A Mathematical Perspective on Gambling


 Michael Oliver
 2 years ago
 Views:
Transcription
1 A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal distributios, the Cetral Limit Theorem, Bayesia aalysis, ad statistical hypothesis testig. These topics are applied to gamblig games ivolvig dice, cards, ad cois.. Itroductio. I 65, the wellkow gambler the Chevalier de Mere posed a set of problems cocerig gamblig odds to Blaise Pascal. These problems iitiated a series of letters betwee Pascal ad Pierre de Fermat, which established the basis of moder probability theory [, pp. 9 53]. The Chevalier de Mere was a astute gambler who observed a slight advatage i attemptig to roll a 6 i four tosses of a sigle die ad a slight disadvatage i attemptig to throw two 6s, a result referred to as a double6, i twetyfour tosses of two dice [, p. 89]. De Mere oticed that the proportio of the umber of tosses to the umber of possible outcomes is the same for both games :6 for the sigledie game, ad :36 for the doubledie game. Thus he cocluded that the odds of wiig each game should be equal. Yet from his experiece of playig these two games, he felt cofidet that there was a advatage to the sigledie game ad a disadvatage to the doubledie game. Thus he asked Pascal for a explaatio for this discrepacy. I their correspodece, Pascal ad Fermat laid the groudwork for the cocepts of sample space, probabilistic evets, expectatios, ad the biomial distributio. Sectio of this paper itroduces the ideas of sample spaces ad evets, ad applies these cocepts to de Mere s die games, poker, ad coitossig games. The work i this sectio cofirms de Mere s ituitio that the sigledie game has a slight advatage p = ad the doubledie game has a slight disadvatage p = 0.9. Sectio 3 defies expectatios, ad fids the expected payoff for a sigle trial of the games discussed i Sectio. Sectio presets the biomial ad ormal distributios, ad explais how these distributios ca be used to calculate the odds of makig a profit i a large umber of trials of these games. Fially, Sectio 5 develops the cocepts of Bayesia aalysis ad statistical hypothesis testig, ad shows how these methods ca be used to calculate the likelihood that a give result came from a particular distributio.. Sample Spaces ad Evets. A sample space Ω is a set of all possible outcomes of a model of a experimet [, p. 6]. This set is fiest grai ; i other words, all distict experimetal outcomes are listed separately. I additio, the elemets i the set are mutually exclusive ; each trial of the experimet ca result i oly oe of the possible outcomes. The words outcome ad evet are commoly iterchaged; however, i probability theory these two words have distict meaigs. A evet is a subset of possible outcomes. As a example, a sigle roll of a die is a experimet with 3
2 MIT Udergraduate Joural of Mathematics six possible outcomes, correspodig to the faces that lad up. Rollig a eve umber is a evet that icludes the experimetal outcomes,, ad 6. The coditioal probability is the probability of Evet A give Evet B, ad is defied by P A B P A B = P B for P B > 0; see [, pp. 3 6]. Evet B is a coditioig evet, ad redefies the sample space for Evet A. This ew sample space icludes oly the outcomes i which B occurs. Evets A ad B are called idepedet if the occurrece of oe evet does ot affect the likelihood of the occurrece of the other [, p. 7]. More formally, Evets A ad B are idepedet if P A B = P A ad P B A = P B. The cocepts of coditioal probability ad idepedece are useful for Bayesia aalysis, discussed i Sectio 5. The idea of idepedece is also importat for the biomial distributio, discussed i Sectio. We ow cosider three examples of sample spaces ad probabilities. First we discuss die games. A sigle roll of a die has six possible outcomes, correspodig to the faces that lad up. If the die is fair, the the probability of ay particular face ladig up is /6. More formally, the sample space Ω is the set {,, 3,, 5, 6}, ad the probability is P X = i = /6. Games that ivolve rollig two dice have thirtysix possible outcomes sice the roll of each die has six possible outcomes. I these games, the dice are distiguishable; therefore, the outcomes i, j ad j, i are couted separately. More formally, the sample space Ω is the set of pairs i, j where i, j {,, 3,, 5, 6}, ad the probability is PX=i,Y=j =/36. The first game that the Chavalier de Mere discussed with Pascal ivolves rollig a die four times [, pp ]. If the die lads o a 6 at least oce i four trials, the the gambler wis. If the die ever lads o a 6 i the four trials, the the gambler loses. The four tosses are idepedet. Hece, the probability of ot gettig a 6 i four trials is 5/6, or It follows that the probability of gettig at least oe 6 i four trials is equal to 0.83, or The secod game discussed by Pascal ad de Mere ivolves simultaeously rollig two dice twetyfour times [, pp ]. If both dice lad o 6, a outcome called a double6, the the gambler wis the bet. If a double6 does ot occur, the the gambler loses the bet. As i the first game, the trials are idepedet. Hece, the probability of ot gettig a double6 i twetyfour trials is 35/36, or It follows that the probability of gettig a double6 i twetyfour trials is equal to , or 0.9. De Mere oticed the slight advatage of bettig o the first game ad the slight disadvatage of bettig o the secod game. To discer these small difffereces, de Mere must have played these games a large umber of times. A estimate for this umber is obtaied by usig statistical hypothesis testig i Sectio 5. As a secod example of sample spaces ad probabilities, we cosider card games. A stadard deck of cards cosists of fiftytwo cards, divided ito four suits ad thirtee raks [, pp. 7 5]. I the simple case of drawig oe card from the deck, the sample space Ω is the fiftytwo possible cards, ad the probability of gettig ay particular card is /5. Most card games ivolve hads of cards i which the order of the cards does ot matter. The umber of possible hads is the biomial coefficet x, where is the
3 A Mathematical Perspective o Gamblig 5 size of the deck of cards ad x is the size of a had. The biomial coefficiet x is defied by! = x x x! x!. The symbol x is read choose x. I a stadard poker game, each player receives a had of five cards [, p. 5 55]. The sample space Ω for poker is the set of all possible fivecard hads, i which order is irrelevat. The size of this sample space is 5 5, or, 598, 960. Thus the probability of gettig a had with five particular cards is /, 598, 960, or The probability of gettig a particular type of had is computed as follows: Cout the umber of ways this type of had ca occur, the divide this result by the total umber of hads. For example, a straight flush is a ru of five cosecutive cards i a particular suit. A straight flush ca occur i ay of the four suits, ad ca begi i te possible positios, through Jack. Thus, there are forty ways to obtai a staight flush. The probability of gettig a straight flush is, therefore, 0/, 598, 960, or As aother example, a full house cosists of three of a kid ad oe pair. There are 3, or 3, possible raks for the three of a kid ad 3, or, possible combiatios of the four cards of this rak. There are, or, remaiig raks for the pair ad, or 6, possible combiatios of the four cards of this rak. Thus, the probability of gettig a full house is 3 3 3, 7 5 =, 598, 960 = Table  lists possible poker hads, the umber of ways i which they ca occur, ad their probabilities of occurrig; it was take from [, p. 53]. Table  A table of poker hads ad their probabilities HAND NUMBER of WAYS PROBABILITY Straight flush Four of a kid Full House 3, Flush 5, Straight 0, Three of a kid 5, Two pair 3, Oe pair,098, Worse tha oe pair,30, TOTALS =, 598, As the last example of sample spaces ad probabilities, we discuss coitossig games. The sample space Ω for a sigle toss of a coi cosists of two outcomes: heads H, ad tails T. If the coi is fair, the the probability of heads ad the probability of tails are both /. The sample space for a game cosistig of five tosses of a coi is 5, or 3,
4 6 MIT Udergraduate Joural of Mathematics sequeces of the form X X X 3 X X 5, where each X i is H with probability /, or T with probability /. The tosses are idepedet. Therefore, the probability of gettig o heads i five tosses is / 5, or Cosequetly, the probability of gettig at least oe head i five tosses of a fair coi is 0.035, or Cosider aother game that cosists of attemptig to toss exactly three heads i four trials. The sample space for this game is, or 6, sequeces of the form X X X 3 X, where each X i is H with probability /, or T with probability /. The evet of gettig exactly three heads correspods to the followig sequeces: HHHT, HHTH, HTHH, ad THHH. Thus, the probability of wiig this bet is /, or 0.5. Aother expressio for this probability is 3 /3 /, which is iterpreted as the umber of ways to choose three of the four positios for the heads multiplied by the probability of gettig three heads ad the probability of gettig oe tail. 3. Expectatios. For a iteger radom variable X, the expectatio EX is defied to be the sum of all possible experimetal values of the variable weighted by their probabilities [5, pp ]. The expectatio is writte as EX = P X =. The expectatio of a radom variable is its mea or expected value. Oe applicatio of the cocept of expectatio is to formalize the idea of the expected payoff of a game. For a iteger radom variable X with mea EX = µ, the variace σ X is defied by the formula, σ X = E[X µ ], see [3, p. 9]. The variace ca also be expressed as σ X = EX µ ; this equatio is proved i [3, p. 9]. The variace measures the spread of the distributio. The stadard deviatio σ X is the positive square root of the variace. This cocept is used i Sectios ad 5. We ow compute the expected payoffs of the games discussed i Sectio. First we fid the expected payoffs for die games. Suppose a gambler gais oe dollar for wiig a game, ad gives up oe dollar for losig. I de Mere s sigledie game, the expected payoff is EX = $ $ 0.83 = $0.035, or approximately four cets. I his doubledie game, the expected payoff is EX = $ $ = $0.07, or approximately a twocet loss. Next we compute the expected payoff for casio poker. Suppose a gambler wages a oedollar bet o a fivecard had. The gambler s payoff depeds o the type of had, with a rare had such as a straight flush resultig i a higher payoff tha a more commo had such as oe pair. Table 3 provides oe possible payoff scheme. Accordig to this scheme, the expected earigs for oe game are EX = $ $ $ $ $ $ $ $ $ = $ ,
5 A Mathematical Perspective o Gamblig 7 or approximately a fivecet loss. Table 3 A table of poker hads ad their payoffs HAND PROBABILITY PAYOFF Straight flush $000 Four of a kid $500 Full House 0.00 $50 Flush $5 Straight $0 Three of a kid 0.09 $5 Two pair $ Oe pair $0 Worse tha oe pair $ TOTAL Fially, we fid the expected payoffs for coitossig games. Suppose a gambler wis oe dollar for tossig heads ad loses oe dollar for tossig tails with a fair coi. His expected payoff is EX = $ $ 0.5 = 0. Suppose he bets oe dollar o gettig exactly three heads i four tosses. expected payoff is The his EX = $ $ 0.75 = $0.50, or a fiftycet loss.. Repeated Trials. The previous sectio explored a gambler s expected earigs o a sigle trial of a game. A gambler may, however, wat to calculate his expected earigs if he plays the game may times. This sectio presets methods for calculatig the expected payoff ad estimatig the chaces of makig a profit o may repetitios of a game. Cosider the problem of calculatig the probability of wiig t trials out of, whe the probability of wiig each trial is set [, pp. 6]. The trials ca be expressed as idepedet, idetically distributed radom variables X,, X. Each X i has two outcomes:, which represets a wiig trial, ad occurs with probability p, ad 0, which represets a losig trial, ad occurs with probability p. The expectatio for each X i is EX i = p + 0 p = p. The radom variable S represets the umber of wiig trials i a series of trials, ad is give by S = X + X + + X.
6 8 MIT Udergraduate Joural of Mathematics Therefore, the expected umber of wiig trials is ES = EX + X + + X = EX + EX + + EX = EX i = p, sice the radom variables X i are idepedet ad idetically distributed. Furthermore, the probability of wiig exactly t trials out of ca be calculated by multiplyig the umber t of ways to choose t of the trials to be successes by the probability p t of wiig t games, ad the probability p t of losig t games. This is the biomial distributio, ad is defied by P S = t = t p t p t, for 0 t. As calculated above, the expectatio of S is Moreover, the variace of S is σ S ES = p. = p p. The probability of wiig at least t games out of is the sum of the probabilities of wiig t through games sice these evets are mutually exclusive. This probability is deoted by P S t = i=t i p i p i, for 0 t. As a example, cosider de Mere s sigledie game, i which the probability of success o each trial is I thirty trials, the expected umber of successes is ES 30 = = 5.5, which rouds to 6. The probability of wiig exactly ietee trials out of thirty is 30 P S 30 = 9 = = Furthermore, the probability of wiig at least ietee trials out of thirty is P S 30 9 = 30 i= i i = The ormal, or Gaussia, distributio is importat because it describes may probabilistic pheomea [, pp. 07 ]. Cosider a ormal radom variable w with mea µ ad variace σ. The ormal distributio is defied by P w a = a σ π e w µ/σ / dw.
7 A Mathematical Perspective o Gamblig 9 A stadard ormal radom variable z has µ = 0 ad variace σ =. The stadard ormal distributio is defied by P z a = a π e z / dz = Φa. Most probability ad statistics textbooks provide tables for Φx; for example, see [3, pp ] ad [5, p. 77]. The Cetral Limit Theorem states that the probability distributio for a sum S of idepedet, idetically distributed radom variables X i approaches the ormal distributio as the umber of radom variables goes to ifiity [, pp. 5 9]. This result is remarkable as it does ot deped o the distributio of the radom variables. The Cetral Limit Theorem states that t ES lim P S t = Φ Hece, for fiite, but large values of, the followig approximatio holds: t ES P S t Φ. For example, i de Mere s sigledie game, the radom variable S 30 represets the umber of wiig games out of thirty. The radom variable σ S z = S 30 ES 30 σ S30 is approximately stadard ormal. Therefore, the probability of wiig at least ietee trials out of thirty is σ S. P S 30 9 = P S ES = P z σ S Φ = = 0.3. This probability provides a close estimate of the actual value 0.388, which was foud usig the biomial distributio. Most probability ad statistics textbooks provide graphs of the biomial ad ormal distributios for various values of ; for example, see [, p. 7] ad [3, p. 7]. The graphs idicate that as, the ormal distributio forms a good approximatio for the biomial distributio. 5. Bayesia Aalysis ad Statistical Hypothesis Testig. So far we have looked oly at the probabilities of observig particular outcomes ad the expected payoffs for various games with kow distributios. This last sectio focuses o estimatig the likelihood that a observed outcome came from a particular distributio. For example, a gambler tosses fortyoe heads i oehudred tosses of a coi, ad wishes to kow
8 30 MIT Udergraduate Joural of Mathematics if the coi is fair. Bayesia aalysis ad statistical hypothesis testig are two methods for determiig the likelihood that a outcome came from a particular distributio. Bayesia aalysis tests the likehlihood that a observed outcome came from a particular probability distributio by treatig ukow parameters of the distributio as radom variables [, pp ]. These ukow parameters have their ow probability distributios, which ofte are derived from the assumed probability distributio of the outcome. The derivatios use Bayes Theorem, which states that P A i B = P B A i P A i N i= P B A i P A i. For example, let θ be a ukow parameter that has two possible values, correspodig to the evets A = {θ = θ } ad A = {θ = θ }. The a priori probabilities for A ad A are P A ad P A. They do ot take the iformatio gaied from the occurrece of evet B ito accout. Evet B is a observed outcome, which has a assumed probability ditributio that depeds o the ukow parameter θ. Cosider the evet A = {θ = θ }. By Bayes Theorem, the probability of A give B is P A B = P B A P A P B A P A + P B A P A. Bayesia aalysis ca be applied to the example of the gambler who tossed fortyoe heads i oehudred coi tosses, ad wishes to kow if his coi is fair. Assume that the gambler has two cois, a fair coi p = / ad a biased coi p = /. Evet A correspods to his selectig the fair coi, ad Evet A correspods to his selectig the biased coi. He radomly selects the coi; therefore, the a priori probabilites, P A ad P A, are both equal to /. Evet B is the observed outcome that S 00 =. By Bayes Theorem, the probability that the gambler used the fair coi is P p = S 00 = = P S 00 = p = = 00 = P S 00 = p = P p = P p = + P S00 = p = P p = Bayesia aalysis combies prior kowledge of the ukow parameter i this case, the a priori probabilities P p = / ad P p = / with experimetal evidece to form a better estimate of this parameter. I statistical hypothesis testig, a observed outcome is compared to a assumed model to determie the likelihood that the outcome came from the model [5, pp ]. If the outcome deviates sigificatly from the expected outcome of the assumed model, the it is ulikely that the result came from this model. Statistical hypothesis testig, therefore, ivolves determig what level of deviatio from the expected outcome is sigificat. Cosider a radom variable Y that has a probability distributio that relies o the parameter θ. This method tests a ull hypothesis H 0 : θ = θ 0 agaist a alterative
9 A Mathematical Perspective o Gamblig 3 hypothesis H, which may take the form θ < θ 0, θ > θ 0, or θ θ 0 ; see [3, pp ]. A sigificace level α is chose for the test, ad a critical value c that depeds o α is calculated. The critical regio cosists of the critical value, ad all values that are more extreme i the directio of the alterative hypothesis. If the observed outcome of Y falls withi the critical regio, the H 0 is rejected ad H is accepted. However, if the observed outcome of Y does ot fall withi the critical regio, the H 0 is accepted. The coitossig example ca be worked out usig statistical hypothesis testig. The hypothesis H 0 : p = / is tested agaist a alterative hypothesis H : p /. I the model where H 0 is true, the expectatio is ES 00 = 00 / = 50, ad the variace is σ S 00 = 00 / / = 5. By the Cetral Limit Theorem, the variable S 00 has a almost ormal distributio. Therefore, the variable z = S has a approximately stadard ormal distributio. Thus, P.96 S = 0.95, or P 0. S = Sice the observed outcome, S 00 =, falls withi this iterval, H 0 is accepted at the α = 0.05 sigificace level. The sigificace level is the probability that the assumed model H 0 is erroeously rejected. This error is commoly referred to as a type I error. Likewise, a type II error is the evet that the assumed model H 0 is erroeously accepted. The probability of this type of error is deoted as β. Ideally, we wat α ad β to be as small as possible; however, decreasig both ivolves icreasig the sample size. For example, whe H 0 : p = / is tested agaist H : p = / i a coitossig model, H 0 will be rejected if the umber of heads S 00 is below some value c, kow as the critical value. I this case, α represets the probability that S 00 is less tha c whe p = /, ad β represets the probability that S 00 is greater tha c whe p = /. For istace, if α = 0.00 ad β = 0.00, this critical value c ad the sample size ca be foud by solvig the equatios for α ad β. Namely, α = 0.00 = P S c p = S = P c = P z z Because z 0.00 = 3.090, it follows that Likewise, c β = 0.00 = P S c 3.090, ad c p = = P Because z 0.00 = 3.090, it follows that c 3 S , ad c c 3 Combiig Expressios 5 ad 5 yields that = P z z
10 3 MIT Udergraduate Joural of Mathematics Thus, is equal to 3.8, which is rouded to 33, ad c is equal to 8.6, which is rouded to 9. To reduce the probabilities of Type I ad Type II errors, α ad β, to 0.00, the umber of trials must be icreased to 33. As metioed i the Itroductio, the Chevalier de Mere oticed that his bet o the doubledie game was less tha chace [, pp. 83 8]. Some of the techiques i this last sectio ca provide a estimate for the umber of trials de Mere must have played to legitimately claim that the probability of success was ideed less tha /. Assume that de Mere played the game a large umber of times, ad foud that he rolled a double6 i 9% of the games. To determie whether he could legitimately accept that p < /, de Mere would eed to test the hypothesis H 0 : p = / agaist the hypothesis H : p < /. Let Y be the umber of times de Mere rolled a double6 i trials. From the Cetral Limit Theorem, it follows that Y has a almost ormal distributio. Thus, the variable z = Y p p p = Y p p p has a approximate stadard ormal distributio. For a 0.05 sigificace level, it follows that If de Mere estimated that Y Cosequetly, Y P is 9 00, the 9 00 z 0.05 = 0.05 = α. z 0.05 =.65. = To legitimately accept the hypothesis H : p < / for the doubledie game, de Mere must have played 6765 games. Refereces [] David, F. N., Games, Gods ad Gamblig, Hafer Publishig Compay, 96. [] Drake, A. W., Fudametals of Applied Probability Theory, McGrawHill, Ic., 988. [3] Hogg, R. V., ad Tais, E. A., Probability ad Statistical Iferece, PreticeHall, 997. [] Packel, E. W., The Mathematics of Games ad Gamblig, The Mathematical Associatio of America, 98. [5] Rota, G. C., with Baclawski, K., Billey, S., ad Sterlig, G., Itroductio to Probability Theory, Third Prelimiary Editio, Birkhauser Press, 995.
Key Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationNotes on Hypothesis Testing
Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More information9.8: THE POWER OF A TEST
9.8: The Power of a Test CD91 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationUnit 20 Hypotheses Testing
Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationA PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING
A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING MATTHEW ACTIPES Abstract. This paper begis by defiig a probability space ad establishig probability fuctios i this space over discrete radom variables.
More informationTIEE Teaching Issues and Experiments in Ecology  Volume 1, January 2004
TIEE Teachig Issues ad Experimets i Ecology  Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More information1 Hypothesis testing for a single mean
BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationStatistical Inference: Hypothesis Testing for Single Populations
Chapter 9 Statistical Iferece: Hypothesis Testig for Sigle Populatios A foremost statistical mechaism for decisio makig is the hypothesis test. The cocept of hypothesis testig lies at the heart of iferetial
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationsum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by
Statistics Module Revisio Sheet The S exam is hour 30 miutes log ad is i two sectios Sectio A 3 marks 5 questios worth o more tha 8 marks each Sectio B 3 marks questios worth about 8 marks each You are
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationBASIC STATISTICS. Discrete. Mass Probability Function: P(X=x i ) Only one finite set of values is considered {x 1, x 2,...} Prob. t = 1.
BASIC STATISTICS 1.) Basic Cocepts: Statistics: is a sciece that aalyzes iformatio variables (for istace, populatio age, height of a basketball team, the temperatures of summer moths, etc.) ad attempts
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationJoint Probability Distributions and Random Samples
STAT5 Sprig 204 Lecture Notes Chapter 5 February, 204 Joit Probability Distributios ad Radom Samples 5. Joitly Distributed Radom Variables Chapter Overview Joitly distributed rv Joit mass fuctio, margial
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationChapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing
Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationDescriptive statistics deals with the description or simple analysis of population or sample data.
Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationSequences II. Chapter 3. 3.1 Convergent Sequences
Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationChapter 5 Discrete Probability Distributions
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide Chapter 5 Discrete Probability Distributios Radom Variables Discrete Probability Distributios Epected Value ad Variace Poisso Distributio
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationApproximating the Sum of a Convergent Series
Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More information1 Introduction to reducing variance in Monte Carlo simulations
Copyright c 007 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a uow mea µ = E(X) of a distributio by
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationStandard Errors and Confidence Intervals
Stadard Errors ad Cofidece Itervals Itroductio I the documet Data Descriptio, Populatios ad the Normal Distributio a sample had bee obtaied from the populatio of heights of 5yearold boys. If we assume
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More informationDiscrete Random Variables and Probability Distributions. Random Variables. Chapter 3 3.1
UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationTrading the randomness  Designing an optimal trading strategy under a drifted random walk price model
Tradig the radomess  Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore
More informationSum and Product Rules. Combinatorics. Some Subtler Examples
Combiatorics Sum ad Product Rules Problem: How to cout without coutig. How do you figure out how may thigs there are with a certai property without actually eumeratig all of them. Sometimes this requires
More information