Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49


 Melanie Reed
 2 years ago
 Views:
Transcription
1 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49
2 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large inductance. (usually a coil of wire). Because of the inductance in a RL circuit, the current changes gradually. When you close a switch, the current takes time to go from zero to its maximal value.
3 The time it takes for the current to rise depends on the time constant. In a RC circuit, time constant ( ) depended on the resistance and the capacitance. = RC In a RL circuit, = L/R See graph of current vs. time on pg. 684 After each time constant, the current rises to 63.2% of the remainder to the max value. I R (1 e t / ) I R (1 e Rt / L )
4 RL circuit The larger the time constant the longer it takes for the current to reach its maximum value. = L/R increase inductance, increase increase resistance, decrease Note the difference between RL and RC circuits.
5 Behavior of the inductor Take a RL circuit with the switch open. (fig ) When the switch is closed, the current is changing the most rapidly. The back emf from the inductor is largest at this time. As the current approaches the steady state value, the back emf is reduced. After a long time, the inductor behaves like a ordinary wire. Do example 20.8.
6 Ch. 21 AC circuits concept # 2, 8, 13, 15 problems# 1, 5, 7, 9, 11, 13, 14, 18, 19, 29, 37, 39, 43, 45, 47
7 AC circuit consists of an AC generator or other AC source hooked up to electrical devices: capacitors, resistors, inductors The voltage alternates between a maximum and minimum value. The output is a sinusoidal wave v = V max sin 2 ft v = instantaneous voltage f = frequency at which the voltage changes t = time
8 The current spends just as much time going current in one direction as it does with the current going the opposite direction. The average current is zero. RMS current (I rms ) The square root of the mean of the square I rms = Imax Imax 2
9 For the AC circuit with the resistor. The current and the voltage peak at the same time. See fig. on pg 697 for a AC circuit with a resistor. They are said to be in phase. applying Ohm s law V V rms = max V max V rms = I rms R and V max = I max R Average Power: P ave I 2 rms R
10 Capacitors in AC circuit Circuit with AC source and capacitor: At initial time there is no charge on the capacitor. The current is maximum then because there is no charge to fight the new charges from moving onto the plates. The current decreases as the charge build up. (the voltage across capacitor increases) When the current reverses direction, the voltage drops because the plates are losing their charge. This process repeats over an over again. See the figures on page 700.
11 Capacitors in AC circuit The current peaks before the voltage. The current and voltage are not in phase. The voltage lags behind the current by Impeding effect of a capacitor is called the capacitance reactance X c. X c = 1/(2 fc) X c depends on the fequency V c,rms = I rms X c
12 Inductors in AC circuit Inductor is a coil and due to Faraday s law the inductor impedes a changing current. The effective resistance of an inductor is called the inductive reactance, X L. X L = 2 fl depends on frequency. Because of the inductance, the current lags behind the voltage. They are out of phase. See fig on pg 701. The voltage peaks before the current.
13 RLC circuit Now a resistor, capacitor, and inductor are all in an AC circuit. Because the voltages across all the components are not in phase, we cannot just add them together. They need to be added like vectors. See figures 21.9 and The total impedance, Z, of the circuit is 2 2 defined as: Z R ( X L X C ) V max = I max Z see table 21.2
14 Phase shift between potential difference and current is. tan X L X C R see figure 21.11
15 Power in AC circuit Energy stored in capacitor is PE c = ½ C( V max ) 2 During half of a cycle the capacitor is charged. During the other half the charge returns to the voltage source. Average power supplied by the source is zero. No power losses occur in capacitor in AC circuit.
16 Energy stored in inductor is PE L = ½ L(I max ) 2 The current source does work against the back emf of the inductor. When the current decreases the stored energy is returned to the source as the inductor attempts to maintain the current in the circuit. There is no power loss through the inductor. All the power in RLC circuit is converted to internal energy in the resistor. 2 In RLC circuit P av I rms R
17 power P av I 2 rms R P av I rms V R V R V rms cos P av I rms V rms cos cos = power factor The power depends on the phase shift between the current and voltage. If a large generator has a large inductance, capacitors can be used to shift the phase.
18 Resonance in series RLC circuit. I rms When the impedance has its minimum value the current is maximized. This happens when: X L = X C Then Z = R V Z rms R This happens when the frequency of the circuit is just right. Called the resonance frequency. 2 V rms ( X X ) L C 2
19 Resonance frequency. To find the resonance frequency, f 0. Set the X L = X C 2 f 0 L = 1/(2 f 0 C) f LC See fig At f = f 0, the current spikes. If the resistance was zero, the current would become infinite.
20 Transformer Used to change the magnitude of an AC voltage. Works on basis of Faraday s Law. Simple transformer is made up of 2 coils wrapped around a soft iron core. When the current through the primary coil changes, the flux through the secondary coil changes producing an induced emf. The voltages in each coil is proportional to the number of turns in the coil.
21 Transformer V 1 = N 1 B / t and V 2 = N 2 B / t Assuming no flux is lost in the iron core, the term B/ t is common to both coils. V 2 = (N 2 /N 1 ) V 1 When N 2 >N 1 the voltage is increased, step up transformer. When N 2 < N 1 the voltage is decreased, step down transformer.
22 The power input to the primary coil equals the power output at the secondary coil for an ideal transformer. (No power loss) I 1 V 1 = I 2 V 2 So for a step up transformer the voltage is increased, but the current is decreased. In a real transformer, there is some power loss due to eddy currents in the iron core. Real transformers have efficiencies ranging from 90%  99%.
23 Power lost due to the currents in transmission lines is lost as resistive heating. P = I 2 R Want the current to be as small as possible to reduce power loss. More economical to transmit electric power using high voltage and low current.
Lesson 27. (1) Root Mean Square. The emf from an AC generator has the time dependence given by
Lesson 27 () Root Mean Square he emf from an AC generator has the time dependence given by ℇ = ℇ "#$% where ℇ is the peak emf, is the angular frequency. he period is he mean square value of the emf is
More informationBasic Electrical Theory
Basic Electrical Theory Impedance PJM State & Member Training Dept. PJM 2014 10/24/2013 Objectives Identify the components of Impedance in AC Circuits Calculate the total Impedance in AC Circuits Identify
More informationChapter 35 Alternating Current Circuits
hapter 35 Alternating urrent ircuits acircuits Phasor Diagrams Resistors, apacitors and nductors in acircuits R acircuits acircuit power. Resonance Transformers ac ircuits Alternating currents and
More informationLRC Circuits. Purpose. Principles PHYS 2211L LAB 7
Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven
More informationApril 8. Physics 272. Spring Prof. Philip von Doetinchem
Physics 272 April 8 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  218 LC in parallel
More informationChapter 11. Inductors. Objectives
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationFall 12 PHY 122 Homework Solutions #10
Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the
More informationDirect versus Alternating Current Things We Can Measure
Phil Sherrod W4PHS Direct versus Alternating Current Things We Can Measure Direct Current (DC) Alternating Current (AC) Voltage Voltage (peak, RMS) Current Current (peak, effective) Power True power, Apparent
More informationChapter 12. RL Circuits. Objectives
Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine
More informationChapt ha e pt r e r 12 RL Circuits
Chapter 12 RL Circuits Sinusoidal Response of RL Circuits The inductor voltage leads the source voltage Inductance causes a phase shift between voltage and current that depends on the relative values of
More informationEXPERIMENT 4: MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR RC CIRCUIT
Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4: MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR RC CIRCUIT
More informationPractice Problems  Chapter 33 Alternating Current Circuits
Multiple Choice Practice Problems  Chapter 33 Alternating Current Circuits 4. A highvoltage powerline operates at 500 000 Vrms and carries an rms current of 500 A. If the resistance of the cable is
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More informationBasic AC Reactive Components IMPEDANCE
Basic AC Reactive Components Whenever inductive and capacitive components are used in an AC circuit, the calculation of their effects on the flow of current is important. EO 1.9 EO 1.10 EO 1.11 EO 1.12
More informationExtra Questions  1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A
Extra Questions  1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated
More informationChapter 22: Alternating current. What will we learn in this chapter?
Chapter 22: Alternating current What will we learn in this chapter? Contents: Phasors and alternating currents Resistance and reactance Series R L C circuit Power in accircuits Series resonance Parallel
More information1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.
Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north
More informationDiodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
More informationALTERNATING CURRENTS
ALTERNATING CURRENTS VERY SHORT ANSWER QUESTIONS Q1. What is the SI unit of? Q2. What is the average value of alternating emf over one cycle? Q3. Does capacitor allow ac to pass through it? Q4. What
More informationReactance and Impedance
Reactance and Impedance Capacitance in AC Circuits Professor Andrew H. Andersen 1 Objectives Describe capacitive ac circuits Analyze inductive ac circuits Describe the relationship between current and
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4  ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4  ALTERNATING CURRENT 4 Understand singlephase alternating current (ac) theory Single phase AC
More informationAlternating Current Circuits and Electromagnetic Waves
Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create
More informationHomework #11 20311721 Physics 2 for Students of Mechanical Engineering
Homework #11 20311721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
More informationNZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians
NZQA registered unit standard 0431 version Page 1 of 7 Title Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians Level 3 Credits 7 Purpose This unit standard covers
More informationSimple Harmonic Motion: AC circuits: alternating current electricity
Simple Harmonic Motion: AC circuits: alternating current electricity Alternating current (AC) circuits explained using time and phasor animations. Impedance, phase relations, resonance and RMS quantities.
More informationChapter 15 10/14/2014
Chapter 15 Analyze series and parallel ac circuits to find Voltage Current Power Total impedance, admittance Apply known circuit theories Kirchhoff s current, voltage laws Voltage or current divider rule
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 31. Alternating Current Circuits Assignment is due at 2:00am on Wednesday, March 21, 2007 Credit for problems submitted late will decrease to 0% after the
More informationEinstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,
1 EMI & AC 1. Derive an expression for the impendance of a coil in AC ciruit. A current of 1.1 A flows through a coil when connected to a 110 V DC. When 110 V AC of 50 Hz is applied to the same coil, only
More informationPhysics 1214 Chapter 21: Electromagnetic Induction 02/15
Physics 1214 Chapter 21: Electromagnetic Induction 02/15 1 Induction Experiments emf or electromotive force: (from Chapter 19) the influence that moves charge from lower to higher potential. induced current:
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationInductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
More informationChapter 9: Ideal Transformer. 10/9/2003 Electromechanical Dynamics 1
Chapter 9: Ideal Transformer 10/9/003 Electromechanical Dynamics 1 Introduction Transformers are one of the most useful electrical devices provides a change in voltage and current levels provides galvanic
More informationAS91526: Demonstrate understanding of electrical systems Level 3 Credits 6
AS956: Demonstrate understanding of electrical systems Level 3 redits 6 This achievement standard involves demonstrating understanding of electrical systems. Achievement riteria Achievement Achievement
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
More informationBasic Electrical Theory
Basic Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM 2014 10/24/2013 Objectives At the end of this presentation the learner will be able to; Identify the characteristics
More informationLab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response
Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all
More informationε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
More information1. Effective voltage is given by expression
Chapter 07 A C CIRCUITS 1. Effective voltage is given by expression 1) Ve = Vo/ 2 2) Ve = 2 Vo 3) Vo/π 4) π Vo Effective voltage isrms voltage Answer is (1) 2. A coil having zero resistance is connected
More informationCh.20 Induced voltages and Inductance Faraday s Law
Ch.20 Induced voltages and Inductance Faraday s Law Last chapter we saw that a current produces a magnetic field. In 1831 experiments by Michael Faraday and Joseph Henry showed that a changing magnetic
More informationFUNDAMENTALS OF ENGINEERING (FE) EXAMINATION
January 8, 008 1:55 Appc Sheet number 1 Page number 77 magenta black A P P E N D I X C FUNDAMENTALS OF ENGINEERING (FE) EXAMINATION C.1 INTRODUCTION The Fundamentals of Engineering (FE) examination 1 is
More informationChap 21. Electromagnetic Induction
Chap 21. Electromagnetic Induction Sec. 1  Magnetic field Magnetic fields are produced by electric currents: They can be macroscopic currents in wires. They can be microscopic currents ex: with electrons
More informationAP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations
AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction  induced current a metal wire moved in a uniform magnetic field  the charges (electrons)
More informationElectric Engineering II EE 326 Lecture 4 & 5
Electric Engineering II EE 326 Lecture 4 & 5 Transformers ١ Transformers Electrical transformers have many applications: Step up voltages (for electrical energy transmission with
More information2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions  2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
More informationLecture 21. AC Circuits, Reactance.
Lecture 1. AC Circuits, Reactance. Outline: Power in AC circuits, Amplitude and RMS values. Phasors / Complex numbers. Resistors, Capacitors, and Inductors in the AC circuits. Reactance and Impedance.
More informationPhysics 2102 Lecture 19. Physics 2102
Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric
More informationFaraday s Law of Induction
Faraday s Law of Induction Potential drop along the closed contour is minus the rate of change of magnetic flu. We can change the magnetic flu in several ways including changing the magnitude of the magnetic
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More informationSlide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationFREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY. We start with examples of a few filter circuits to illustrate the concept.
FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage
More informationTHE TRANSFORMER. REFERENCES: PASCO Transformer Notes Physics for Scientists and Engineers, Tipler, 4 th Ed., Vol. 2 INTRODUCTION.
THE TRANSFORMER LAB ELEC 7 REFERENCES: PASCO Transformer Notes Physics for Scientists and Engineers, Tipler, 4 th Ed., Vol. 2 NTRODUCTON Nearly all of today s electrical energy is produced as alternating
More informationChapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... . A ircuits with a Source and One ircuit Element... 3.. Purely esistive oad... 3.. Purely Inductive oad... 6..3 Purely apacitive oad... 8.3 The Series ircuit...
More informationAn inductance L and a resistance R are connected to a source of emf as shown. When switch S 1 is closed, a current begins to flow. The final value of the current is A. directly proportional to RL. B. directly
More informationLine Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
More informationAlternating Current. Asist. Prof. Dr. Aytaç Gören Asist. Prof. Dr. Levent Çetin
Asist. Prof. Dr. Aytaç Gören Asist. Prof. Dr. Levent Çetin 30.10.2012 Contents Alternating Voltage Phase Phasor Representation of AC Behaviors of Basic Circuit Components under AC Resistance, Reactance
More informationProf. Anchordoqui Problems set # 11 Physics 169 May 5, 2015
rof. Anchordoqui roblems set # hysics 69 May 5, 5. A semicircular conductor of radius.5 m is rotated about the axis A at a constant rate of rev/min (Fig. ). A uniform magnetic field in all of the lower
More informationName Date Day/Time of Lab Partner(s) Lab TA
Name Date Day/Time of Lab Partner(s) Lab TA Objectives LAB 7: AC CIRCUITS To understand the behavior of resistors, capacitors, and inductors in AC Circuits To understand the physical basis of frequencydependent
More informationInductive and Capacitive Reactance
Inductive and Capacitive Reactance Course No: E04005 Credit: 4 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 3225800 F: (877) 3224774
More informationLagrangian description of electric circuits
Karlstad University FACULTY OF HEALTH, SCIENCE AND TECHNOLOGY Department of Engineering and Physics Lagrangian description of electric circuits Author: Yasser Kadhim yasser.kadhim@gmail.com Supervisor:
More informationAlternatingCurrent Circuits
hapter 1 Alternatingurrent ircuits 1.1 A Sources... 11. Simple A circuits... 13 1..1 Purely esistive load... 13 1.. Purely Inductive oad... 15 1..3 Purely apacitive oad... 17 1.3 The Series ircuit...
More informationAlternating Current RL Circuits
Alternating Current RL Circuits Objectives. To understand the voltage/current phase behavior of RL circuits under applied alternating current voltages, and. To understand the current amplitude behavior
More informationElectrical Machines II. Week 1: Construction and theory of operation of single phase transformer
Electrical Machines II Week 1: Construction and theory of operation of single phase transformer Transformers Overview A transformer changes ac electric power at one frequency and voltage level to ac electric
More informationElectrical Fundamentals  Reactance and Impedance
PDHonline Course E239 (4 PDH) Electrical Fundamentals  Reactance and Impedance Instructor: A. Bhatia, B.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 220306658 Phone & Fax: 7039880088
More informationRLC Series Resonance
RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistorinductorcapacitor (RLC) circuit by examining the current through the circuit as a function
More informationBASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011
AM 5202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT
More informationI d s r ˆ. However, this law can be difficult to use. If there. I total enclosed by. carrying wire using Ampere s Law B d s o
Physics 241 Lab: Solenoids http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. A current carrying wire creates a magnetic field around the wire. This magnetic
More informationCapacitors and Inductors
P517/617 ec2, P1 Capacitors and Inductors 1) Capacitance: Capacitance (C) is defined as the ratio of charge (Q) to voltage () on an object. Define capacitance by: C = Q/ = Coulombs/olt = Farad. Capacitance
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationAPPLICATION NOTE  018
APPLICATION NOTE  018 Power Transformers Background Power Transformers are used within an AC power distribution systems to increase or decrease the operating voltage to achieve the optimum transmission
More informationVectors and Phasors. A supplement for students taking BTEC National, Unit 5, Electrical and Electronic Principles. Owen Bishop
Vectors and phasors Vectors and Phasors A supplement for students taking BTEC National, Unit 5, Electrical and Electronic Principles Owen Bishop Copyrught 2007, Owen Bishop 1 page 1 Electronics Circuits
More informationRootMeanSquare (RMS), Peak, and PeaktoPeak Values, Measurements with Oscilloscope
Salman bin Abdulaziz University College of Engineering Electrical Engineering Department EE 2050 Electrical Circuit Laboratory RootMeanSquare (RMS), Peak, and PeaktoPeak Values, Measurements with Oscilloscope
More informationIntro to Power Lab Concepts
1 Intro to Power Lab Concepts Created by the University of Illinois at UrbanaChampaign TCIPG PMU Research Group 1 Table of Contents 1. PRELAB DC Power
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer
More informationChapter 3. Simulation of NonIdeal Components in LTSpice
Chapter 3 Simulation of NonIdeal Components in LTSpice 27 CHAPTER 3. SIMULATION OF NONIDEAL COMPONENTS IN LTSPICE 3.1 PreLab The answers to the following questions are due at the beginning of the lab.
More informationProperties of electrical signals
DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Halfwave rectifier
More informationThe Ideal Transformer. Description and Circuit Symbol
The Ideal Transformer Description and Circuit Symbol As with all the other circuit elements, there is a physical transformer commonly used in circuits whose behavior can be discussed in great detail. However,
More informationCh 21: Induction. Electromagnetic Induction. Lenz s Law 6/1/2016
Ch 21: Induction Faraday s Experiment Trying to induce a current using magnetic fields No induced current in Y loop with a DC circuit Saw a current when opening and closing the switch (changing the magnetic
More informationChapter 34 Faraday s Law & Electromagnetic Induction
Chapter 34 Faraday s Law & Electromagnetic Induction Faraday s Discovery (~ 1831) Faraday found that a changing magnetic field creates a current in a wire. This is an informal statement of Faraday s law.
More informationInduction and Inductance
Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic flux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and
More informationChapter 5 TRANSFORMERS
Chapter 5 TRANSFORMERS Objective Understand the transformer nameplate Describe the basic construction features of a transformer. Explain the relationship between voltage, current, impedance, and power
More informationElectronic Components. Electronics. Resistors and Basic Circuit Laws. Basic Circuits. Basic Circuit. Voltage Dividers
Electronics most instruments work on either analog or digital signals we will discuss circuit basics parallel and series circuits voltage dividers filters highpass, lowpass, bandpass filters the main
More informationChapter 10. RC Circuits. Objectives
Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine
More informationElectromagnetic Induction
Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can knowledge
More informationFirst Year (Electrical & Electronics Engineering)
Z PRACTICAL WORK BOOK For The Course EE113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat
More informationExperiment 10 Inductors in AC Circuits
Experiment 1 Inductors in AC Circuits Preparation Prepare for this week's experiment by looking up inductors, self inductance, enz's aw, inductive reactance, and R circuits Principles An inductor is made
More informationEE301 Lesson 14 Reading: 10.110.4, 10.1110.12, 11.111.4 and 11.1111.13
CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how
More informationInduction. d. is biggest when the motor turns fastest.
Induction 1. A uniform 4.5T magnetic field passes perpendicularly through the plane of a wire loop 0.10 m 2 in area. What flux passes through the loop? a. 5.0 T m 2 c. 0.25 T m 2 b. 0.45 T m 2 d. 0.135
More informationElectrical Resonance
Electrical Resonance (RLC series circuit) APPARATUS 1. RLC Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
More informationChapter 5: Analysis of TimeDomain Circuits
Chapter 5: Analysis of TimeDomain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of
More informationW03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018  Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
More informationA complex number W consists of real and imaginary parts a and b respectively, and the imaginary constant j which is the square root of negative one.
eactance and Impedance A Voltage and urrent In a D circuit, we learned that the relationship between voltage and current was V=I, also known as Ohm's law. We need to find a similar law for A circuits,
More informationLCR Parallel Circuits
Module 10 AC Theory Introduction to What you'll learn in Module 10. The LCR Parallel Circuit. Module 10.1 Ideal Parallel Circuits. Recognise ideal LCR parallel circuits and describe the effects of internal
More informationINTRODUCTION SELF INDUCTANCE. Introduction. Self inductance. Mutual inductance. Transformer. RLC circuits. AC circuits
Chapter 13 INDUCTANCE Introduction Self inductance Mutual inductance Transformer RLC circuits AC circuits Magnetic energy Summary INTRODUCTION Faraday s important contribution was his discovery that achangingmagneticflux
More informationECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models
Lab 1 Nodal Analysis, Capacitor and Inductor Models Objectives: At the conclusion of this lab, students should be able to: use the NI mydaq to power a circuit using the power supply and function generator
More informationEE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.
More informationAC Generators. Basic Generator
AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number
More information2. TRANSFORMERS. The main learning objectives for this chapter are listed below. Use equivalent circuits to determine voltages and currents.
. TRANSFORMERS Transformers are commonly used in applications which require the conversion of AC voltage from one voltage level to another. There are two broad categories of transformers: electronic transformers,
More information1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)
1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,
More informationLecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)
Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap
More informationChapter 12. RL Circuits ISU EE. C.Y. Lee
Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine
More information