Now here is the important step

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Now here is the important step"

Transcription

1 LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest" fuctioality; through the fuctio directly ad through the "aalysis tools" set of macros. These istructios cover usig "liest" as a spreadsheet fuctio. Usig liest i your spreadsheets is very easy, after you master the cocept of a array fuctio. Array fuctios are fuctios that while etered ito a sigle spreadsheet cell produce results that fill several cells. The steps outlied below take you set-by-step through the process of liear curve fittig. Step 1. Type i your data i two colums, oe for the x variables ad oe for the y. You ca use ay labels you would like. "x" ad "y" are used i the example at right for coveiece. Step 2. Select the area that will hold the output of the array formula. For "liest" you should drag to form a 5 row by 2 colum data array. Step 3. Click i the formula bar at the top of the scree. Now press the fuctio wizard butto. This butto is i the formula bar ad is labeled "fx". A two-part scroll box will appear; i the left scroll box click o "Statistical" ad i the right click o "LINEST". Next click o "Next>." The widow show below will appear. O your spreadsheet select the cells cotaiig the y values by

2 draggig i the origial spreadsheet usig the mouse. Click i the "kow_x's" dialog box, ad select the cells cotaig the x values. Type i "TRUE" i the last two dialog boxes. The first TRUE idicates that you wish the lie to be i the form y=mx+b with a o-zero itercept. The secod TRUE specifies that you wish the error estimates to be listed. The Fuctio Wizard dialog box should the appear as below. Step 4. Click o "Fiish." The formula bar should the appear as below, although your y ad x cell rages may be differet, of course. If the values are icorrect, you ca edit them as you would ormally. Step 5. Now here is the importat step. LINEST is a array fuctio, which meas that whe you eter the formula i oe cell, multiple cells will be used for the output of the fuctio. To specify that LINEST is a array fuctio do the followig. Highlight the etire formula, icludig the "=" sig, as show above. O the Macitosh, ext, hold dow the apple key ad press "retur." O the PC hold dow the Ctrl ad Shift keys ad press Eter. Excel adds "{ }" brackets aroud the formula, to show that it is a array. Note that you caot type i the "{ }" characters yourself; if you do Excel will treat the cell cotets as characters ad ot a formula. Highlightig the full formula ad typig the apple key or Ctrl + Shift ad "retur" is the oly way to eter a array formula. The least squares results should be prited as show below. The labels i the first ad last colum are't provided by the LINEST fuctio. We've added them to show the meaig of each cell. For example, the slope is 2.629±0.085 ad the itercept is ± 0.41.

3 x y slope itercept ± ± r s(y) F degrees of freedom regressio ss residual ss Step 6: You should ow evaluate the model that you have built. The r 2 value is ofte used for this purpose, but it is oly a rough idicator of the goodess of fit. The r 2 value is calculated from the total sum of squares, which is the sum of the squared deviatios of the origial data from the mea: total ss = (yi -yav) 2 ) ad the regressio sum of squares, which is the sum of the squared deviatios of the fit values from the mea: regressio ss = (y^i -y av ) 2 Givig: r 2 = regressio ss total ss = (y^ -y av ) 2 ( y i -y av ) 2 Values close to oe are good. The ucertaities i the slope ad itercept are much better for judgig the quality of the fit. I the example the ucertaity i the slope is 0.085/2.629*100 = 3% ad the ucertaity i the itercept is 12%, which is oly about two sigificat figures i each. The ucertaities i the slope ad itercept are ot as good as the r 2 of might have idicated! A eve better statistical test of the goodess of fit is to use the Fisher F-statistic. The F-statistic is the ratio of the variace i the data explaied by the liear model divided by the variace uexplaied by the model. The F-statistic is calculated from the regressio sum of squares ad the residual sum of squares. The residual sum of squares is the sum of the squared residuals: residual ss = (y i -y^i) 2 = r 2 i Dividig by the degrees of freedom, gives the variace of the y values

4 r 2 i s 2 y = 2 The regressio sum of squares, the residual sum of squares, ad the stadard deviatio of the y values, s(y) are all listed i the liest output. The F-statistic is the the ratio of the variaces: F= variace explaied variace uexplaied = regressio ss/v ( (y^i -y av ) 2 ) 1 /v1 residual ss/v = 2 ( (y i -y^i) 2 ) /v2 You use the F-statistic uder the ull hypothesis that the data is a radom scatter of poits with zero slope. Critical values of the F statistic are listed i stadard statistics texts, the CRC Hadbook, ad Quatitative Aalysis texts. If the F-statistic is greater tha the F-critical value, the ull hypothesis fails ad the liear model is sigificat. For the degrees of freedom, which are abbreviated i most tables as v 1 ad v 2,usev 1 =1adv 2 =-k,wherekis the umber of variables i the regressio aalysis icludig the itercept ad is the umber of data poits. The value for v 2 is listed as the degrees of freedom i the liest output. A small part of the F-table is show at right for a α value of 0.05, that is, 95% cofidece. For the example above, v 1 =1adv 2 =6 2=4.The F-critical value is The F-statistic for our example is , which is much greater tha the F-critical value. You are 95% sure that your data is ot a radom scatter of poits ad that the regressio is justified. F-critical values at α=0.05 v 2 F(v 1 =1) Step 7. You will ow eed to calculate the fit y values, y^ i, which are the values that lie o the lie at the give x values. You ca use the TREND array fuctio for this, but it is just as easy to simply calculate the fit y values directly. Start a ew colum ext to the y values. I this ew colum eter the formula that gives y^ i =mx i + b, with the slope ad itercept from the LINEST output:

5 Step 8. You ca ow use the "Chart Wizard" to help graph the results: first select the three colums i your spreadsheet. Iclude the colum labels. Click o the Chart Wizard ico: The cursor will chage shape idicatig that you are to drag o your spreadsheet where you wat the plot to appear. Remember for lab reports that charts should be at least half a page. The Wizard will the take you through settig up your graph. Do a scatter graph, ad choose the format that has plot symbols, but ot coectig lies. Step 9. You ow eed to replace the plottig symbols for the fit y values poits with coectig lies. Double click o oe of the fit y value data poits. The "Format Data Series" dialog box will appear. Chage the default settigs to o plot symbol (marker) ad coectig lies as show below: The plot should ow appear as at right. Charts ad spreadsheet cells ca easily be copied ad pasted ito Word documets LINEST Tutorial Plot y fit y x (uits?)

6 Addig Error Bars to Plots After you have your graph displayed you ca easily add error bars. Double click o oe of the plottig symbols for your data. The dialog box show below will appear. Click o the "Y Error Bars" tab. Click o the "Both" ico. Next click o the "Custom" butto. Next click i the "+" box ad the select the cell i your spreadsheet that cotais the s(y) value. Repeat this last step i the "-" box. Click o "OK" ad the error bars should appear o your plot. The fial chart, i all its glory looks like this: 16 LINEST Tutorial Plot y fit y x (uits?)

Desktop Management. Desktop Management Tools

Desktop Management. Desktop Management Tools Desktop Maagemet 9 Desktop Maagemet Tools Mac OS X icludes three desktop maagemet tools that you might fid helpful to work more efficietly ad productively: u Stacks puts expadable folders i the Dock. Clickig

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Using Excel to Construct Confidence Intervals

Using Excel to Construct Confidence Intervals OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio

More information

USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR

USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..

More information

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites Gregory Carey, 1998 Liear Trasformatios & Composites - 1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Confidence Intervals for Linear Regression Slope

Confidence Intervals for Linear Regression Slope Chapter 856 Cofidece Iterval for Liear Regreio Slope Itroductio Thi routie calculate the ample ize eceary to achieve a pecified ditace from the lope to the cofidece limit at a tated cofidece level for

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

7. Sample Covariance and Correlation

7. Sample Covariance and Correlation 1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Time Value of Money, NPV and IRR equation solving with the TI-86

Time Value of Money, NPV and IRR equation solving with the TI-86 Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with

More information

Spss Lab 7: T-tests Section 1

Spss Lab 7: T-tests Section 1 Spss Lab 7: T-tests Sectio I this lab, we will be usig everythig we have leared i our text ad applyig that iformatio to uderstad t-tests for parametric ad oparametric data. THERE WILL BE TWO SECTIONS FOR

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

x : X bar Mean (i.e. Average) of a sample

x : X bar Mean (i.e. Average) of a sample A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For

More information

One-sample test of proportions

One-sample test of proportions Oe-sample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011 15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

More information

ODBC. Getting Started With Sage Timberline Office ODBC

ODBC. Getting Started With Sage Timberline Office ODBC ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.

More information

This is arithmetic average of the x values and is usually referred to simply as the mean.

This is arithmetic average of the x values and is usually referred to simply as the mean. prepared by Dr. Adre Lehre, Dept. of Geology, Humboldt State Uiversity http://www.humboldt.edu/~geodept/geology51/51_hadouts/statistical_aalysis.pdf STATISTICAL ANALYSIS OF HYDROLOGIC DATA This hadout

More information

ACCESS - MATH July 2003 Notes on Body Mass Index and actual national data

ACCESS - MATH July 2003 Notes on Body Mass Index and actual national data ACCESS - MATH July 2003 Notes o Body Mass Idex ad actual atioal data What is the Body Mass Idex? If you read ewspapers ad magazies it is likely that oce or twice a year you ru across a article about the

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004 TIEE Teachig Issues ad Experimets i Ecology - Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

This document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.

This document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC. SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol

More information

Estimating the Mean and Variance of a Normal Distribution

Estimating the Mean and Variance of a Normal Distribution Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

Notes on Hypothesis Testing

Notes on Hypothesis Testing Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter

More information

Radicals and Fractional Exponents

Radicals and Fractional Exponents Radicals ad Roots Radicals ad Fractioal Expoets I math, may problems will ivolve what is called the radical symbol, X is proouced the th root of X, where is or greater, ad X is a positive umber. What it

More information

Descriptive statistics deals with the description or simple analysis of population or sample data.

Descriptive statistics deals with the description or simple analysis of population or sample data. Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small

More information

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 ) Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

More information

Descriptive Statistics Summary Tables

Descriptive Statistics Summary Tables Chapter 201 Descriptive Statistics Summary Tables Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical tables of meas, couts,

More information

How to set up your GMC Online account

How to set up your GMC Online account How to set up your GMC Olie accout Mai title Itroductio GMC Olie is a secure part of our website that allows you to maage your registratio with us. Over 100,000 doctors already use GMC Olie. We wat every

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

User manual and pre-programmed spreadsheets for performing revision analysis

User manual and pre-programmed spreadsheets for performing revision analysis User maual ad pre-programmed spreadsheets for performig revisio aalysis This documet describes how to perform revisio aalysis usig pre-programmed template spreadsheets based o data extracted from the OECD

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Mann-Whitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test)

Mann-Whitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test) No-Parametric ivariate Statistics: Wilcoxo-Ma-Whitey 2 Sample Test 1 Ma-Whitey 2 Sample Test (a.k.a. Wilcoxo Rak Sum Test) The (Wilcoxo-) Ma-Whitey (WMW) test is the o-parametric equivalet of a pooled

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Stat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.

Stat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median. Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

In order to print in ESC/P mode, the serial connection should be activated.

In order to print in ESC/P mode, the serial connection should be activated. Appedix: Serial Port Settigs Serial Port Settigs (RS-232C) The pi assigmets for the serial cables (RS-232C cables) which ca be used with this priter are show i the table below. You ca purchase the cables

More information

Measures of Central Tendency

Measures of Central Tendency Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

More information

Biology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships

Biology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships Biology 171L Eviromet ad Ecology Lab Lab : Descriptive Statistics, Presetig Data ad Graphig Relatioships Itroductio Log lists of data are ofte ot very useful for idetifyig geeral treds i the data or the

More information

Simple Linear Regression

Simple Linear Regression Simple Liear Regressio We have bee itroduced to the otio that a categorical variable could deped o differet levels of aother variable whe we discussed cotigecy tables. We ll exted this idea to the case

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

HCL Dynamic Spiking Protocol

HCL Dynamic Spiking Protocol ELI LILLY AND COMPANY TIPPECANOE LABORATORIES LAFAYETTE, IN Revisio 2.0 TABLE OF CONTENTS REVISION HISTORY... 2. REVISION.0... 2.2 REVISION 2.0... 2 2 OVERVIEW... 3 3 DEFINITIONS... 5 4 EQUIPMENT... 7

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Chapter 14 Nonparametric Statistics

Chapter 14 Nonparametric Statistics Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

Exploratory Data Analysis

Exploratory Data Analysis 1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

Engineering Data Management

Engineering Data Management BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average 5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Bio-Plex Manager Software

Bio-Plex Manager Software Multiplex Suspesio Array Bio-Plex Maager Software Extract Kowledge Faster Move Your Research Forward Bio-Rad cotiues to iovate where it matters most. With Bio-Plex Maager 5.0 software, we offer valuable

More information

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, P-value Type I Error, Type II Error, Sigificace Level, Power Sectio 8-1: Overview Cofidece Itervals (Chapter 7) are

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Statistical Inference: Hypothesis Testing for Single Populations

Statistical Inference: Hypothesis Testing for Single Populations Chapter 9 Statistical Iferece: Hypothesis Testig for Sigle Populatios A foremost statistical mechaism for decisio makig is the hypothesis test. The cocept of hypothesis testig lies at the heart of iferetial

More information

Robust and Resistant Regression

Robust and Resistant Regression Chapter 13 Robust ad Resistat Regressio Whe the errors are ormal, least squares regressio is clearly best but whe the errors are oormal, other methods may be cosidered. A particular cocer is log-tailed

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Sum of Exterior Angles of Polygons TEACHER NOTES

Sum of Exterior Angles of Polygons TEACHER NOTES Sum of Exterior Agles of Polygos TEACHER NOTES Math Objectives Studets will determie that the iterior agle of a polygo ad a exterior agle of a polygo form a liear pair (i.e., the two agles are supplemetary).

More information

9.8: THE POWER OF A TEST

9.8: THE POWER OF A TEST 9.8: The Power of a Test CD9-1 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based

More information

1 Hypothesis testing for a single mean

1 Hypothesis testing for a single mean BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely

More information

iprox sensors iprox inductive sensors iprox programming tools ProxView programming software iprox the world s most versatile proximity sensor

iprox sensors iprox inductive sensors iprox programming tools ProxView programming software iprox the world s most versatile proximity sensor iprox sesors iprox iductive sesors iprox programmig tools ProxView programmig software iprox the world s most versatile proximity sesor The world s most versatile proximity sesor Eato s iproxe is syoymous

More information

Unit 8: Inference for Proportions. Chapters 8 & 9 in IPS

Unit 8: Inference for Proportions. Chapters 8 & 9 in IPS Uit 8: Iferece for Proortios Chaters 8 & 9 i IPS Lecture Outlie Iferece for a Proortio (oe samle) Iferece for Two Proortios (two samles) Cotigecy Tables ad the χ test Iferece for Proortios IPS, Chater

More information

Correlation. example 2

Correlation. example 2 Correlatio Iitially developed by Sir Fracis Galto (888) ad Karl Pearso (8) Sir Fracis Galto 8- correlatio is a much abused word/term correlatio is a term which implies that there is a associatio betwee

More information

LECTURE 13: Cross-validation

LECTURE 13: Cross-validation LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

More information

Neolane Reporting. Neolane v6.1

Neolane Reporting. Neolane v6.1 Neolae Reportig Neolae v6.1 This documet, ad the software it describes, are provided subject to a Licese Agreemet ad may ot be used or copied outside of the provisios of the Licese Agreemet. No part of

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

BaanERP. BaanERP Windows Client Installation Guide

BaanERP. BaanERP Windows Client Installation Guide BaaERP A publicatio of: Baa Developmet B.V. P.O.Box 143 3770 AC Bareveld The Netherlads Prited i the Netherlads Baa Developmet B.V. 1999. All rights reserved. The iformatio i this documet is subject to

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS.

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. Name: Group Members: UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. EACH ACTIVITY HAS A COLOR THAT CORRESPONDS

More information