# For Water to Move a driving force is needed

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND K0.01cm/s 0.63 m 6 cm 0.75 cm For Water to Move a driving force is needed but it doesn't necessarily flow downhill nor from high Pressure to low Pressure Consider a siphon What drives the flow in that case? pressure is greater fluid elevation is higher This car is uphill 1

2 In a isothermal system of uniform electrochemical composition: Flow Proceeds from High to Low Hydraulic Head i.e. from locations of high to low mechanical energy Total mechanical energy depends on Fluid Pressure, Gravity, and Motion Etotal P + ρ gz + 1 ρ v Divide by density to get energy per unit mass E P + gz ρ unit mass + v The Bernoulli Equation from Fluid Mechanics States that for steady, laminar, flow of frictionless, incompressible fluid energy per unit mass [L/T] is a constant (in practice these assumptions can be relaxed) E unit mass P v + gz + ρ constant

3 Steady Flow? Not changing with time Laminar Flow? Reynolds number reflects flow regime R < 100 laminar R > 1000 turbulent Between 100 to 1000 transitional Velocity * diameter particle Vd R kinematic viscosity υ Viscosity - resistance of a fluid to flow More on this later dynamic viscosity υ fluid density μ ρ Frictionless Flow? Real fluids are viscous (they require energy to overcome friction loss) Incompressible Fluid? Real fluids are compressible (their density changes with pressure) 3

4 Bernoulli s Equation is useful for comparing components of mechanical energy P v + gz + ρ constant units Divide ide each term by g to use units of energy per unit weight : dimensions of length P v + z + gρ g hydraulic head P g + z ρ units of length hydraulic head L M Weight T L L L + L + M T T 3 L L M T L L L L + T + T L M L L 3 T L T T Ground water velocity is generally so low that the kinetic term can be ignored P hydraulic head + z ρg P ρgh hydraulic head h p + z hydraulic head pressure head + z all can be expressed in length p p h p P ρg a pipe that t is open at the ends When comparing heads if the density of water in column h p differs, normalize to the same density If the density were 10% greater at one well, would h p increase or decrease to reflect an equivalent hydraulic head? h p z h 0 Hydraulic head, h, at location x,y,z is h h p + z datum (often sea level) 4

5 Head exists at every location in a body of water If no forces are exerted on it and we allow it to come to rest head will be the same everywhere We call this condition hydrostatic h p h p h p h p z z z z datum 0 If we force water through the system Head will vary with space dry z h p h p h p z z z datum 0 5

6 Bernoulli s equation for total mechanical energy per unit mass (here, omitting the velocity term) defines the Force Potential P force potential Φ + gz ρ and P ρgh p so Φ ρgh ρ p + gz gh + gz g(h + z) and ttl total hd hydraulic head h h p + z so Φ gh thus Φ and h are related by a constant p p Connecting lines of equal head (potential) Yields head map / equipotential surface 10ft Plan view Head map 0ft 7ft 8ft 9ft 6

7 It may be multi-dimensional Let s use a field scale system DISCHARGE AREA head increases with depth RECHARGE AREA head decreases with depth 10,390 10,000 8,000 6,000 4,000, ,000 ft thickness horizontal gradient i 390ft/0000ft ~0.0 0,000 ft ~4 miles along the red flow line i 390ft/4000ft ~

8 Flow in Porous Media static conditions steady flow in a diameter sand-filled tube 8

9 What are the elevation and pressure heads? Total head 5 inches Pressure head 1. inches Total head 17.5 inches Pressure head 15.5 inches Total head 10.8 inches Elevation 3.8 inches datum Elevation inches Elevation -5 inches Pressure head 15.8 inches Recall Darcy s Law velocity of flow through the sand column is: * directly proportional to the head difference at the ends of the column and * inversely proportional to the length of the column h K h l 1 VDarcy Ki constant of proportionality (hydraulic conductivity if water) hydraulic gradient, i in direction of flow OTHER NAMES: Darcy Velocity or Specific discharge LT -1 (i.e. discharge per unit area, although sometimes multiplied by thickness to express as discharge per unit width as L T -1 ) 9

10 Calculate K using data from the Apparatus What measurements will you need? What equation will you solve? How will flow change if we rotate the sand column? What if we bend the column? 10

11 Recall: Darcy velocity is a DISCHARGE per unit AREA Q V Darcy A Average Linear Velocity as the crow flies velocity through the pores this governs rate of pollutant movement V Q A φ V φ D Interstitial e e VD effective porosity Calculate Effective Porosity using data from Darcy Apparatus What measurements will you need? What equation will you solve? Dye moves through the tube It moves ~30 cm in 7.5 min 11

12 Aquifer permits appreciable amounts of groundwater to pass under normal field conditions (passes economic quantities of water) Aquitard Low hydraulic conductivity does not pass significant amounts of water but may store water K ---- HYDRAULIC CONDUCTIVITY when the fluid is water The range of values spans many orders of magnitude: Gravel ~1x10 cm/sec Unfractured Crystalline Rock ~ 1x10-11 cm/sec k --- PERMEABILITY the capacity of a porous medium to transmit fluid 1

13 MEASUREMENT OF K FIELD TESTS - AQUIFER TESTS LABORATORY - PERMEAMETERS problems not representative large rock mass disturbed samples orientation of sample often knowing K to an order of magnitude is satisfactory and may be all that is obtainable within temporal and financial constraints Hydraulic Conductivity K velocity units L/T or LT -1 FIELD COEFFICIENT OF HYDRAULIC CONDUCTIVITY describes K in terms of the rate of flow of water in gallons per day through h a cross sectional area of 1 square foot under a hydraulic gradient of 1 at a temp of 60 degrees F 1GAL day ft 1ft 1ft 1ft 1ft 3 1ft ~ GAL ft day GAL day ft ~ 3.5x10 5 cm sec 13

14 TRANSMISSIVITY T K m, T units L /T L T Theis, 1935 FIELD COEFFICIENT OF TRANSMISSIVITY rate of flow of water in gal per day through a vertical strip of aquifer 1 ft wide, extending the full saturated t height ht of the aquifer under a hydraulic gradient of 100% or 1 ft per ft at prevailing field temperature 1GAL day ft 1ft 1ft b(ft) 1ft 3 1ft ft ~ GAL day GAL day ft ~ 1x10 7 cm sec Very important T Kb Transmissivity Hydraulic Conductivity * Aquifer Thickness 14

15 K hydraulic conductivity applies to a material only for water passing through it, and at that, water of particular temp & pressure (i.e. viscosity) it units of LT -1 e.g. cm sec -1 k intrinsic permeability a characteristic of the medium independent of the fluid units of L e.g. cm k intrinsic permeability L M k K μ : T LT : L ρg M L 3 L T μ ρ dynamic viscosity : M density : 3 L g acceleration of M LT L gravity : T 15

16 k intrinsic permeability may be expressed in darcies 1 darcy is the permeability that will lead to a specific discharge, q, of 1cm/sec for a fluid with a viscosity of 1 centipoise under a hydraulic gradient that makes the term: ρg dh 1atm dl cm k ρg dh q μ dl Let s convert darcies to fundamental units of length squared k ρg dh q μ dl Recall Viscosity? Viscosity - resistance of a fluid to flow (i.e. resistance to: pouring, deforming under shear stress, layers moving past each other) dynamic viscosity is the tangential force per unit area required to move one horizontal plane with respect to the other at unit velocity when maintained a unit distance apart by the fluid) dynamic viscosity units: N s m - or Pa s or kgm -1 s -1 note:1pa-s1n s m - 1kg m s -1 or: gcm -1 s -1 or dyne s cm - or poise note: 1poise 1gcm -1 s -1 1dyne s cm - 0.1Pa-s dynamic viscosity of water at 68.4 o F (0. o C) is 1centipoise dynamic viscosity μ kinematic vis cos ity υ fluid density ρ kinematic viscosity units: m s -1 or Stokes 1St10-4 m s -1 Since the specific gravity of water at 68.4 o F (0. o C) is almost 1g cm -3, kinematic viscosity of water at 68.4 o F is for all practical purposes 1centiStoke (cst) 16

17 k ρg dh q μ dl k intrinsic permeability To convert darcies to cm : 1cm 1darcy by definition : sec 1centipoise 1atm cm 1cm sec 1centipoise 1atm cm 1darcy 0.01g 1centipoise cm sec x10 1atm cmsec 6 g darcy 0.01g cm 1cm cm sec 9 cm g cm cm sec 9.869x10 1x10 6 sec x10 g cm sec g cm sec 8 cm To convert 1 darcy to K cm/sec for water: K kρg μ 9 1g 980cm x 10 cm 3 cm sec 1.01x10 g cm sec 4 g cm cm sec 3 cm 9.6x10 cm 1x10 3 cm sec g sec 17

18 DARCY'S LAW - summary of basics details and assumptions dh V D K or Q KiA dl NOT VALID FOR: *very high velocities where turbulent conditions might prevail *extremely low velocities in fine grained materials where there may be a threshold for which no flow occurs *compressible fluids (recall we divded total energy by a constant density to define hydraulic head as energy per unit mass for Bernoulli s equation) *a discontinuum or variable properties (see next slide REV) * pressure & elevation are not the only driving forces (see subsequent slide on other driving forces) Darcy's is a macroscopic law we assign uniform constant K to the entire porous medium mass REPRESENTATIVE ELEMENTARY VOLUME REV a macro-continuum, below this volume there is no single value of a given parameter that can represent the material K REV Sample size 18

19 *other phenomena contribute to the energy gradient that drives flow temperature electric currents chemical variations hence we should really write: dh dt dc V L1 L L3 L4 dl dl dl dv dl temperature & chemical gradients make water flow but flowing water will transport heat & dissolved chemicals this causes the temperature & chemical gradients that drive water flow to change which causes the rate of water flow to change which changes the rate of heat and chemical transport by the water etc this is coupled flow SUMMARIZING ASSUMPTIONS OF DARCY'S LAW *LAMINAR FLOW *ABOVE THRESHOLD V, IF IT EXISTS *THE FLUID IS INCOMPRESSIBLE *CONTINUUM & K IS CONSTANT (in space and time) *PRESSURE/ELEVATION HEAD IS ONLY DRIVING FORCE 19

### HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW

HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed

### 1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #2: Aquifers, Porosity, and Darcy s Law. Lake (Exposed Water Table)

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #2: Aquifers, Porosity, and Darcy s Law Precipitation Infiltration Lake (Exposed Water Table) River Water table Saturated zone - Aquifer

### Principles of Groundwater Flow. Hsin-yu Shan Department of Civil Engineering National Chiao Tung University

Principles of Groundwater Flow Hsin-yu Shan Department of Civil Engineering National Chiao Tung University Groundwater Flow Forms of energy that ground water possesses Mechanical Thermal Chemical Ground

### GEOS 4430 Lecture Notes: Darcy s Law

GEOS 4430 Lecture Notes: Darcy s Law Dr. T. Brikowski Fall 2013 0 file:darcy law.tex,v (1.24), printed October 15, 2013 Introduction Motivation: hydrology generally driven by the need for accurate predictions

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

### Min-218 Fundamentals of Fluid Flow

Excerpt from "Chap 3: Principles of Airflow," Practical Mine Ventilation Engineerg to be Pubished by Intertec Micromedia Publishing Company, Chicago, IL in March 1999. 1. Definition of A Fluid A fluid

### Fluid Mechanics Definitions

Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V \$0& #V ) Specific Gravity

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### Chapter (1) Fluids and their Properties

Chapter (1) Fluids and their Properties Fluids (Liquids or gases) which a substance deforms continuously, or flows, when subjected to shearing forces. If a fluid is at rest, there are no shearing forces

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1

Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

### Airflow through Mine Openings and Ducts Chapter 5

Airflow through Mine Openings and Ducts Chapter 5 Fundamentals of Airflow Ventilation the application of the principles of fluid mechanics & thermodynamics to the flow of air in underground openings Fluid

### TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow

FLUID DYNAMICS We will deal with Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID

### QUANTITATIVE EXERCISES USING THE GROUNDWATER SAND TANK MODEL

QUANTITATIVE EXERCISES USING THE GROUNDWATER SAND TANK MODEL Darcy s Law In 1856 Henri Darcy, a French engineer, discovered a relationship that governs fluid flow through geologic materials. He determined

### Laboratory 3 Hydraulic Conductivity of a Porous Media

Laboratory Hydraulic Conductivity of a Porous Media INTRODUCTION Permeability refers to the propensity of a material to allow a gas or fluid to move through its pores or interstices. A material is permeable

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### CHAPTER: 6 FLOW OF WATER THROUGH SOILS

CHAPTER: 6 FLOW OF WATER THROUGH SOILS CONTENTS: Introduction, hydraulic head and water flow, Darcy s equation, laboratory determination of coefficient of permeability, field determination of coefficient

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### EXPERIMENT 10 CONSTANT HEAD METHOD

EXPERIMENT 10 PERMEABILITY (HYDRAULIC CONDUCTIVITY) TEST CONSTANT HEAD METHOD 106 Purpose: The purpose of this test is to determine the permeability (hydraulic conductivity) of a sandy soil by the constant

### Macroscopic Balances for Nonisothermal Systems

Transport Phenomena Macroscopic Balances for Nonisothermal Systems 1 Macroscopic Balances for Nonisothermal Systems 1. The macroscopic energy balance 2. The macroscopic mechanical energy balance 3. Use

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### The University of Toledo Soil Mechanics Laboratory

The University of Toledo Soil Mechanics Laboratory Permeability Testing - 1 Constant and Falling Head Tests Introduction In 1856 the French engineer Henri D arcy demonstrated by experiment that it is possible

### Modeling Fluid Systems

Modeling Fluid Systems The prevalent use of fluid (hydraulic) circuitry in machines tool applications, aircraft control systems, and similar operations occurs because of such factors such as accuracy,

### Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher

Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering

### Chapter 8 Steady Incompressible Flow in Pressure Conduits

Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of

### Basic Fluid Mechanics. Prof. Young I Cho

Basic Fluid Mechanics MEM 220 Prof. Young I Cho Summer 2009 Chapter 1 Introduction What is fluid? Give some examples of fluids. Examples of gases: Examples of liquids: What is fluid mechanics? Mechanics

### Module 2 Lecture 7 Permeability and Seepage -3 Topics

Module 2 Lecture 7 Permeability and Seepage -3 Topics 1.1.6 Determination of Coefficient of Permeability in the Field Pumping from wells Packer test 1.1.7 Theoretical Solution for Coefficient of Permeability

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

### Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 22 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. So

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

### 1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

### What is groundwater? unsaturated zone. saturated zone. water table

1 Objectives What are aquifers and aquitards? What is head, and how does it relate to pressure? How is water stored in rock? What is hydraulic conductivity? 2 What is groundwater? unsaturated zone water

DETERMINING TOTAL DYNAMIC HEAD The total dynamic head of a water system must be considered when determining the size of pumping equipment to be installed. It determines the various head losses that the

### Total water potential is sum of gravitational and soil water pressure potential, or. Column of water

SSC107 Fall 000 Chapter 3 Page 3-1 Chapter 3. Saturated Water Flow All pores are filled with water, i.e., volumetric water content is equal to porosity ( θ = θ s with θ s = φ ) Nonequilibrium. Water flows

### Module 2: Review of Fluid Mechanics Basic Principles for Water Resources Engineering. Basic Definitions. Basic Definitions.

Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance

### AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### POURING THE MOLTEN METAL

HEATING AND POURING To perform a casting operation, the metal must be heated to a temperature somewhat above its melting point and then poured into the mold cavity to solidify. In this section, we consider

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### (a) Calculate the voidage (volume fraction occupied by voids) of the bed.

SOLUTIONS TO CAPTER 6: FLOW TROUG A PACKED BED OF PARTICLES EXERCISE 6.1: A packed bed of solid particles of density 500 kg/m 3, occupies a depth of 1 m in a vessel of cross-sectional area 0.04 m. The

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 1 - PHYSICAL PROPERTIES AND CHARACTERISTIC BEHAVIOUR OF FLUIDS TUTORIAL 1 - SURFACE TENSION

### PERMEABILITY TEST. To determine the coefficient of permeability of a soil using constant head method.

PERMEABILITY TEST A. CONSTANT HEAD OBJECTIVE To determine the coefficient of permeability of a soil using constant head method. need and Scope The knowledge of this property is much useful in solving problems

### Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional

Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional area

### Flow of Water in Soil Permeability and Seepage. Water flows through the voids in a soil which are. seepage, since the velocities are very small.

Flow of Water in Soil Permeability and Seepage Water flows through the voids in a soil which are interconnected. t This flow may be called seepage, since the velocities are very small. Water flows from

### A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

### These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### Diffusion and Fluid Flow

Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

### Chapter 27 Static Fluids

Chapter 27 Static Fluids 27.1 Introduction... 1 27.2 Density... 1 27.3 Pressure in a Fluid... 2 27.4 Pascal s Law: Pressure as a Function of Depth in a Fluid of Uniform Density in a Uniform Gravitational

### Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0

viscosity_01 Determine the magnitude and direction of the shear stress that the water applies: a. to the base b. to the free surface free surface U y x h u water u U y y 2 h h 2 2U base: yx y 0 h free

### Transient Mass Transfer

Lecture T1 Transient Mass Transfer Up to now, we have considered either processes applied to closed systems or processes involving steady-state flows. In this lecture we turn our attention to transient

### Barometric Effects on Transducer Data and Groundwater Levels in Monitoring Wells D.A. Wardwell, October 2007

Barometric Effects on Transducer Data and Groundwater Levels in Monitoring Wells D.A. Wardwell, October 2007 Barometric Effects on Transducer Data Barometric Fluctuations can Severely Alter Water Level

### 1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

### Viscous Flow in Pipes

Viscous Flow in Pipes Excerpted from supplemental materials of Prof. Kuang-An Chang, Dept. of Civil Engin., Texas A&M Univ., for his spring 2008 course CVEN 311, Fluid Dynamics. (See a related handout

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### Basics and Concepts. 2.1 Introduction Force, Weight, and Mass Density Specific Gravity Pressure...

2 Fluids Basics and Concepts TOPIC PAGE 2.1 Introduction... 22 2.2 Force, Weight, and Mass... 22 2.3 Density... 23 2.4 Specific Gravity... 23 2.5 Pressure... 23 2.6 Temperature... 25 2.7 Viscosity... 26

### Fluid Mechanics. Fluid Statics [3-1] Dr. Mohammad N. Almasri. [3] Fall 2010 Fluid Mechanics Dr. Mohammad N. Almasri [3-1] Fluid Statics

1 Fluid Mechanics Fluid Statics [3-1] Dr. Mohammad N. Almasri Fluid Pressure Fluid pressure is the normal force exerted by the fluid per unit area at some location within the fluid Fluid pressure has the

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

### Fluids in Motion Supplement I

Fluids in Motion Supplement I Cutnell & Johnson describe a number of different types of flow: Compressible vs incompressible (most liquids are very close to incompressible) Steady vs Unsteady Viscous or

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

### CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

### CHAPTER 3: FORCES AND PRESSURE

CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm -2 or

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 7. General Energy Equation

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

### METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS

Laboratory Testing Manual Date: 99 06 21 Page 1 of 7 METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS 1. SCOPE 1.1 This method covers the determination of the coefficient of permeability

### 14-1. Fluids in Motion There are two types of fluid motion called laminar flow and turbulent flow.

Fluid Dynamics Sections Covered in the Text: Chapter 15, except 15.6 To complete our study of fluids we now examine fluids in motion. For the most part the study of fluids in motion was put into an organized

### Period #16: Soil Compressibility and Consolidation (II)

Period #16: Soil Compressibility and Consolidation (II) A. Review and Motivation (1) Review: In most soils, changes in total volume are associated with reductions in void volume. The volume change of the

### ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction

### BLOOD CIRCULATION. Department of Biomedical Sciences Medical University of Lodz

BLOOD CIRCULATION Department of Biomedical Sciences Medical University of Lodz CONSTRUCTION OF THE CIRCULATORY SYSTEM Circulatory System VESSELS CONSTRUCTION HEART The primary function of the heart is

### Principles of Ground-Water Flow

Princiles of Ground-Water Flow I. Introduction A. Energy Distribution in Ground Water 1. Mechanical. Thermal 3. Chemical B. Energy Disequilibrium 1. Satially variable distribution of energy in system a.

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur

Module Te Science of Surface and Ground Water Version CE IIT, Karagpur Lesson 6 Principles of Ground Water Flow Version CE IIT, Karagpur Instructional Objectives On completion of te lesson, te student

### I SOIL WATER POTENTIAL

I SOIL WATER POTENTIAL 1.1. Introduction Soil water content is not sufficient to specify the entire status of water in soil. For example, if soils with a same water content but with different particle

### ME 305 Fluid Mechanics I. Part 4 Integral Formulation of Fluid Flow

ME 305 Fluid Mechanics I Part 4 Integral Formulation of Fluid Flow These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey

### Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

### PUMPS STEAM TURBINES BUILDING & FIRE WASTEWATER SERVICE PUMP CLINIC 22 VISCOSITY

PUMP CLINIC 22 VISCOSITY The viscosity of a fluid is that property which tends to resist a shearing force. It can be thought of as the internal friction resulting when one layer of fluid is made to move