PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM


 Garry Ellis
 3 years ago
 Views:
Transcription
1 PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics ad Risk Maagemet YSU, Armeia The paper itroduces a alterative approach to the bousmalus system costructio. I the preseted model the premium calculatio is based o the previous premium ad o the claim severity compoet as well. Followig to the cocept of a optimal bousmalus system the ecessary ad sufficiet coditio for the aggregate premiums to be a martigale series have bee foud out. Thus the preseted approach differs totally from the usual bousmalus classes as well as from the systems, where the severity of the claim is omitted. MSC2010: 60G42; 62P05. Keywords: optimal bousmalus, aggregate premium, martigale. Itroductio. BousMalus system (BMS) is a premium calculatio system, which pealizes the policyholders resposible for oe or more claims by a premium surcharge (malus) ad rewards the policyholders, who had a claim free year by awardig discout of the premium (bous). The majority of optimal BMS preseted up to ow i the actuarial literature [1] assig to each policyholder a premium based o the umber of his accidets. I this way a policyholder, who had a accidet with a small size of loss is pealized ufairly i the same way with a policyholder, who had a accidet with a big size of loss. From practical poit of view it is well kow several cosiderable disadvatages of existig BMS possess, which are difficult or eve impossible to hadle withi the traditioal theory of experiece ratig [2]. I particular, the existig systems are based o the followig characteristic: the claim amouts are omitted as a posterior tariff criterio. This characteristic leads to the followig disadvatages. i. Regardig a occurred claim the future loss of bous will i may cases exceed the claim amout. ii. I may cases it gives the policyholder a fillig of ufairess, especially whe a policyholder make a small claim ad the other oe a large, they have the same pealty withi the same risk group.
2 16 Proc. of the Yereva State Uiv., Phys. ad Math. Sci., 2015, 1, p iii. Cosequece of (i ad ii) is the wellkow bous huger behavior of policyholders. iv. Bous huger behavior leads to a asymmetric iformatio betwee the policyholders, isurers ad regulators. May authors have focused o the disadvatages metioed above, i particular the problem of bous huger [3, 4], the problem of asymmetric iformatio [5, 6]. The aim of this paper is to itroduce a alterative bousmalus approach, which at least theoretically elimiates the most importat oes of these disadvatages. A Optimal BousMalus Premium Costructio Cosideratios. Cocept of a optimal BMS [3] has bee used i this paper. A BMS is called optimal if it is: a) fiacially balaced for the isurer, that is the average total amout of bouses is equal to the average total amout of maluses; b) fair for the policyholder, that is each policyholder pays a premium proportioal to the risk that he imposes to the pool. Optimal BMS ca be divided i two categories: those based oly o a posteriori classificatio criteria ad those based both o a priori ad a posteriori classificatio criteria. The majority of BMS desiged is based o the umber of accidets disregardig their severity. Thus, let us cosider the desig of a optimal BMS based o a claim severity compoet. Notatios ad Defiitios. Based o the probabilistic approach ad followig axioms of probability theory suppose that all the observatios made o a probability space (Ω,F,P), where Ω is the set of elemetary outcomes ω, F is a σalgebra of subsets of Ω ad P is a give probability measure o F. Time ad dyamics have a sigificat role for the model costructio, so suppose that a sequece of σalgebra { F is give: } 0 F 0 F 1 F F. So the basic probabilistic model is (Ω,F,(F ) 0,P) filtered probability space. D e f i i t i o 1. Let X 0,X 1,... be a series of radom variables give o (Ω,F,(F ) 0,P). If X is F measurable for ay 0, the we will say that X = (X,F ) 0 collectio or just X = (X,F ) is a stochastic series. D e f i i t i o 2. If for X = (X,F ) stochastic series X is F 1 measurable as well, it will be writte as X = (X,F 1 ) assumig F 1 = F 0 ad X will be called predictable series. D e f i i t i o 3. Let X : Ω R, the X = (X,F ) stochastic series will be called martigale, if for ay 0: a) E X < ; b) E (X +1 F ) = X. From properties of coditioal expectatio it is obvious that the secod property of martigale defiitio ca be rephrased by the followig: A X +1 dp = X dp A
3 Gulya A. G. A Alterative Model for BousMalus System. 17 for all 0, A F ad specially if A = Ω, the it ca be writte that b*) [7] EX = EX 1 = = EX 1 = EX 0. Aggregate Premium as a Martigale. Let us cosider a portfolio of a isurace product. Suppose that a series of idepedet radom variables Y 1,Y 2,... are yearly aggregate claim losses of that portfolio, give o a (Ω,F,(F ) 0,P) filtered probability space, where F 0 = {/0,Ω} ad F = σ {Y 1,Y 2,...Y }. Suppose that Y 1,Y 2,... radom variables are so that EY < coditio is satisfies for ay Y 0 ad for all 1. Let deote P 0,P 1,... the radom variables, which describe yearly aggregate premium charge for that portfolio, where P 0 =cost is give ad the other members of that series are defied by the followig formulae: P = (1 α )P 1 + β Y, (1) where P is a aggregate premium collected for th year. Y is a aggregate claim loss for the give portfolio withi ( 1;) time iterval. It is ecessary to ote that Y is idepedet of P 1 for all 1. α = (α,f 1 ) 1 is a predictable series, which will be called a series of bous factors. β = (β,f 1 ) 1 is also a predictable series, which will be called a series of malus factors. L e m m a. The series P = (P,F ) costructed by the formulae (1) is a martigale if ad oly if: α P 1 = β EY (2) P r o o f. Necessity. Let series α ad β be F 1 measurable ad the series costructed by (1) be a martigale. Let calculate E (P F 1 ) usig F 1 measurability of α ad β series, idepedece of Y s, properties of coditioal expectatio ad the defiitio of martigale: E (P F 1 ) = (1 α )P 1 + β EY. For the (b) coditio of martigale defiitio it is ecessary that: β = α P 1 EY. It is obvious that this result is equivalet to (2). Sufficiecy. Let α ad β be F 1 measurable series ad the relatioship (2) holds. Let costruct a series of P accordig to (1). Substitutig (2) i (1) ad makig some rearragemets, we get: It is easy to see that EP = EP 0 <. As Y is idepedet of F 1, the P = P 1 + β (Y EY ). (3)
4 18 Proc. of the Yereva State Uiv., Phys. ad Math. Sci., 2015, 1, p E (P F 1 ) = P 1 + β (E (Y F 1 ) EY ) = 0. Offerig a isurace product, the isurace compay wishes to have a fiacially stable model. For that purpose it states its strategy for that risk portfolio ad defies a premium level. The aggregate premium received for that portfolio must be sufficiet to cover some level of aggregate claim with appropriate probability, which is defied i the compay s strategy. This meas that the compay states some Y c critical value of aggregate claim ad some ε probability ad defies the aggregate premium P, so that it is greater tha Y c critical value with 1 ε probability. It mathematically expresses as: P(P > Y c ) = 1 ε. (4) So Y c is a ε order quatile of radom variable Y. Fidig α ad β preseted i (1) is our mai purpose, but we ca ot do it with the help of Lemma oly, which gives their relatioship (2). Suppose that the distributio fuctio of aggregate claim is give Y F Y (x). Let s fid α ad β with the help of expressios (2), (4) ad fiacially stable ad optimal BMS cocepts. Reformig (4) ad takig ito cosideratio (1) we get: Or usig iverse distributio fuctio: where ( ) Yc (1 α )P F 1 Y =ε. β Y c (1 α )P 1 =F 1 Y β (ε), FY 1 (ε) = if{x R,F Y (x) ε}. Substitutig (2) ad makig some rearragemets, we get: ad β = F 1 Y (ε) EY (5) FY 1 EY. (6) (ε) EY P 1 Some Examples. Example 1. Suppose that the yearly aggregate claims of a isurace compay are distributed expoetially with λ rate: Y Exp(λ). Let s fid α ad β for this case. Usig the characteristics of a expoetial distributio fuctio we get: β = λ (P 1 Y c ) 1 + l(1 ε),
5 Gulya A. G. A Alterative Model for BousMalus System. 19 P 1 Y c P 1 (1 + l(1 ε)). Example 2. Suppose that the yearly aggregate claims of a isurace compay have a Pareto distributio with parameters µ ad λ (Y Pareto(µ,λ)). For fidig α ad β we eed the iverse of that distributio fuctio ad the expectatio. So, β = λ(1 ε) 1 µ λ µ µ 1 ). P 1 (λ (µ 1)(1 ε) µ 1 λ µ Coclusio. Formulae (1) preseted i this paper have theoretical ad practical sigificace as well. It ca be used as a model for premium calculatio i bousmalus system which elimiates (i iv) disadvatages of may BMS s. The model costructed accordig to the secod coditio of BMS is optimal. O the other had, the series of bous ad malus factors are calculated accordig to the first coditio of BMS optimality usig the cocept of martigale., Received R E F E R E N C E S 1. Lemaire J., Hogmi Zi. A Comparative Aalysis of 30 BousMalus Systems. // ASTIN Bulleti, 1994, v. 24, 2, p Holta J. Bous Made Easy. // ASTIN Bulleti, 1994, v. 24, 1, p Norberg R. Credibility Premium Plas which Make Allowace for Bous Huger. // Scadiavia Actuarial Joural, 1975, 2, p Lemaire J. Automobile Isurace Actuarial Models. Bosto: Kluwer Nijhoff, Doelly C. et al. Asymmetric Iformatio, Self Selectio ad Pricig of Isurace Cotracts: The Simple NoClaims Case. // Jourale of Risk ad Isurace, 2014, v. 81, p Dioe G. et al. A Review of Recet Theoretical ad Empirical Aalyses of Asymmetric Iformatio i Road Safety ad Automobile Isurace. // SSRN, 2012, 7. Shiryaev A.N. Probability 1. M.: MCCME, 2004, p (i Russia).
Nonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationSubject CT5 Contingencies Core Technical Syllabus
Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationInstitute of Actuaries of India Subject CT1 Financial Mathematics
Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationEntropy of bicapacities
Etropy of bicapacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uivates.fr JeaLuc Marichal Applied Mathematics
More informationODBC. Getting Started With Sage Timberline Office ODBC
ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.
More informationBond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond
What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixedicome security that typically pays periodic coupo paymets, ad a pricipal
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationInstallment Joint Life Insurance Actuarial Models with the Stochastic Interest Rate
Iteratioal Coferece o Maagemet Sciece ad Maagemet Iovatio (MSMI 4) Istallmet Joit Life Isurace ctuarial Models with the Stochastic Iterest Rate NiaNia JI a,*, Yue LI, DogHui WNG College of Sciece, Harbi
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More information, a Wishart distribution with n 1 degrees of freedom and scale matrix.
UMEÅ UNIVERSITET Matematiskstatistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 00409 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More information*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationFrance caters to innovative companies and offers the best research tax credit in Europe
1/5 The Frech Govermet has three objectives : > improve Frace s fiscal competitiveess > cosolidate R&D activities > make Frace a attractive coutry for iovatio Tax icetives have become a key elemet of public
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationPresent Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationRISK TRANSFER FOR DESIGNBUILD TEAMS
WILLIS CONSTRUCTION PRACTICE IBEAM Jauary 2010 www.willis.com RISK TRANSFER FOR DESIGNBUILD TEAMS DesigbuilD work is icreasig each quarter. cosequetly, we are fieldig more iquiries from cliets regardig
More informationValuing Firms in Distress
Valuig Firms i Distress Aswath Damodara http://www.damodara.com Aswath Damodara 1 The Goig Cocer Assumptio Traditioal valuatio techiques are built o the assumptio of a goig cocer, I.e., a firm that has
More informationChapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationPrediction Error of the Future Claims Component of Premium Liabilities under the Loss Ratio Approach
Predictio Error of the Future Claims Compoet of Premium Liabilities uder the Loss Ratio Approach by Jackie Li ABSTRACT I this paper we costruct a stochastic model ad derive approximatio formulae to estimate
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationsummary of cover CONTRACT WORKS INSURANCE
1 SUMMARY OF COVER CONTRACT WORKS summary of cover CONTRACT WORKS INSURANCE This documet details the cover we ca provide for our commercial or church policyholders whe udertakig buildig or reovatio works.
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationBaan Service Master Data Management
Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationA Note on Sums of Greatest (Least) Prime Factors
It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423432 HIKARI Ltd, www.mhikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos
More informationPage 1. Real Options for Engineering Systems. What are we up to? Today s agenda. J1: Real Options for Engineering Systems. Richard de Neufville
Real Optios for Egieerig Systems J: Real Optios for Egieerig Systems By (MIT) Stefa Scholtes (CU) Course website: http://msl.mit.edu/cmi/ardet_2002 Stefa Scholtes Judge Istitute of Maagemet, CU Slide What
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More informationEkkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 200617 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät LudwigMaximiliasUiversität Müche Olie at http://epub.ub.uimueche.de/940/
More informationExtreme changes in prices of electricity futures
Isurace Marets ad Compaies: Aalyses ad Actuarial Computatios, Volume 2, Issue, 20 Roald Huisma (The Netherlads), Mehtap Kilic (The Netherlads) Extreme chages i prices of electricity futures Abstract The
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationSolving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC
TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More informationPresent Values, Investment Returns and Discount Rates
Preset Values, Ivestmet Returs ad Discout Rates Dimitry Midli, ASA, MAAA, PhD Presidet CDI Advisors LLC dmidli@cdiadvisors.com May 2, 203 Copyright 20, CDI Advisors LLC The cocept of preset value lies
More informationPreSuit Collection Strategies
PreSuit Collectio Strategies Writte by Charles PT Phoeix How to Decide Whether to Pursue Collectio Calculatig the Value of Collectio As with ay busiess litigatio, all factors associated with the process
More informationPlugin martingales for testing exchangeability online
Plugi martigales for testig exchageability olie Valetia Fedorova, Alex Gammerma, Ilia Nouretdiov, ad Vladimir Vovk Computer Learig Research Cetre Royal Holloway, Uiversity of Lodo, UK {valetia,ilia,alex,vovk}@cs.rhul.ac.uk
More informationActuarial Models for Valuation of Critical Illness Insurance Products
INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 015 Actuarial Models for Valuatio of Critical Illess Isurace Products P. Jidrová, V. Pacáková Abstract Critical illess
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationNr. 2. Interpolation of Discount Factors. Heinz Cremers Willi Schwarz. Mai 1996
Nr 2 Iterpolatio of Discout Factors Heiz Cremers Willi Schwarz Mai 1996 Autore: Herausgeber: Prof Dr Heiz Cremers Quatitative Methode ud Spezielle Bakbetriebslehre Hochschule für Bakwirtschaft Dr Willi
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationVolatility of rates of return on the example of wheat futures. Sławomir Juszczyk. Rafał Balina
Overcomig the Crisis: Ecoomic ad Fiacial Developmets i Asia ad Europe Edited by Štefa Bojec, Josef C. Brada, ad Masaaki Kuboiwa http://www.hippocampus.si/isbn/9789616832328/cotets.pdf Volatility of
More informationhp calculators HP 12C Statistics  average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics  average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationFM4 CREDIT AND BORROWING
FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer
More informationEnhance Your Financial Legacy Variable Annuity Death Benefits from Pacific Life
Ehace Your Fiacial Legacy Variable Auity Death Beefits from Pacific Life 7/15 2017215B As You Pla for Retiremet, Protect Your Loved Oes A Pacific Life variable auity ca offer three death beefits that
More informationA Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as:
A Test of Normality Textbook Referece: Chapter. (eighth editio, pages 59 ; seveth editio, pages 6 6). The calculatio of p values for hypothesis testig typically is based o the assumptio that the populatio
More informationEnhance Your Financial Legacy Variable Annuities with Death Benefits from Pacific Life
Ehace Your Fiacial Legacy Variable Auities with Death Beefits from Pacific Life 9/15 2018815C FOR CALIFORNIA As You Pla for Retiremet, Protect Your Loved Oes A Pacific Life variable auity ca offer three
More information