesis, sice l() = l( )+l( ), 2 l() w i (1) for each i. We ow wish to combie these euivaleces modulo θ 2 l()() = φ 2 ()φ 4 ()φ 8 ()... φ 2 l()() ad evaluate them at = 1. To do this, defie π 1 = 1 2 l 1 ad π i = 1 (1 ) for i = 2, 3,..., l(). 2l i+1 The, settig u i () = φ 2 ()φ 4 ()... φ 2 i 1()π i φ 2 i+1()... φ 2 l()()
9 we have Sums of powers of biomial coefficiets 25 u 1 () = 1 2 l 1 (1 + 2 )(1 + 4 )... (1 + 2 l() 1 ) 1 (mod (1 + )) ad for i 2, u i () 1 2 l i+1 (1 2 )(1 + 2 )(1 + 4 )... (1 + 2 i 2 )(1 + 2i )... (1 + 2l() 1 ) 1 i 1 (1 2 )(1 + 2i )(1 + 2i+1 )... (1 + 2l() 1 ) 2l i+1 1 (mod (1 + 2i 1 )). Further, if i j, the u i () 0 (mod φ 2 j ()). Hece, that is, [ ] a l() w i ()u i () (mod θ 2 l()()), [ ] a i=1 l() = P ()θ 2 l()() + w i ()u i () where we wish to coclude that P () is a iteger polyomial. Observe that it is sufficiet to prove that each w i ()u i () is a iteger polyomial, sice θ 2 l() is moic. To do this, cosider w i (). First, observe that w i () is divisible by 2 l( ) by our iductive hypothesis, sice < ; further, if is odd, so is, ad hece the biomial sum i w i () is symmetric ad its coefficiets are eve; if is eve, the l( ) i 1, ad i each case, 2 l i w i () (that is, each coefficiet of w i () is divisible by 2 l i+1 ). Thus, for each i, w i ()u i () is a iteger polyomial. We have thus prove that [ ] a i=1 l() = P ()θ 2 l()() + w i ()u i () where P () has iteger coefficiets. Now, settig = 1 i both sides, we observe that u i (1) is a iteger for each i, 2 l() w i (1) for each i (ideed, u i (1) = 0 for i 2, ad u 1 (1) = 1), ad that θ 2 l()(1) = 2 l(). Hece each term o the right is divisible by 2 l(), provig that ( ) a 2 l(). i=1
10 26 N. J. Cali To prove that 2 l() we proceed similarly, settig ( [ v i () = ] a ( ) a ( 1) )( ( ) ( 1) a ), with the oly major differece beig i the proof that l() i=1 v i()u i () is a iteger polyomial: i this case, if is eve, thigs wor as above, ad if is odd, the we have is odd, ad v i () is idetically eual to 0. Note that we eed to have already prove the lemma for oalteratig sums to prove the alteratig case. This completes the proof of Lemma 12 ad thus of Theorem 1. We gratefully acowledge may iformative discussios with Professors Joatha M. Borwei, Ira Gessel, Adrew J. Graville ad Herbert S. Wilf. Refereces [1] N. G. de Bruij, Asymptotic Methods i Aalysis, Dover, New Yor, [2] N. J. Cali, A curious biomial idetity, Discrete Math. 131 (1994), [3] M.D. Choi, G. A. Elliott ad N. Yui, Gauss polyomials ad the rotatio algebra, Ivet. Math. 99 (1990), [4] J. Désarméie, U aalogue des cogrueces de Kummer pour les ombres d Euler, Europea J. Combi. 3 (1982), [5] A. J. Graville, Zaphod Beeblebrox s brai ad the fiftyith row of Pascal s triagle, Amer. Math. Mothly 99 (1992), [6], The arithmetic properties of biomial coefficiets, i: Proceedigs of the Orgaic Mathematics Worshop, 1996, idex.html (URL verified September 10, 1997). [7] G. Olive, Geeralized powers, Amer. Math. Mothly 72 (1965), [8] M. Petovše, H. S. Wilf ad D. Zeilberger, A = B, A. K. Peters, Wellesley, Mass., Departmet of Mathematical Scieces Clemso Uiversity Clemso, South Carolia U.S.A. Received o ad i revised form o (3203)
Asymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More informationIrreducible polynomials with consecutive zero coefficients
Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationFactoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>
(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationA Note on Sums of Greatest (Least) Prime Factors
It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423432 HIKARI Ltd, www.mhikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos
More informationOn the L p conjecture for locally compact groups
Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/0302376, ublished olie 2007080 DOI 0.007/s0003007993x Archiv der Mathematik O the L cojecture for locally comact
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationPerfect Packing Theorems and the AverageCase Behavior of Optimal and Online Bin Packing
SIAM REVIEW Vol. 44, No. 1, pp. 95 108 c 2002 Society for Idustrial ad Applied Mathematics Perfect Packig Theorems ad the AverageCase Behavior of Optimal ad Olie Bi Packig E. G. Coffma, Jr. C. Courcoubetis
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More information5.3. Generalized Permutations and Combinations
53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationBINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients
652 (1226) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationLehmer s problem for polynomials with odd coefficients
Aals of Mathematics, 166 (2007), 347 366 Lehmer s problem for polyomials with odd coefficiets By Peter Borwei, Edward Dobrowolski, ad Michael J. Mossighoff* Abstract We prove that if f(x) = 1 k=0 a kx
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationTHE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE
THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe
More informationLecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
More informationSection 8.3 : De Moivre s Theorem and Applications
The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationGCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4
GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook Alevel Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationFast Fourier Transform
18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More informationCME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
More informationPermutations, the Parity Theorem, and Determinants
1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More information4.3. The Integral and Comparison Tests
4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationEGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES
EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND OBTAINED WITH ENGEL SERIES ELVIA NIDIA GONZÁLEZ AND JULIA BERGNER, PHD DEPARTMENT OF MATHEMATICS Abstract. The aciet Egyptias epressed ratioal
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationOn Formula to Compute Primes. and the n th Prime
Applied Mathematical cieces, Vol., 0, o., 3535 O Formula to Compute Primes ad the th Prime Issam Kaddoura Lebaese Iteratioal Uiversity Faculty of Arts ad cieces, Lebao issam.kaddoura@liu.edu.lb amih AbdulNabi
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE
Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationHow Euler Did It. In a more modern treatment, Hardy and Wright [H+W] state this same theorem as. n n+ is perfect.
Amicable umbers November 005 How Euler Did It by Ed Sadifer Six is a special umber. It is divisible by, ad 3, ad, i what at first looks like a strage coicidece, 6 = + + 3. The umber 8 shares this remarkable
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationNotes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a elemet set, (2) to fid for each the
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationEfficient tree methods for pricing digital barrier options
Efficiet tree methods for pricig digital barrier optios arxiv:1401.900v [qfi.cp] 7 Ja 014 Elisa Appolloi Sapieza Uiversità di Roma MEMOTEF elisa.appolloi@uiroma1.it Abstract Adrea igori Uiversità di Roma
More informationDIRECTED GRAPHS AND THE JACOBITRUDI IDENTITY
Ca. J. Math., Vol. XXXVII, No. 6, 1985, pp. 12011210 DIRECTED GRAPHS AND THE JACOBITRUDI IDENTITY I. P. GOULDEN 1. Itroductio. Let \a i L X deote the X determiat with (/', y)etry a, ad h k = h k (x
More informationA note on the boundary behavior for a modiﬁed Green function in the upperhalf space
Zhag ad Pisarev Boudary Value Problems (015) 015:114 DOI 10.1186/s136610150363z RESEARCH Ope Access A ote o the boudary behavior for a modiﬁed Gree fuctio i the upperhalf space Yulia Zhag1 ad Valery
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationSolutions to Exercises Chapter 4: Recurrence relations and generating functions
Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More information2. Degree Sequences. 2.1 Degree Sequences
2. Degree Sequeces The cocept of degrees i graphs has provided a framewor for the study of various structural properties of graphs ad has therefore attracted the attetio of may graph theorists. Here we
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationResearch Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationON THE EDGEBANDWIDTH OF GRAPH PRODUCTS
ON THE EDGEBANDWIDTH OF GRAPH PRODUCTS JÓZSEF BALOGH, DHRUV MUBAYI, AND ANDRÁS PLUHÁR Abstract The edgebadwidth of a graph G is the badwidth of the lie graph of G We show asymptotically tight bouds o
More informationCURIOUS MATHEMATICS FOR FUN AND JOY
WHOPPING COOL MATH! CURIOUS MATHEMATICS FOR FUN AND JOY APRIL 1 PROMOTIONAL CORNER: Have you a evet, a workshop, a website, some materials you would like to share with the world? Let me kow! If the work
More informationSEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationDegree of Approximation of Continuous Functions by (E, q) (C, δ) Means
Ge. Math. Notes, Vol. 11, No. 2, August 2012, pp. 1219 ISSN 22197184; Copyright ICSRS Publicatio, 2012 www.icsrs.org Available free olie at http://www.gema.i Degree of Approximatio of Cotiuous Fuctios
More informationSolutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork
Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the
More informationCS85: You Can t Do That (Lower Bounds in Computer Science) Lecture Notes, Spring 2008. Amit Chakrabarti Dartmouth College
CS85: You Ca t Do That () Lecture Notes, Sprig 2008 Amit Chakrabarti Dartmouth College Latest Update: May 9, 2008 Lecture 1 Compariso Trees: Sortig ad Selectio Scribe: William Che 1.1 Sortig Defiitio 1.1.1
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationAn Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function
A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;
More informationInteger Factorization Algorithms
Iteger Factorizatio Algorithms Coelly Bares Departmet of Physics, Orego State Uiversity December 7, 004 This documet has bee placed i the public domai. Cotets I. Itroductio 3 1. Termiology 3. Fudametal
More information