Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 2 Remodulization of Congruences Proceedings NCUR VI. è1992è, Vol. II, pp. 1036í1041. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker Department of Mathematics University of Utah Introduction Remodulization introduces a new method applied to congruences and systems of congruences. We prove the Chinese Remainder Theorem using the remodulization method and establish an eæcient method to solve linear congruences. The following is an excerpt of Remodulization of Congruences and its Applications ë2ë. Deænition 1 If a and b are integers, then a mod b = fa; a æ b; a æ 2b;:::g. We write x ç amodb, meaning that x is an element of the set a mod b. The common terminology is to say that x is congruent toa modulo b. These sets are frequently called residue classes since they consist of those numbers which, upon division by b, leave a remainder èresidueè of a. 1

2 CHAPTER 2. REMODULIZATION OF CONGRUENCES 2 Deænition 2 If a1;a2;::: ;a n ;b are integers, then ëa1;a2;::: ;a n ëmodb =èa1 mod bè ë èa2 mod bè ëæææëèa n mod bè : Theorem 1 Suppose a, b, andc are integers and cé0, then a mod b =ëa; a + b;::: ;a+èc, 1èbë modcb : Proof. We write a mod b = f a, 2cb; a, è2c, 1èb; ::: a, èc +1èb a, cb; a, èc, 1èb; ::: a, b a; a + b; ::: a +èc, 1èb; a + cb; a +èc +1èb; ::: a +è2c, 1èb; a +2cb; a +è2c +1èb; ::: a +è3c, 1èb; g and rewriting the rows a mod b = f a, 2cb; a + b, 2cb; ::: a +èc, 1èb, 2cb a, cb; a + b, cb; ::: a +èc, 1èb, cb a; a + b; ::: a +èc, 1èb; a + cb; a + b + cb; ::: a +èc, 1èb + cb; a +2cb; a + b +2cb; ::: a +èc, 1èb +2cb; g Then, forming unions on the extended columns, the result follows. We refer to this process as remodulization by a factor c. Suppose it is desired to express 1 mod 2 in terms of modulo 8, then, 1 mod 2 is remodulized by the factor 4, i.e., 1mod2=ë1; 3; 5; 7ë mod 8 : It is convenient to create a notation for the expression We write it as Reindexing the symbol S, ë a; a + b;::: ;a+èc, 1èbë modcb : c,1 ë ëa + kbë modcb : k=0 cë a mod b = ëèa, bè+kbë modcb : The Chinese Remainder Theorem ærst appeared in the ærst century A.D. The Chinese mathematician Sun-Tsçu sought a solution to the following problem:

3 CHAPTER 2. REMODULIZATION OF CONGRUENCES 3 What numbers n, when divided by 3, 5, and 7, have remainders 2, 3, and 2, respectively? This problem also appeared in the Introductio Arithmeticae, written by Nicomachus of Gerasa, a Greek mathematician circa 100 A.D. The problem asks one to ænd the solution to a system of congruences èyè 8 é é: x ç a1 mod b1 x ç a2 mod b2. x ç a n mod b n where 0 ç a j éb j, and the b j are pairwise relatively prime. The idea is to remodulize each congruence in order to obtain a common modulus, thereby making the solution set the intersection of the resulting classes. These can be determined by direct observation of the sets of residues in the remodulized forms. Since the b j are pairwise relatively prime, the smallest common modulus is the product of the b j ; therefore we remodulize the j th congruence by the factor Performing these operations gives: 1 b k = c j ; then b j c j = C = b j x j ç 1 b j ë b k Simplifying the notation, we ænd ëèa j, b j è+b j mëmod c ë j x j ç ëèa j, b j è+b j mëmodc : The solution set to èyè is the intersection of the sets of initial elements mod C, i.e., èzè në x ç j=1 " cjë b k b k ëèa j, b j è+b j mëmodc Thus, for the original problem of Sun-Tsçu, we have: 8 é : x ç 2mod3 x ç 3mod5 x ç 2mod7 è :

4 CHAPTER 2. REMODULIZATION OF CONGRUENCES 4 Since the b j are prime, the least common modulus is 3 æ 5 æ 7=105. The congruences are then remodulized by 35, 21, and 15, respectively. The resulting remodulizations are ë2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104ë mod 105 ; ë3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103ë mod 105 ; and ë2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100ë mod 105, where the intersection, 23 mod 105, is the complete solution set among the integers. This ultimately raises the question as to whether èzè në x ç j=1 " cjë ëèa j, b j è+b j mëmodc always contains exactly one element, given that 0 ç a j é b j and the b j are pairwise relatively prime. In the same example, if we remodulize to the product 105, we ænd that the solution set corresponding to the ærst two congruences ç x ç 2mod3 x ç 3mod5 is characterized as ë8; 23; 38; 53; 68; 83; 98ë mod 105, which does not appear to be ëunique"; however, this is equivalent to 8 mod 15, which, in the example given, has been remodulized by the factor 7. The solution 8 mod 15 is obtained by solving the ærst two congruences directly by the method described. As it happens, if one uses the smallest possible modulus, the answer to our question is yes. è Theorem 2 èchineseremaindert heoremè The system èyè of congruences, where the b j are pairwise relatively prime, has as solution set èzè në x ç j=1 " cjë ëèa j, b j è+b j mëmodc where c j = C b j and C = b k. Moreover, the intersection contains only one element, i.e., one residue class. è

5 CHAPTER 2. REMODULIZATION OF CONGRUENCES 5 Proof. In order to show that this element exists, we consider the following: ç x ç a1 mod b1 x ç a2 mod b2 where 0 ç a1 é b1 and 0 ç a2 é b2 and gcdèb1;b2è = 1. Remodulizing the congruences by the factors b2 and b1, respectively, x ç ëa1;a1 + b1;::: ;a1 +èb2, 1è b1 ëmodb1b2 x ç ëa2;a2 + b2;::: ;a2 +èb1, 1è b2 ëmodb1b2 it is required to show that the sets of initial elements intersect, i.e., there exist integers k and h where 1 ç k ç b2, 1 and 1 ç h ç b1, 1, such that a1 + kb1 = a2 + hb2. Rewriting this equation, we require integers k and h such that kb1, hb2 = a2, a1. Since b1 and b2 are relatively prime, èa2, a1è is divisible by gcdèb1;b2è. Now notice that if k and h are solutions to kb1, hb2 = 1, then kèa2, a1è and hèa2, a1è are solutions to the required equation. Euclid's algorithm insures that such integers k and h exist. It follows that the ærst pair of congruences have a solution. We wishnowto show that the pair has a unique solution modulo b1b2. We know that a solution exists, that is, there exists an integer x such that x 2fa1;a1 + b1;::: ;a1 +èb2, 1èb1g ë fa2;a2 + b2;::: ;a2 +èb1, 1èb2g: Now suppose that the two initial sets intersect in two elements, say and x1 = a1 + çb1 = a2 + kb2 x2 = a1 + çb1 = a2 + hb2 : Subtracting the second formulation from the ærst for each x i, so that a1, a2 = kb2, çb1 = hb2, çb1 ; èk, hèb2 =èç, çèb1 : Since b1 and b2 are relatively prime it must be that k, h = mb1 and ç, ç = nb2 ; for some integers m and n. In other words, k = h + mb1 and ç = ç + nb2

6 CHAPTER 2. REMODULIZATION OF CONGRUENCES 6 so that x1 becomes This says that x1 = a1 +èç + nb2èb1 = a2 +èh + mb1èb2 = a1 + çb1 + nb2b1 = a2 + hb2 + mb1b2 : a1 + çb1 = a2 + hb2 +èm, nèb1b2 ; which isx2. This implies that m, n = 0 ; i.e., m = n, and hence Therefore, k = h + mb1 ç = ç + mb2 : x1 = a1 + çb1 = a1 +èç + mb2èb1 = a1 + çb1 + mb1b2 = x2 + mb1b2 : This means that x1 and x2 are in the same residue class mod b1b2; i.e., they are congruent mod b1b2 and the solution set is given as the unique class x ç d mod b1b2 ; where d ç x1 mod b1b2 ç x2 mod b1b2 from above. In the event there exist three congruences, we solve the ærst two congruences and combine this result with the third congruence, i.e., ç x ç d mod b1 b2 x ç a3 mod b3 and repeat the argument since b1b2 and b3 are relatively prime. The induction works and both the existence and the uniqueness are established. Suppose we want to solve cx ç a mod b for x, where 1 é c é b and a is divisible by gcdèc; bè èotherwise no solution existsè. We consider the case where gcdèc; bè = 1. By remodulizing amodbby the factor c, we obtain cx ç ëa; a + b;::: ;a+èc, 1è b ëmodcb: Since the set fa; a+b; : : : ; a+èc,1è bg forms a complete residue system mod c, there exists an element in this set, call it d, which is divisible by c. Since cx ç ëa; a + b;::: ;d;::: ;a+èc, 1èbë modcb we ænd that the only congruence solvable is cx ç d mod cb. The remaining congruences, cx ç ëa; a + b;::: ;d, b; d + b; : : : ; a +èc, 1è b ëmodcb

7 CHAPTER 2. REMODULIZATION OF CONGRUENCES 7 are not solvable, since in each case the factor c is pairwise relatively prime with the elements fa; a+b;::: ;d,b; d+b; : : : ; a+èc,1èbg, and thus does not divide them. In the congruence cx ç d mod cb, dividing through by c, x ç d c mod cb c or x ç d c mod b: Note that d c éb. To illustrate this procedure, consider the following example. Suppose 5x ç 3 mod 7. This is solvable since 3 is divisible by gcdè5; 7è=1. Remodulizing 3 mod 7by the factor 5 gives 5x ç ë3; 10; 17; 24; 31ë mod 5 æ 7 so that 5x ç 10 mod 35 is the only possible solution and, upon dividing all three terms by 5, x ç 2mod7: Note that 5x ç ë3; 17; 24; 31ë mod 35 does not yield any solutions, since in this case gcdè5; 35è = 5 does not divide any number in the set f3; 17; 24; 31g. The remodulization method also provides a way of ænding solutions to systems of congruences using linear congruences. Suppose we have the following system, ç x ç a1 mod b1 x ç a2 mod b2 where b1 éb2 and b1 and b2 are relatively prime. Theideaistomultiply the ærst congruence by b2 and the second congruence by b1, i.e., ç b2 x ç a1b2 mod b1b2 b1x ç a2b1 mod b1b2 so that we obtain a common modulus. By subtracting the second linear congruence from the ærst, we obtain a single linear congruence, èb2, b1èx ç èa1b2, a2b1è modb1b2 : The unique solution èmodulo b1b2è is insured, since gcdèb2, b1;b1b2è = 1. If the system consists of more than two congruences, then the solution of the ærst two congruences is combined with the third, and so on, to obtain a solution for the entire system.

8 CHAPTER 2. REMODULIZATION OF CONGRUENCES 8 Corollary 1 A system of linear congruences 8 é é: c1x ç a1 mod b1 c2x ç a2 mod b2. c n x ç a n mod b n where 1 éc j éb j,theb j are pairwise relatively prime, and the a j are divisible by gcdèc j ;b j è,can be reduced to a system 8 é é: x ç d1 mod b1 x ç d2 mod b2. x ç d n mod b n : By Theorem 2, the solution to this system is në x ç j=1 " cjë ëèd j, b j è+b j mëmodc where c j = 1 b j b k and C = b k, and the intersection contains only one residue class. è References ë1ë Burton, David M. Elementary Number Theory, Second Edition. Wm. C. Brown Publishers, Dubuque, Iowa, ë2ë Gold, J. F. and Don H. Tucker. Applications. To be submitted. Remodulization of Congruences and Its ë3ë Ore, Oystein. Number Theory and Its History. New York, Dover Publications, Inc., ë4ë Stewart, B. M. Theory of Numbers. The MacMillan Co., New York, 1952.

Chapter 4 Complementary Sets Of Systems Of Congruences Proceedings NCUR VII. è1993è, Vol. II, pp. 793í796. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker

Chapter 6 A N ovel Solution Of Linear Congruenes Proeedings NCUR IX. (1995), Vol. II, pp. 708{712 Jerey F. Gold Department of Mathematis, Department of Physis University of Utah Salt Lake City, Utah 84112

Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

Chapter 8 Vector Products Revisited: A New and Eæcient Method of Proving Vector Identities Proceedings NCUR X. è1996è, Vol. II, pp. 994í998 Jeærey F. Gold Department of Mathematics, Department of Physics

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

Chapter 1 A Pri Characterization of T m e Pairs w in Proceedings NCUR V. (1991), Vol. I, pp. 362{366. Jerey F. Gold Department of Mathematics, Department of Physics University of Utah DonH.Tucker Department

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures

Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### GREATEST COMMON DIVISOR

DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

### Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the

### Computer and Network Security

MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest

### Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### Continued Fractions. Darren C. Collins

Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

### Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

### Handout NUMBER THEORY

Handout of NUMBER THEORY by Kus Prihantoso Krisnawan MATHEMATICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES YOGYAKARTA STATE UNIVERSITY 2012 Contents Contents i 1 Some Preliminary Considerations

### Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

### Lectures on Number Theory. Lars-Åke Lindahl

Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder

### Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

### SOLUTIONS FOR PROBLEM SET 2

SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such

### MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

### Factoring Algorithms

Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### An Introductory Course in Elementary Number Theory. Wissam Raji

An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### QUADRATIC RECIPROCITY IN CHARACTERISTIC 2

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 KEITH CONRAD 1. Introduction Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] (see [4, Section 3.2.2] or [5]) lets

### 5-1 NUMBER THEORY: DIVISIBILITY; PRIME & COMPOSITE NUMBERS 210 f8

5-1 NUMBER THEORY: DIVISIBILITY; PRIME & COMPOSITE NUMBERS 210 f8 Note: Integers are the w hole numbers and their negatives (additive inverses). While our text discusses only whole numbers, all these ideas

### Overview of Number Theory Basics. Divisibility

Overview of Number Theory Basics Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Divisibility Definition Given integers a and b, b 0, b divides a (denoted b a) if integer c, s.t. a = cb. b is called

### SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

### 4. FIRST STEPS IN THE THEORY 4.1. A

4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We

### Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

### Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Galois Theory, First Edition

Galois Theory, First Edition David A. Cox, published by John Wiley & Sons, 2004 Errata as of September 18, 2012 This errata sheet is organized by which printing of the book you have. The printing can be

### Primality - Factorization

Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

### Factorization Algorithms for Polynomials over Finite Fields

Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Stupid Divisibility Tricks

Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### Elementary Number Theory

Elementary Number Theory A revision by Jim Hefferon, St Michael s College, 2003-Dec of notes by W. Edwin Clark, University of South Florida, 2002-Dec L A TEX source compiled on January 5, 2004 by Jim Hefferon,

### ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### Lecture 16 : Relations and Functions DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

### On Generalized Fermat Numbers 3 2n +1

Applied Mathematics & Information Sciences 4(3) (010), 307 313 An International Journal c 010 Dixie W Publishing Corporation, U. S. A. On Generalized Fermat Numbers 3 n +1 Amin Witno Department of Basic

### Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

### COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### BX in ( u, v) basis in two ways. On the one hand, AN = u+

1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

### calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

### V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

### SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

### Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

### Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

### Computing exponents modulo a number: Repeated squaring

Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method

### The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside

### The Ideal Class Group

Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

### Group Theory. Contents

Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

### CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

### FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### TEXAS A&M UNIVERSITY. Prime Factorization. A History and Discussion. Jason R. Prince. April 4, 2011

TEXAS A&M UNIVERSITY Prime Factorization A History and Discussion Jason R. Prince April 4, 2011 Introduction In this paper we will discuss prime factorization, in particular we will look at some of the

### POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

### RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

### Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES

### The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

### ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

### Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

### MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### 4.2 Euler Discovers Patterns for Prime Divisors of Quadratic Forms

4. Euler Discovers Patterns for Prime Divisors 51 Exercise 4.16. Calculate various Legendre symbols by repeatedly using only the QRL, the supplementary theorem, and the multiplicativity of the Legendre

### FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,