# Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

Size: px
Start display at page:

Download "Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers"

Transcription

1 Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic phenomena (whorls, eddies, vortices) Flow in a capillary described by Pouiselle s law.(but beware: only valid for laminar flow) This begs the question: what makes flow laminar or turbulent? Laminar flow is characterised by : smooth flow lines all fluid velocity in same direction flow velocity is zero at tube walls flow speed increases closer to tube center Reynolds Number. ρvd R = µ Reynold s Number R Where ρ is the fluid density (kg/m 3 ) V is the mean fluid velocity (m/s) D is the capillary/pipe diameter (m) µ is the viscosity of the fluid (Ns/m ) R > 4000, flow is turbulent R < 000, flow is laminar Flow Sensors Many sensors measure flow rate. Mass flow rate: mass transferred per unit time (kg/s) Volumetric flow rate: volume of material per unit time (m 3 /s) In gas systems, mass and volume rates are expressed in volume flow. Mass flow referenced to STP (standard temperature and pressure) and converted to equivalent volume flow (eg sccm = standard cubic centimetres per minute) Thermal flow Sensor Hot wire anenometer: Cooling of resistive element by fluid flow is measured by Voltmeter Mass Flow controllers Uses two thermometers which supply heat to the gas as well as measuring temperature The faster that the gas flows, the more heat is removed from the upstream thermometer The downstream thermometer also measures the heat flow, increasing accuracy No contact between sensors and gases (no contamination)

2 Photo of a Mass Flow controller Can see that flow direction is important Solid-state valves and interface No moving parts=> no wear Needs to be calibrated for each gas CVD diamond growth reactor Steven s MFC anecdote Turbulence makes a difference! Different growth patterns with different flows Mechanical obstruction sensors Vane flow meter

3 Some more mechanical obstruction sensors Rotating mechanical obstruction sensors All these sensors turn a change in flow rate into a change in linear or angular displacement sensors (a) and (b) turn a constant flow rate into a constant angular velocity Rotor wheel flow sensor The rotating vane can be attached to a coil in a magnetic field The current generated in the coil is proportional to the flow rate Pressure drop sensors When fluid in a pipe passes through a restriction there is a drop in pressure. Total pressure, P t, after the constriction is P t = P s + P d P s is the static pressure, P d is the dynamic (or impact) pressure P t is sometimes called the stagnation pressure How does this work? Bernoulli s Equation 1 ρv + ρgz + P = constant Where: ρ is the fluid mass density (Ns m -1 ) v is the fluid velocity (m/s) g is the acceleration due to gravity z is the height of fluid (often called head) P is the pressure on the fluid This is equivalent to saying that an element of fluid flowing along a streamline trades speed for height or for pressures A consequence is that as flow velocity increases, the pressure on the vessel walls decreases Differential pressure sensors These sensors change the cross-sectional area A, which increases the velocity v. Since the height of the fluid is constant, the pressure must decrease The amount of material flowing per second does not change, so A 1 v 1 =A v Bernoulli s equation becomes ½ ρv 1 +P 1 = ½ ρv +P Combine these expressions to get ( P1 P) ρv + ρgz + Pv1 = A1 ρ[( ) 1] 1 ρ[ Ps Pt] A

4 Differential pressure sensors These sensors change the cross-sectional area A, which increases the velocity v Since the height of the fluid is constant, the pressure must decrease after the obstruction The difference in pressures, combined with the cross-sectional area, tells us the velocity before the obstruction Wire mesh flow sensor Used to measure bubble propagation in gases Uses grid of wires to measure electrical conductivity at wire crossing points Images from wire mesh sensor Cannula pressure-drop sensor Note the area of laminar flow Light areas are flowing faster Ultrasonic flow sensors Ultrasonic waves are sound waves above human hearing (>0 khz) Typical frequencies are 0 khz - 0 MHz. Ultrasonic flow sensors Many ultrasonic flow sensors consist of pairs of transducers Each transducer can operate as either a source or a detector of sound waves Remember that sound waves are longitudinal pressure waves caused by vibrations in a medium Several types of ultrasonic sensors are available- the most common are dynamic or piezoelectric sensors A typical dynamic sensor is a thin, low mass diaphragm, stretched over passive electromagnet. Such diaphragms operates at frequencies up to 100 khz Good for Doppler shift intruder alarms (demo)

5 Dynamic Ultrasonic Sensors As a generator of ultrasonic waves: the drive current creates a magnetic field which pushes against the permanent magnet. As a detector: the motion of the element induces a current in the drive coil Piezoelectric ultrasonic transducers We have encountered piezoelectrics in the context of force sensors An extension of this is the use of piezos to convert the compressions and rarefactions of a sound wave into an electrical signal Deforms a crystalline structure under potential stimulation Used in computers and wrist watches as a time reference. Operated at resonant frequency (quartz crystal reference) Piezoelectric ultrasonic transducers The piezo transmits when an applied potential distorts crystal Receives when pressure wave distorts crystal Measuring the speed of sound in a crystal using ultrasound Ultrasound baby photos compsoc.dur.ac.uk/ ~ads/ultrasound.jpg

6 The Doppler effect Doppler effect is a shift in frequency from a moving source of waves. We can use the Doppler effect to measure the velocity of a fluid. For sound waves reflected off a moving object, there are two shifts: The net shift is given by: The Doppler effect One shift upon receiving the signal, the second upon transmitting. fvcos( θ ) f = c s f is the Doppler shifted frequency f is the source frequency v is fluid velocity θ the angle between the ultrasonic beam and the fluid velocity cs is the speed of sound in the fluid. Notes on the Doppler Shift Does not work with pure liquids. Used as a non-invasive blood flow monitor Powerful extra tool when combined with ultra-sonic imaging Doppler shift needs stuff to reflect off: either optically active molecules (eg Haemoglobin) or turbulence (bubbles) Doppler Blood measurement Doppler effect can be used to measure variations in blood flow speed Often used for measuring pulses on animals Ultrasonic transit-time flowmeter difference in transit times : T=T AB -T BA D distance AB between sensors V is velocity of fluid Cs speed of sound in fluid Transit time T AB between A and B depends on the fluid velocity θ angle between transit path and flow The flow velocity is given by: cs T V = D cos( θ )

### Flow Sensors. - mass flow rate - volume flow rate - velocity. - stream line parabolic velocity profile - turbulent vortices. Methods of measurement

Flow Sensors Flow - mass flow rate - volume flow rate - velocity Types of flow - stream line parabolic velocity profile - turbulent vortices Methods of measurement - direct: positive displacement (batch

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### BIOMEDICAL ULTRASOUND

BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic

### Overview of the state of the art heat measurement technologies for larger solar thermal systems

Overview of the state of the art heat measurement technologies for larger solar thermal systems Overview of the state of the art heat measurement technologies for larger solar thermal systems... 1 Introduction...

### Energy and Flow Measurement for Hydronic Systems

Energy and Flow Measurement for Hydronic Systems Presented By: George Szyszko Applications Consultant MCR for ONICON Incorporated Why Measure Thermal Energy? To control something, you must first measure

### ABB Flowmeters Review of industrial processing flowmeters

White paper ABB Flowmeters Review of industrial processing flowmeters Understanding flowmeters and their pros and cons By Ron DiGiacomo, ABB Measurement Products One of the most critical measurements in

### Flow Measurement in Pipes and Ducts. Flow Measurement in Pipes and Ducts, Course #503. Presented by:

Flow Measurement in Pipes and Ducts, Course #503 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com This course is about measurement of the flow rate of a fluid flowing

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme

Grant Agreement No. 228296 SFERA Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME Capacities Specific Programme Research Infrastructures Integrating Activity - Combination of

### Advanced Differential Pressure Flowmeter Technology V-CONE FLOW METER TECHNICAL BRIEF

Advanced Differential Pressure Flowmeter Technology V-CONE FLOW METER TECHNICAL BRIEF Table of Contents Section 1 - General Introduction 1.1 1 Principles Of Operation 1.2 1 Reshaping The Velocity Profile

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### Fluid Flow Instrumentation

Fluid Flow Instrumentation In the physical world, mechanical engineers are frequently required to monitor or control the flow of various fluids through pipes, ducts and assorted vessels. This fluid can

### FLOW METER SPECIFICATION AND APPLICATION ANALYSIS Class #41

FLOW METER SPECIFICATION AND APPLICATION ANALYSIS Class #41 Curtis Gulaga Business Development Manager CB Engineering Ltd. #20, 5920 11 th Street SE Calgary, AB T2H 2M4 1.0 Introduction Today s working

### Flow Measurement Options for Pipeline and Open Channel Flow

Flow Measurement Options for Pipeline and Open Channel Flow October 2013 Presented by Molly Skorpik - 2013 Montana Association of Dam and Canal Systems Conference Irrigation Training and Research Center

### Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Thermal Dispersion Mass Flow

Thermatel Thermal Dispersion Mass Flow Measurement Handbook Table of Contents Introduction...1 What is Mass Flow Measurement?...1 Types of Flow Transmitters...4 Differential Pressure...4 Orifice...4 Venturi...6

### A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

### Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

### Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.

ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction

### GOOD PRACTICE GUIDE AN INTRODUCTION TO NON-INVASIVE ULTRASONIC FLOW METERING

GOOD PRACTICE GUIDE AN INTRODUCTION TO NON-INVASIVE ULTRASONIC FLOW METERING www.tuvnel.com An introduction to non-invasive ultrasonic flow metering This guide provides an introduction to non-invasive

### measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi,

Lecture 14 Flow Measurement in Pipes I. Elbow Meters An elbow in a pipe can be used as a flow measuring device much in the same way as a venturi or orifice plate The head differential across the elbow

### Precision Mass Flow Metering For CVD Applications.

Precision Mass Flow Metering For CVD Applications. Ir. H.J. Boer Research Department of Bronkhorst High-Tech B.V. Nijverheidsstraat 1A, 7261 AK Ruurlo The Netherlands. Tel: +31 (0)573 458800 Fax: +31 (0)573

### Liquid Flowmeters A Guide for Selecting a Flowmeter for Pressurized Systems

Liquid Flowmeters A Guide for Selecting a Flowmeter for Pressurized Systems Selecting a meter requires a first-rate technical assessment of the pressurized system and a thorough evaluation of the capabilities

### Tadahiro Yasuda. Introduction. Overview of Criterion D200. Feature Article

F e a t u r e A r t i c l e Feature Article Development of a High Accuracy, Fast Response Mass Flow Module Utilizing Pressure Measurement with a Laminar Flow Element (Resistive Element) Criterion D200

### Experiment # 3: Pipe Flow

ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### Robot Perception Continued

Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

### Fundamentals of Mass Flow Control

Fundamentals of Mass Flow Control Critical Terminology and Operation Principles for Gas and Liquid MFCs A mass flow controller (MFC) is a closed-loop device that sets, measures, and controls the flow of

### E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

### FLUID FLOW Introduction General Description

FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

### THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT

THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT Kazuto Otakane, Tokyo Gas Co., Ltd Katsuhito Sakai, Tokyo Gas Co., Ltd Minoru Seto, Tokyo Gas Co., Ltd 1. INTRODUCTION Tokyo Gas s new gas meter,

### FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2)

FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2) Overview Power requirements for mixing Newtonian and non-newtonian liquids Ungassed and gassed systems Scale-up issues, scale-down approach Adapting bioreactor

Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

### Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology. HWEA 2011 Conference Craig S. Johnson

Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology HWEA 2011 Conference Craig S. Johnson Presentation Overview Introduction Aeration Air & Digester gas challenges Gas flow metering

### Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

### Advances in Thermal Dispersion Mass Flow Meter Accuracy

Advances in Thermal Dispersion Mass Flow Meter Accuracy By Dan McQueen President Fluid Components International (FCI) Advances in Thermal Dispersion Mass Flow Meter Accuracy By Dan McQueen President Fluid

### Accurate Air Flow Measurement in Electronics Cooling

Accurate Air Flow Measurement in Electronics Cooling Joachim Preiss, Raouf Ismail Cambridge AccuSense, Inc. E-mail: info@degreec.com Air is the most commonly used medium to remove heat from electronics

### 191: Calibration and Standards in Flow Measurement. Richard Paton National Engineering Laboratory, Scotland, UK 1 GENERAL PRINCIPLES

191: Calibration and Standards in Measurement Richard Paton National Engineering Laboratory, Scotland, UK 1 General Principles 1 2 Gravimetric Calibration of Liquid meters 2 3 Volumetric Calibration of

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### PORTABLE FLOW METER KITS TDS-100H

Transit Time Flow Meters TT-TDS-100H-HS ECEFast offers amazing prices on Transit Time Flow Meter portable kits. We are buying from the manufacturer who supplies 60% of the Chinese market and the majority

### Methodology for Liquid Ultrasonic Flow Measurement within the Laminar to Turbulent Transitional Zone

Methodology for Liquid Ultrasonic Flow Measurement within the Laminar to Turbulent Transitional Zone Dave Seiler Daniel Measurement and Control March 25, 2014 Heavy Oil Definition!!!!the API classifies

### Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

### MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING J. Pekař, P. Trnka, V. Havlena* Abstract The objective of this note is to describe the prototyping stage of development of a system that is

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

### Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

### DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries?

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW VISCOSITY POISEUILLE'S LAW? Why do cars need different oils in hot and cold countries? Why does the engine runs more freely as

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

### 1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Acousto-optic modulator

1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

### The Fundamentals of Gas Flow Calibration

The Fundamentals of Gas Flow Calibration Application Note Introduction Understanding the fundamentals of gas flow calibration is essential for evaluating calibration systems, estimating the magnitude of

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

### Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Understanding the Flo-Dar Flow Measuring System

Understanding the Flo-Dar Flow Measuring System Independent tests verify non-contact flowmeter is highly accurate under both open channel and surcharge conditions TM Flo-Dar is the only non-contact open

### Sensors Collecting Manufacturing Process Data

Sensors & Actuators Sensors Collecting Manufacturing Process Data Data must be collected from the manufacturing process Data (commands and instructions) must be communicated to the process Data are of

### Establishment of the Gas Flow Calibration Facility at CSIR-NPL, India

Establishment of the Gas Flow Calibration Facility at CSIR-PL, India Speaker: Shiv Kumar Jaiswal Fluid Flow Measurement Standards CSIR-ational Physical Laboratory (PLI) Dr. K.S. Krishnan Road ew Delhi

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### INTERFERENCE OF SOUND WAVES

1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

### PIEZOELECTRIC FILMS TECHNICAL INFORMATION

PIEZOELECTRIC FILMS TECHNICAL INFORMATION 1 Table of Contents 1. PIEZOELECTRIC AND PYROELECTRIC EFFECTS 3 2. PIEZOELECTRIC FILMS 3 3. CHARACTERISTICS PROPERTIES OF PIEZOELECTRIC FILMS 3 4. PROPERTIES OF

### v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

### Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

### Flow Assurance & Operability

Flow Assurance & Operability Erosion due to sand production Date Business Name Overview 1. What causes erosion? 2. Sand production and transport 3. Sand management 4. Instrumentation / monitoring of sand

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

### POURING THE MOLTEN METAL

HEATING AND POURING To perform a casting operation, the metal must be heated to a temperature somewhat above its melting point and then poured into the mold cavity to solidify. In this section, we consider

### FXA 2008. UNIT G485 Module 4 5.4.3 Ultrasound. Candidates should be able to :

1 Candidates should be able to : ULTRASOUND Describe the properties of ultrasound. ULTRASOUND is any sound wave having a frequency greater than the upper frequency limit of human hearing (20 khz). Describe

### NEW DEVELOPMENTS IN FLOW AND PIPE MANAGEMENT CAPABILITIES THROUGH NEW VELOCITY PROFILE MEASUREMENT AND PIPE WALL WEAR MONITORING INSTRUMENTATION

NEW DEVELOPMENTS IN FLOW AND PIPE MANAGEMENT CAPABILITIES THROUGH NEW VELOCITY PROFILE MEASUREMENT AND PIPE WALL WEAR MONITORING INSTRUMENTATION Christian O Keefe, CiDRA Minerals Processing, Inc., Wallingford,

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### The Versatile Differential Pressure Transmitter. By David Gunn Honeywell Process Solutions

The Versatile Differential Pressure Transmitter By David Gunn Honeywell Process Solutions The Versatile Differential Pressure Transmitter 2 Table of Contents Abstract... 3 Pressure Fundamentals... 3 Applications...

### Design and Analysis of Various Bluff Objects for Vortex flow meters

Design and Analysis of Various Bluff Objects for Vortex flow meters T. Milinda Purna 1, L. Aarya 2, K. Lakshmi Nageswari 3 1 Assistant Professor, Department Of Electronics & Instrumentation, Sree Vidyanikethan

### PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

### Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power

Parameters used to completely characterize a sound wave Describing Sound Waves Chapter 3 Period Frequency Amplitude Power Intensity Speed Wave Length Period Defined as the time it take one wave vibrate

### Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che

Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing

### Mounting instructions. Acceleration Transducer B12. B 26.B12.10 en

Mounting instructions Acceleration Transducer B12 B 26.B12.10 en B12 3 Contents Page Safety instructions.............................................. 4 1 Scope of supply..............................................

### HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of -the measurement of time-varying pressure (with periodic oscillations or step changes) -the

### Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

### In semiconductor applications, the required mass flows

Model-Based Multi-GasMulti-Range Mass Flow Controllers With Single Gas Calibration and Tuning JOOST LÖTTERS A model has been developed that accurately predicts the behavior of the flow sensor combined

### In science, energy is the ability to do work. Work is done when a force causes an

What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated