Research Article Sign Data Derivative Recovery


 Nancy Oliver
 3 years ago
 Views:
Transcription
1 Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov Louisiaa Accelerator Ceter, The Uiversity of Louisiaa at Lafayette, Lafayette, LA , USA Io Beam Modificatio ad aalysis Laboratory, Departmet of Physics, Uiversity of North Texas, Deto, TX 7603, USA Correspodece should be addressed to L. M. Housto, Received November 0; Accepted 9 November 0 Academic Editors: J. She ad F. Zirilli Copyright q 0 L. M. Housto et al. This is a ope access article distributed uder the Creative Commos Attributio Licese, which permits urestricted use, distributio, ad reproductio i ay medium, provided the origial work is properly cited. Give oly the sigs of sigal plus oise added repetitively or sig data, sigal amplitudes ca be recovered with miimal variace. However, discrete derivatives of the sigal are recovered from sig data with a variace which approaches ifiity with decreasig step size ad icreasig order. For idustries such as the seismic idustry, which exploits amplitude recovery from sig data, these results place costraits o processig, which icludes differetiatio of the data. While methods for smoothig oisy data for fiite differece calculatios are kow, sig data requires oisy data. I this paper, we derive the expectatio values of cotiuous ad discrete sig data derivatives ad we explicitly characterize the variace of discrete sig data derivatives.. Itroductio Sigbit recordig systems discard all iformatio o the detailed motio of the geophoe ad ask oly whether its output is positive or egative, whether it is goig up or comig dow. I a sigbit system, therefore, the sigal waveform is coverted ito a square wave. All amplitude iformatio is lost. It is well kow that, for a rage of sigaltooise ratios betwee about 0. ad, the fial result of sigbit recordig, after stackig, correlatig, ad other processig, looks o less good, to the eye, tha the result from fullfidelity recordig. This is cosidered to be as itriguig as it is surprisig. Alteratively, what we preset i this paper is evidece that the processig of sigbit data i.e., sig data ca be limited for certai cases relative to the processig of the fullbadwidth data. Model sigal appears as a oedimesioal fuctio, f v, ad oise as a radom variable, X. I idustries like the seismic idustry, measuremets of sigal, f v : R R
2 ISRN Applied Mathematics ad oise, X : Ω R, f v X are recorded for multiple iteratios of the oise. The average of the measuremet i.e., the expectatio E recovers the sigal E f v X f v.. If the oise is chose to be uiform, where ρ x is the desity fuctio such that ρ x a, a x a 0, else,. the the variace, E f v X E f v X, reduces to Var f v X 3 a..3 As reported by O Brie et al., it was empirically discovered that the average of the sigs of sigal plus oise recovers the sigal if the sigaltooise ratio is less tha or equal to oe. This ca be show mathematically 3 usig the sigum fuctio 4, sg x,x > 0, sg x,x <0, sg 0 0, E sg f v X sg f v x ρ x dx f f ρ x dx ρ x dx..4 Because ρ x is eve ad equals f f ρ x dx.5 E sg f v X f v a, f a, a..6 The variace is E sg f v X E sg f v X, reducig to Var sg f v X f v..7 a Cosequetly, the error is miimal whe the sigaltooise ratio is ear uity. The advatage of retaiig oly the sigs of sigal plus oise is the requiremet of approximately bit to record the iformatio as opposed to requirig 6 to 0 bits to record full amplitude data. The goal of this paper is to examie the recovery of derivatives from sig data i uiform oise. The issue is that recovery of sigal from sig data ca be exteded to recovery of derivatives of the sigal through the use of fiite differeces ad that recovery is costraied by the size of the variace. I this paper, we first examie sig data derivatives for both
3 ISRN Applied Mathematics 3 the discrete ad cotiuous case. We follow with a derivatio of variace. We coclude our aalysis with a computatioal test, which lists the true variace versus the variace estimate derived statistically for a test fuctio for selected step sizes.. Sig Data Derivatives Let the sigal f v be a th order differetiable fuctio. Based o sigal recovery from sig data, it ca be show that derivatives of the sigal are also recoverable. Usig the liearity of the expectatio value, Δ E v Δv sg f v X Δ v Δv E sg f v X,. where Δ v is the th order fiite differece operator with respect to the variable v 5. Ithis case, a ouit step size, Δv,isused e.g., 6. I detail, we ca write Δ v Δv sg f v X Δv i sg f v i Δv X i, i 0 i. where the otatio i represets the biomial coefficiet!/i! i! ad where X i X 0, X,...are idepedet represetatios of the radom variable, X. Substitutig from.6 ito. yields Δ E v Δv sg f v X Δ vf v a Δv..3 I the limit of ifiitesimal step size, this becomes a cotiuous derivative Δ lim E v Δv 0 Δv sg f v X d f v a dv.4 or d E dv sg f v X d f v a dv..5 Equatio.4 presets a alterative solutio to direct itegratio. For example, usig the rule, f x δ x dx f/ x δ x dx, 7, the itegral d 3 E dv sg f v X 3 d δ df 3 6 dδ du dv du df dv d f dv δ d3 f ρ x dx dv 3.6
4 4 ISRN Applied Mathematics loses all terms with derivatives of the delta fuctioal, reducig to ρ f d3 f dv 3. f x.7 I geeral, d E dv sg f v X ρ f d f dv d f f x a dv..8 It follows that the oise is restricted such that a f. 3. The Variace of Sig Data Derivatives Lettig S Δ v/ Δv sg f v X, compute the variace, E S E S.From.3,it follows that E S Δ vf/a Δv. E S ca be foud by iductively geeralizig from : E S b0 sg f Δv 4 0 X 0 b sg f X b sg f X Δv 4 b 0 b b b 0b f0 f f0 f b 0 b f f b b, 3. where f i f v i Δv, f k f v k Δv,adb i i i. These results geeralize to Var S Δv i 0 i Δv i / k i k fi f k Δ v f i k a Δv. 3. Sice f is differetiable, Δ vf/ Δv d f/dv <εad, thus, Δ vf/ Δv is fiite. Based o defiitio, Var S > 0. Cosequetly, lim Δv 0 Var S. Similarly, lim Var S, 0 < Δv <. The variace of a discrete sig derivative approaches ifiity with decreasig step size ad icreasig order. I additio, sice lim Δv 0 S d /dv sg f v X, Var d /dv sg f v X, so i the case of the cotiuous derivatives.5 the variace is ifiite. Use 3. to fid the variace of the first discrete sig derivative by lettig : Var S Δv f f
5 ISRN Applied Mathematics 5 Table : True variace, Var S, versus the variace estimate, Var N S, for the fuctio f si v, with the umber of iteratios N 000, a, ad v 3. Δv Var S Var N S Table : True variace, Var S, versus the variace estimate, Var N S, for the fuctio f si v,withthe umber of iteratios N 000, a, ad v 3. Δv Var S Var N S The variace of the secod discrete sig derivative is similarly computed as Var S 6 a f Δv 4 0 4f f Computatioal Tests These results ca be tested computatioally. Variace ca be estimated for N iteratios with Var N S N N S m E S, m 4. where the idex m desigates the sample umber. Cosider the test fuctio f si v. Usig the firstorder sig data derivative, compare Var S to Var N S, ad usig the secodorder sig data derivative, compare Var S to Var N S for N 000, a, ad v 3. The results are show i Tables ad. We illustrate the chage i variace i Figure, which shows three curves, each cosistig of N 000 iteratios. The first curve i blue shows the sig data recovery of the fuctio f si v or E S 0 for a adδv 0.5. The secod curve i gree shows the sig data recovery E S, which approximates f for a adδv 0.5. The third curve i red shows the sig data recovery E S, which approximates f for a adδv 0.5.
6 6 ISRN Applied Mathematics.5 ES ES ES Figure : The expectatio value curves for S / Δv i 0 i i sg f v i Δv X i or E S for 0,,, f v si v, a, ad Δv 0.5. The umber of iteratios i the expectatio values is N 000. E S 0 correspods to the blue curve ad approximates f, E S correspods to the gree curve ad approximates f,ade S correspods to the red curve ad approximates f. 5. Coclusios Recovery of sigal from the sigs of sigal plus oise icurs a variace, which oly depeds o the oise amplitude, while recovery of discrete derivatives from the sigs of sigal plus oise i.e., sig data icurs a variace which grows ifiite for ifiitesimal step size ad ifiite order. The applicatio problem is that sig data ca be used i the seismic idustry i processes which may differetiate the data. I such cases, if the step size or order of the fiite differece is ot costraied, the process will icur large variace ad covergece of the process will be miimized. While methods for smoothig oisy data for fiite differece calculatios are kow, sig data requires oisy data. I this paper, we have characterized the problem by explicitly evaluatig the variace of discrete sig data derivatives. Appedix Clarificatio of E S E S b0 sg f Δv 4 0 X 0 b sg f X b sg f X Δv 4 b 0 sg f 0 X 0 b0 sg f 0 X 0 b sg f X b sg f X b sg f X b0 sg f 0 X 0 b sg f X b sg f X b sg f X. A.
7 ISRN Applied Mathematics 7 This simply reduces to E S b Δv 4 0 b 0b E sg f 0 X 0 sg f X b b b 0 E sg f X sg f0 X 0 b b E sg f X sg f X b. A. I order to compute A., we must compute a itegral of the form E sg f i X sg f k X sg f i x i sg fk x k ρ xi ρ x k dx i dx k. The probability desities are both uiform:, a x a, ρ x i ρ x k a 0, else A.3 A.4 ad usig the results of.6, Cosequetly, A. reduces to E S b Δv 4 0 b b b f0 f 0b E sg f i X sg f k X f if k. A.5 f0 f b 0 b f f b b. A.6 Ackowledgmet Thaks are due to Gwedoly Housto for advice ad proofreadig. Refereces N. A. Astey, Seismic Prospectig Istrumets, Gebruder Bortraeger, Berli, Germay, d editio, 98. J. T. O Brie, W. P. Kamp, ad G. M. Hoover, Sigbit amplitude recovery with applicatios to seismic data, Geophysics, vol. 47, o., pp , L. M. Housto ad B. A. Richard, The HelmholtzKirchoff.5D itegral theorem for sigbit data, Geophysics ad Egieerig, vol., o., pp , R. A. Gabel ad R. A. Roberts, Sigals ad Liear Systems, Wiley, New York, NY, USA, 3rd editio, W. G. Kelley ad A. C. Peterso, Differece Equatios, Academic Press, Bosto, Mass, USA, D. M. Dubois, Computig aticipatory systems with icursio ad hypericursio, computig aticipatory systems, i Proceedigs of the st Iteratioal Coferece o Computig Aticipatory Systems CASYS 98, vol. 437 of AIP Coferece Proceedigs, pp. 3 9, The America Istitute of Physics, G. Arfke, Mathematical Methods for Physicists, Academic Press, New York, NY, USA, 966.
8 Advaces i Operatios Research Advaces i Decisio Scieces Applied Mathematics Algebra Probability ad Statistics The Scietific World Joural Iteratioal Differetial Equatios Submit your mauscripts at Iteratioal Advaces i Combiatorics Mathematical Physics Complex Aalysis Iteratioal Mathematics ad Mathematical Scieces Mathematical Problems i Egieerig Mathematics Discrete Mathematics Discrete Dyamics i Nature ad Society Fuctio Spaces Abstract ad Applied Aalysis Iteratioal Stochastic Aalysis Optimizatio
Modified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationConvention Paper 6764
Audio Egieerig Society Covetio Paper 6764 Preseted at the 10th Covetio 006 May 0 3 Paris, Frace This covetio paper has bee reproduced from the author's advace mauscript, without editig, correctios, or
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationBasic Measurement Issues. Sampling Theory and AnalogtoDigital Conversion
Theory ad AalogtoDigital Coversio Itroductio/Defiitios Aalogtodigital coversio Rate Frequecy Aalysis Basic Measuremet Issues Reliability the extet to which a measuremet procedure yields the same results
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationA Note on Sums of Greatest (Least) Prime Factors
It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423432 HIKARI Ltd, www.mhikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationPerfect Packing Theorems and the AverageCase Behavior of Optimal and Online Bin Packing
SIAM REVIEW Vol. 44, No. 1, pp. 95 108 c 2002 Society for Idustrial ad Applied Mathematics Perfect Packig Theorems ad the AverageCase Behavior of Optimal ad Olie Bi Packig E. G. Coffma, Jr. C. Courcoubetis
More informationSolutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork
Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the
More informationInstallment Joint Life Insurance Actuarial Models with the Stochastic Interest Rate
Iteratioal Coferece o Maagemet Sciece ad Maagemet Iovatio (MSMI 4) Istallmet Joit Life Isurace ctuarial Models with the Stochastic Iterest Rate NiaNia JI a,*, Yue LI, DogHui WNG College of Sciece, Harbi
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationPartial Di erential Equations
Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationA Faster ClauseShortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 4960 A Faster ClauseShorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
More informationChapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC
TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies
More informationA note on the boundary behavior for a modiﬁed Green function in the upperhalf space
Zhag ad Pisarev Boudary Value Problems (015) 015:114 DOI 10.1186/s136610150363z RESEARCH Ope Access A ote o the boudary behavior for a modiﬁed Gree fuctio i the upperhalf space Yulia Zhag1 ad Valery
More informationOverview on SBox Design Principles
Overview o SBox Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA 721302 What is a SBox? SBoxes are Boolea
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationStudy on the application of the software phaselocked loop in tracking and filtering of pulse signal
Advaced Sciece ad Techology Letters, pp.3135 http://dx.doi.org/10.14257/astl.2014.78.06 Study o the applicatio of the software phaselocked loop i trackig ad filterig of pulse sigal Sog Wei Xia 1 (College
More informationAutomatic Tuning for FOREX Trading System Using Fuzzy Time Series
utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationSystems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 6985295 Email: bcm1@cec.wustl.edu Supervised
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationReliability Analysis in HPC clusters
Reliability Aalysis i HPC clusters Narasimha Raju, Gottumukkala, Yuda Liu, Chokchai Box Leagsuksu 1, Raja Nassar, Stephe Scott 2 College of Egieerig & Sciece, Louisiaa ech Uiversity Oak Ridge Natioal Lab
More informationNEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,
NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationA Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 168040030 haupt@ieee.org Abstract:
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More informationMath 113 HW #11 Solutions
Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate
More informationON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE
Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More informationStochastic Online Scheduling with Precedence Constraints
Stochastic Olie Schedulig with Precedece Costraits Nicole Megow Tark Vredeveld July 15, 2008 Abstract We cosider the preemptive ad opreemptive problems of schedulig obs with precedece costraits o parallel
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationEntropy of bicapacities
Etropy of bicapacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uivates.fr JeaLuc Marichal Applied Mathematics
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationDAME  Microsoft Excel addin for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2
Itroductio DAME  Microsoft Excel addi for solvig multicriteria decisio problems with scearios Radomir Perzia, Jaroslav Ramik 2 Abstract. The mai goal of every ecoomic aget is to make a good decisio,
More informationEnhancing Oracle Business Intelligence with cubus EV How users of Oracle BI on Essbase cubes can benefit from cubus outperform EV Analytics (cubus EV)
Ehacig Oracle Busiess Itelligece with cubus EV How users of Oracle BI o Essbase cubes ca beefit from cubus outperform EV Aalytics (cubus EV) CONTENT 01 cubus EV as a ehacemet to Oracle BI o Essbase 02
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationEvaluating Model for B2C E commerce Enterprise Development Based on DEA
, pp.180184 http://dx.doi.org/10.14257/astl.2014.53.39 Evaluatig Model for B2C E commerce Eterprise Developmet Based o DEA Weli Geg, Jig Ta Computer ad iformatio egieerig Istitute, Harbi Uiversity of
More informationThe Gompertz Makeham coupling as a Dynamic Life Table. Abraham Zaks. Technion I.I.T. Haifa ISRAEL. Abstract
The Gompertz Makeham couplig as a Dyamic Life Table By Abraham Zaks Techio I.I.T. Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 32000, Haifa, Israel Abstract A very famous
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationCOMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS 2 CONTROL CHART FOR THE CHANGES IN A PROCESS
COMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat
More informationA Multifractal Wavelet Model of Network Traffic
A Multifractal Wavelet Model of Network Traffic Proect Report for ENSC80 Jiyu Re School of Egieerig Sciece, Simo Fraser Uiversity Email: re@cs.sfu.ca Abstract I this paper, a ew Multifractal Wavelet Model
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationAP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationChatpun Khamyat Department of Industrial Engineering, Kasetsart University, Bangkok, Thailand ocpky@hotmail.com
SOLVING THE OIL DELIVERY TRUCKS ROUTING PROBLEM WITH MODIFY MULTITRAVELING SALESMAN PROBLEM APPROACH CASE STUDY: THE SME'S OIL LOGISTIC COMPANY IN BANGKOK THAILAND Chatpu Khamyat Departmet of Idustrial
More informationFOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationFloating Codes for Joint Information Storage in Write Asymmetric Memories
Floatig Codes for Joit Iformatio Storage i Write Asymmetric Memories Axiao (Adrew Jiag Computer Sciece Departmet Texas A&M Uiversity College Statio, TX 77843311 ajiag@cs.tamu.edu Vaske Bohossia Electrical
More informationThe Canadian Council of Professional Engineers
The Caadia Coucil of Professioal Egieers Providig leadership which advaces the quality of life through the creative, resposible ad progressive applicatio of egieerig priciples i a global cotext Egieerig
More informationCantilever Beam Experiment
Mechaical Egieerig Departmet Uiversity of Massachusetts Lowell Catilever Beam Experimet Backgroud A disk drive maufacturer is redesigig several disk drive armature mechaisms. This is the result of evaluatio
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationSwaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps
Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationA sharp TrudingerMoser type inequality for unbounded domains in R n
A sharp TrudigerMoser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The TrudigerMoser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC
8 th Iteratioal Coferece o DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a i a, M a y 25 27, 2 6 ADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC Vadim MUKHIN 1, Elea PAVLENKO 2 Natioal Techical
More informationTIGHT BOUNDS ON EXPECTED ORDER STATISTICS
Probability i the Egieerig ad Iformatioal Scieces, 20, 2006, 667 686+ Prited i the U+S+A+ TIGHT BOUNDS ON EXPECTED ORDER STATISTICS DIMITRIS BERTSIMAS Sloa School of Maagemet ad Operatios Research Ceter
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationHeavy Traffic Analysis of a Simple Closed Loop Supply Chain
Heavy Traffic Aalysis of a Simple Closed Loop Supply Chai Arka Ghosh, Sarah M. Rya, Lizhi Wag, ad Aada Weerasighe April 8, 2 Abstract We cosider a closed loop supply chai where ew products are produced
More informationQuadrat Sampling in Population Ecology
Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may
More information