# A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

Save this PDF as:

Size: px
Start display at page:

Download "A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension"

## Transcription

1 A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2

2 Objectives Have a working knowledge of the basic properties of fluids and understand the continuum approximation. Have a working knowledge of viscosity and the consequences of the frictional effects it causes in fluid flow. Calculate the capillary rise (or drop) in tubes due to the surface tension effect. 3

3 2 1 INTRODUCTION Property: Any characteristic of a system. Some familiar properties are pressure P, temperature T, volume V, and mass m. Properties are considered to be either intensive or extensive. Intensive properties: Those that are independent of the mass of a system, such as temperature, pressure, and density. Extensive properties: Those whose values depend on the size or extent of the system. Specific properties: Extensive properties per unit mass. Criterion to differentiate intensive and extensive properties. 4

4 Continuum Matter is made up of atoms that are widely spaced in the gas phase. Yet it is very convenient to disregard the atomic nature of a substance and view it as a continuous, homogeneous matter with no holes, that is, a continuum. The continuum idealization allows us to treat properties as point functions and to assume the properties vary continually in space with no jump discontinuities. This idealization is valid as long as the size of the system we deal with is large relative to the space between the molecules. This is the case in practically all problems. In this text we will limit our consideration to substances that can be modeled as a continuum. Despite the relatively large gaps between molecules, a substance can be treated as a continuum because of the very large number of molecules even in an extremely small volume. 5

5 2 2 DENSITY AND SPECIFIC GRAVITY Density Specific volume Specific gravity: The ratio of the density of a substance to the density of some standard substance at a specified temperature (usually water at 4 C). Specific weight: The weight of a unit volume of a substance. Density is mass per unit volume; specific volume is volume per unit mass. 7

6 Density of Ideal Gases Equation of state: Any equation that relates the pressure, temperature, and density (or specific volume) of a substance. Ideal-gas equation of state: The simplest and best-known equation of state for substances in the gas phase. R u : The universal gas constant The thermodynamic temperature scale in the SI is the Kelvin scale. In the English system, it is the Rankine scale. 8

7 Air behaves as an ideal gas, even at very high speeds. In this schlieren image, a bullet traveling at about the speed of sound bursts through both sides of a balloon, forming two expanding shock waves. The turbulent wake of the bullet is also visible. An ideal gas is a hypothetical substance that obeys the relation Pv = RT. The ideal-gas relation closely approximates the P-v-T behavior of real gases at low densities. At low pressures and high temperatures, the density of a gas decreases and the gas behaves like an ideal gas. In the range of practical interest, many familiar gases such as air, nitrogen, oxygen, hydrogen, helium, argon, neon, and krypton and even heavier gases such as carbon dioxide can be treated as ideal gases with negligible error. Dense gases such as water vapor in steam power plants and refrigerant vapor in refrigerators, however, should not be treated as ideal gases since they usually exist at a state near saturation. 9

8 2 3 VAPOR PRESSURE AND CAVITATION Saturation temperature T sat : The temperature at which a pure substance changes phase at a given pressure. Saturation pressure P sat : The pressure at which a pure substance changes phase at a given temperature. Vapor pressure (P v ): The pressure exerted by its vapor in phase equilibrium with its liquid at a given temperature. It is identical to the saturation pressure P sat of the liquid (P v =P sat ). Partial pressure: The pressure of a gas or vapor in a mixture with other gases. For example, atmospheric air is a mixture of dry air and water vapor, and atmospheric pressure is the sum of the partial pressure of dry air and the partial pressure of water vapor. 11

9 The vapor pressure (saturation pressure) of a pure substance (e.g., water) is the pressure exerted by its vapor molecules when the system is in phase equilibrium with its liquid molecules at a given temperature. 12

10 There is a possibility of the liquid pressure in liquid-flow systems dropping below the vapor pressure at some locations, and the resulting unplanned vaporization. The vapor bubbles (called cavitation bubbles since they form cavities in the liquid) collapse as they are swept away from the low-pressure regions, generating highly destructive, extremely high-pressure waves. This phenomenon, which is a common cause for drop in performance and even the erosion of impeller blades, is called cavitation, and it is an important consideration in the design of hydraulic turbines and pumps. Cavitation damage on a 16-mm by 23-mm aluminum sample tested at 60 m/s for 2.5 h. The sample was located at the cavity collapse region downstream of a cavity generator specifically designed to produce high damage potential. 13

11 14

12 2 4 ENERGY AND SPECIFIC HEATS Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential, electric, magnetic, chemical, and nuclear, and their sum constitutes the total energy, E of a system. Thermodynamics deals only with the change of the total energy. Macroscopic forms of energy: Those a system possesses as a whole with respect to some outside reference frame, such as kinetic and potential energies. Microscopic forms of energy: Those related to the molecular structure of a system and the degree of the molecular activity. Internal energy, U: The sum of all the microscopic forms of energy. Kinetic energy, KE: The energy that a system possesses as a result of its motion relative to some reference frame. Potential energy, PE: The energy that a system possesses as a result of its elevation in a gravitational field. The macroscopic energy of an object changes with velocity and elevation. 15

13 Enthalpy Energy of a flowing fluid P/ is the flow energy, also called the flow work, which is the energy per unit mass needed to move the fluid and maintain flow. for a P = const. process For a T = const. process The internal energy u represents the microscopic energy of a nonflowing fluid per unit mass, whereas enthalpy h represents the microscopic energy of a flowing fluid per unit mass. 16

14 Specific Heats Specific heat at constant volume, c v : The energy required to raise the temperature of the unit mass of a substance by one degree as the volume is maintained constant. Specific heat at constant pressure, c p : The energy required to raise the temperature of the unit mass of a substance by one degree as the pressure is maintained constant. Specific heat is the energy required to raise the temperature of a unit mass of a substance by one degree in a specified way. Constantvolume and constantpressure specific heats c v and c p (values are for helium gas). 17

15 2 5 COMPRESSIBILITY AND SPEED OF SOUND Coefficient of Compressibility We know from experience that the volume (or density) of a fluid changes with a change in its temperature or pressure. Fluids usually expand as they are heated or depressurized and contract as they are cooled or pressurized. But the amount of volume change is different for different fluids, and we need to define properties that relate volume changes to the changes in pressure and temperature. Two such properties are: the bulk modulus of elasticity the coefficient of volume expansion. Fluids, like solids, compress when the applied pressure is 18 increased from P 1 to P 2.

16 Coefficient of compressibility (also called the bulk modulus of compressibility or bulk modulus of elasticity) for fluids The coefficient of compressibility represents the change in pressure corresponding to a fractional change in volume or density of the fluid while the temperature remains constant. What is the coefficient of compressibility of a truly incompressible substance (v = constant)? A large value of indicates that a large change in pressure is needed to cause a small fractional change in volume, and thus a fluid with a large is essentially incompressible. This is typical for liquids, and explains why liquids are usually considered to be incompressible. 19

17 Water hammer: Characterized by a sound that resembles the sound produced when a pipe is hammered. This occurs when a liquid in a piping network encounters an abrupt flow restriction (such as a closing valve) and is locally compressed. The acoustic waves that are produced strike the pipe surfaces, bends, and valves as they propagate and reflect along the pipe, causing the pipe to vibrate and produce the familiar sound. Water hammering can be quite destructive, leading to leaks or even structural damage. The effect can be suppressed with a water hammer arrestor. Water hammer arrestors: (a) A large surge tower built to protect the pipeline against water hammer damage. (b) Much smaller arrestors used for supplying water to a household 20 washing machine.

18 The coefficient of compressibility of an ideal gas is equal to its absolute pressure, and the coefficient of compressibility of the gas increases with increasing pressure. The percent increase of density of an ideal gas during isothermal compression is equal to the percent increase in pressure. Isothermal compressibility: The inverse of the coefficient of compressibility. The isothermal compressibility of a fluid represents the fractional change in volume or density corresponding to a unit change in pressure. 21

19 Coefficient of Volume Expansion The density of a fluid depends more strongly on temperature than it does on pressure. The variation of density with temperature is responsible for numerous natural phenomena such as winds, currents in oceans, rise of plumes in chimneys, the operation of hot-air balloons, heat transfer by natural convection, and even the rise of hot air and thus the phrase heat rises. To quantify these effects, we need a property that represents the variation of the density of a fluid with temperature at constant pressure. Natural convection over a woman s hand. 22

20 The coefficient of volume expansion (or volume expansivity): The variation of the density of a fluid with temperature at constant pressure. A large value of for a fluid means a large change in density with temperature, and the product T represents the fraction of volume change of a fluid that corresponds to a temperature change of T at constant pressure. The volume expansion coefficient of an ideal gas (P = RT ) at a temperature T is equivalent to the inverse of the temperature: The coefficient of volume expansion is a measure of the change in volume of a substance with temperature at constant pressure. 23

21 In the study of natural convection currents, the condition of the main fluid body that surrounds the finite hot or cold regions is indicated by the subscript infinity to serve as a reminder that this is the value at a distance where the presence of the hot or cold region is not felt. In such cases, the volume expansion coefficient can be expressed approximately as The combined effects of pressure and temperature changes on the volume change of a fluid can be determined by taking the specific volume to be a function of T and P. The fractional change in volume (or density) due to changes in pressure and temperature can be expressed approximately as 24

22 25

23 26

24 The variation of the coefficient of volume expansion of water with temperature in the range of 20 C to 50 C. 27

25 Speed of Sound and Mach Number Speed of sound (sonic speed): The speed at which an infinitesimally small pressure wave travels through a medium. Control volume moving with the small pressure wave along a duct. For any fluid For an ideal gas Propagation of a small pressure wave along a duct. 28

26 Mach number Ma: The ratio of the actual speed of the fluid (or an object in still fluid) to the speed of sound in the same fluid at the same state. The Mach number depends on the speed of sound, which depends on the state of the fluid. The speed of sound changes with temperature and varies with the fluid. The Mach number can be different at different temperatures even if the flight speed is the same. 29

27 30

28 2 6 VISCOSITY Viscosity: A property that represents the internal resistance of a fluid to motion or the fluidity. Drag force: The force a flowing fluid exerts on a body in the flow direction. The magnitude of this force depends, in part, on viscosity The viscosity of a fluid is a measure of its resistance to deformation. Viscosity is due to the internal frictional force that develops between different layers of fluids as they are forced to move relative to each other. A fluid moving relative to a body exerts a drag force on the body, partly because of friction caused by viscosity. 31

29 Newtonian fluids: Fluids for which the rate of deformation is proportional to the shear stress. Shear stress The behavior of a fluid in laminar flow between two parallel plates when the upper plate moves with a constant velocity. Shear force coefficient of viscosity Dynamic (absolute) viscosity kg/m s or N s/m 2 or Pa s 1 poise = 0.1 Pa s 32

30 The rate of deformation (velocity gradient) of a Newtonian fluid is proportional to shear stress, and the constant of proportionality is the viscosity. Variation of shear stress with the rate of deformation for Newtonian and non-newtonian fluids (the slope of a curve at a point is the apparent viscosity of the fluid at that point). 33

31 Kinematic viscosity m 2 /s or stoke 1 stoke = 1 cm 2 /s For liquids, both the dynamic and kinematic viscosities are practically independent of pressure, and any small variation with pressure is usually disregarded, except at extremely high pressures. For gases, this is also the case for dynamic viscosity (at low to moderate pressures), but not for kinematic viscosity since the density of a gas is proportional to its pressure. For gases: Dynamic viscosity, in general, does not depend on pressure, but kinematic viscosity does. For liquids 34

32 The viscosity of liquids decreases and the viscosity of gases increases with temperature. The viscosity of a fluid is directly related to the pumping power needed to transport a fluid in a pipe or to move a body through a fluid. Viscosity is caused by the cohesive forces between the molecules in liquids and by the molecular collisions in gases, and it varies greatly with temperature. In a liquid, the molecules possess more energy at higher temperatures, and they can oppose the large cohesive intermolecular forces more strongly. As a result, the energized liquid molecules can move more freely. In a gas, the intermolecular forces are negligible, and the gas molecules at high temperatures move randomly at higher velocities. This results in more molecular collisions per unit volume per unit time and therefore in greater resistance to flow. 35

33 The variation of dynamic (absolute) viscosity of common fluids with temperature at 1 atm (1 N s/m 2 = 1kg/m s = lbf s/ft 2 ) 36

34 The variation of dynamic (absolute) viscosity of common fluids with temperature at 1 atm (1 N s/m 2 = 1 kg/m s = lbf s/ft 2 ). 37

35 L length of the cylinder number of revolutions per unit time This equation can be used to calculate the viscosity of a fluid by measuring torque at a specified angular velocity. Therefore, two concentric cylinders can be used as a viscometer, a device that measures viscosity. 38

36 39

37 2 7 SURFACE TENSION AND CAPILLARY EFFECT Liquid droplets behave like small balloons filled with the liquid on a solid surface, and the surface of the liquid acts like a stretched elastic membrane under tension. The pulling force that causes this tension acts parallel to the surface and is due to the attractive forces between the molecules of the liquid. The magnitude of this force per unit length is called surface tension (or coefficient of surface tension) and is usually expressed in the unit N/m. This effect is also called surface energy [per unit area] and is expressed in the equivalent unit of N m/m 2. Some consequences of surface tension. 40

38 Attractive forces acting on a liquid molecule at the surface and deep inside the liquid. Stretching a liquid film with a U- shaped wire, and the forces acting on the movable wire of length b. Surface tension: The work done per unit increase in the surface area of the liquid. 41

39 The free-body diagram of half a droplet or air bubble and half a soap bubble. 42

40 Capillary effect: The rise or fall of a liquid in a small-diameter tube inserted into the liquid. Capillaries: Such narrow tubes or confined flow channels. The capillary effect is partially responsible for the rise of water to the top of tall trees. Meniscus: The curved free surface of a liquid in a capillary tube. The strength of the capillary effect is quantified by the contact (or wetting) angle, defined as the angle that the tangent to the liquid surface makes with the solid surface at the point of contact. Capillary Effect The contact angle for wetting and nonwetting fluids. The meniscus of colored water in a 4-mm-inner-diameter glass tube. Note that the edge of the meniscus meets the wall of the capillary tube at a very small contact angle. 43

41 The capillary rise of water and the capillary fall of mercury in a smalldiameter glass tube. The forces acting on a liquid column that has risen in a tube due to the capillary effect. Capillary rise is inversely proportional to the radius of the tube and density of the liquid. 44

42 45

43 46

44 47

45 Summary Introduction Continuum Density and Specific Gravity Density of Ideal Gases Vapor Pressure and Cavitation Energy and Specific Heats Compressibility and Speed of Sound Coefficient of Compressibility Coefficient of Volume Expansion Speed of Sound and Mach Number Viscosity Surface Tension and Capillary Effect 48

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### Basic Fluid Mechanics. Prof. Young I Cho

Basic Fluid Mechanics MEM 220 Prof. Young I Cho Summer 2009 Chapter 1 Introduction What is fluid? Give some examples of fluids. Examples of gases: Examples of liquids: What is fluid mechanics? Mechanics

### Chapter (1) Fluids and their Properties

Chapter (1) Fluids and their Properties Fluids (Liquids or gases) which a substance deforms continuously, or flows, when subjected to shearing forces. If a fluid is at rest, there are no shearing forces

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

### Characteristics of a fluid

Characteristics of a fluid Fluids are divided into liquids and gases. A liquid is hard to compress and as in the ancient saying Water takes the shape of the vessel containing it, it changes its shape according

### Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### Fluid Mechanics Definitions

Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V \$0& #V ) Specific Gravity

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 1 - PHYSICAL PROPERTIES AND CHARACTERISTIC BEHAVIOUR OF FLUIDS TUTORIAL 1 - SURFACE TENSION

### CHAPTER 3 PROPERTIES OF NATURAL GASES

CHAPTER 3 PROPERTIES OF NATURAL GASES The behavior of natural gas, whether pure methane or a mixture of volatile hydrocarbons and the nonhydrocarbons nitrogen, carbon dioxide, and hydrogen sulfide, must

### PROPERTIES OF PURE SUBSTANCES

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu University of Gaziantep Copyright

### These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

### Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 18 To relate the

### SURFACE TENSION. Definition

SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting

### 1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

### = 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Final Exam Review Questions PHY Final Chapters

Final Exam Review Questions PHY 2425 - Final Chapters Section: 17 1 Topic: Thermal Equilibrium and Temperature Type: Numerical 12 A temperature of 14ºF is equivalent to A) 10ºC B) 7.77ºC C) 25.5ºC D) 26.7ºC

### 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Gases A Gas Has neither a definite volume nor shape. Uniformly fills any container.

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc.

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law Units of Chapter 17 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal

### FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

### E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

### 7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

### Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount

Tro, Chemistry: A Molecular Approach 1 Surface Tension surface tension is a property of liquids that results from the tendency of liquids to minimize their surface area in order to minimize their surface

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### Physics Final Exam Chapter 13 Review

Physics 1401 - Final Exam Chapter 13 Review 11. The coefficient of linear expansion of steel is 12 10 6 /C. A railroad track is made of individual rails of steel 1.0 km in length. By what length would

### 1.1 Thermodynamics and Energy

1.1 Thermodynamics and Energy What is Thermodynamics? Essentially, thermodynamics can be defined as the study of energy. Granted, this is a pretty broad definition, which suits it well, because thermodynamics

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

### 10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

### Figure 10.3 A mercury manometer. This device is sometimes employed in the laboratory to measure gas pressures near atmospheric pressure.

Characteristics of Gases Practice Problems A. Section 10.2 Pressure Pressure Conversions: 1 ATM = 101.3 kpa = 760 mm Hg (torr) SAMPLE EXERCISE 10.1 Converting Units of Pressure (a) Convert 0.357 atm to

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Chapter 3 Properties of A Pure Substance

Chapter 3 Properties of A Pure Substance Pure substance: A pure substance is one that has a homogeneous and invariable chemical composition. Air is a mixture of several gases, but it is considered to be

### 1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

### Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

### An increase in temperature causes an increase in pressure due to more collisions.

SESSION 7: KINETIC THEORY OF GASES Key Concepts In this session we will focus on summarising what you need to know about: Kinetic molecular theory Pressure, volume and temperature relationships Properties

### Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0

viscosity_01 Determine the magnitude and direction of the shear stress that the water applies: a. to the base b. to the free surface free surface U y x h u water u U y y 2 h h 2 2U base: yx y 0 h free

### Temperature and Heat

Temperature and Heat Foundation Physics Lecture 2.4 26 Jan 10 Temperature, Internal Energy and Heat What is temperature? What is heat? What is internal energy? Temperature Does a glass of water sitting

### Thermodynamics: The Kinetic Theory of Gases

Thermodynamics: The Kinetic Theory of Gases Resources: Serway The Kinetic Theory of Gases: 10.6 AP Physics B Videos Physics B Lesson 5: Mechanical Equivalent of Heat Physics B Lesson 6: Specific and Latent

### FXA 2008. Candidates should be able to : Describe solids, liquids and gases in terms of the spacing, ordering and motion of atoms or molecules.

UNIT G484 Module 3 4.3.1 Solid, liquid and gas 1 Candidates should be able to : DESCRIPTION OF SOLIDS, LIQUIDS AND GASES Describe solids, liquids and gases in terms of the spacing, ordering and motion

### Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

### CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

### CHAPTER. Properties of Pure Substances

CHAPTER 2 Properties of Pure Substances A Pure Substance Is a substance that is chemically homogenous and fixed in chemical composition.(e.g. water, nitrogen, air & etc.) mixture of oil and water is not

### Type: Double Date: Kinetic Energy of an Ideal Gas II. Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (28, 29, 31, 37)

Type: Double Date: Objective: Kinetic Energy of an Ideal Gas I Kinetic Energy of an Ideal Gas II Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (8, 9, 31, 37) AP Physics Mr. Mirro Kinetic Energy

### VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### Why Study Fluids? Solids and How They Respond to Forces. Solids and How They Respond to Forces. Crystal lattice structure:

States of Matter Gas In a gas, the molecules are far apart and the forces between them are very small Solid In a solid, the molecules are very close together, and the form of the solid depends on the details

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow

FLUID DYNAMICS We will deal with Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### Kinetic Theory of Gases

Kinetic Theory of Gases Important Points:. Assumptions: a) Every gas consists of extremely small particles called molecules. b) The molecules of a gas are identical, spherical, rigid and perfectly elastic

### Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others?

CHAPTER 5: Gases Chemistry of Gases Pressure and Boyle s Law Temperature and Charles Law The Ideal Gas Law Chemical Calculations of Gases Mixtures of Gases Kinetic Theory of Gases Real Gases Gases The

### Tutorial 6 GASES. PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg. STP: Standard Temperature and Pressure: 273 K and 1 atm (or 760 mm Hg)

T-41 Tutorial 6 GASES Before working with gases some definitions are needed: PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg TEMPERATURE: Kelvin, K, which is o C + 273 STP: Standard Temperature and Pressure:

### Gas - a substance that is characterized by widely separated molecules in rapid motion.

Chapter 10 - Gases Gas - a substance that is characterized by widely separated molecules in rapid motion. Mixtures of gases are uniform. Gases will expand to fill containers (compare with solids and liquids

### Contents. Microfluidics - Jens Ducrée Fluids: Surface Tension 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU Introduction A fluid cannot resist a shear stress

### The First Law of Thermodynamics: Closed Systems. Heat Transfer

The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained

### Typhoon Haiyan 1. Force of wind blowing against vertical structure. 2. Destructive Pressure exerted on Buildings

Typhoon Haiyan 1. Force of wind blowing against vertical structure 2. Destructive Pressure exerted on Buildings 3. Atmospheric Pressure variation driving the Typhoon s winds 4. Energy of Typhoon 5. Height

### Humidity, Evaporation, and

Humidity, Evaporation, and Boiling Bởi: OpenStaxCollege Dew drops like these, on a banana leaf photographed just after sunrise, form when the air temperature drops to or below the dew point. At the dew

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### CHAPTER 25 IDEAL GAS LAWS

EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

### CO 2 41.2 MPa (abs) 20 C

comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

### Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0

### Chapter 18. The Micro/Macro Connection

Chapter 18. The Micro/Macro Connection Heating the air in a hot-air balloon increases the thermal energy of the air molecules. This causes the gas to expand, lowering its density and allowing the balloon

### Physics 2AB Notes - 2012. Heating and Cooling. The kinetic energy of a substance defines its temperature.

Physics 2AB Notes - 2012 Heating and Cooling Kinetic Theory All matter is made up of tiny, minute particles. These particles are in constant motion. The kinetic energy of a substance defines its temperature.

### A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

### Chapter 3 Temperature and Heat

Chapter 3 Temperature and Heat In Chapter, temperature was described as an intensive property of a system. In common parlance, we understand temperature as a property which is related to the degree of

### Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids 13-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can

### Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,

### KINETIC THEORY OF GASES. Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure.

KINETIC THEORY OF GASES Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure. Charle s Law: At constant pressure volume of a given mass of gas is directly

### Chapter 3 Process Variables. Mass and Volume

Chapter 3 Process Variables Process: to a chemical engineer, the set of tasks or operations that accomplish a chemical or material transformation to produce a product Feed or inputs: raw materials and

### Unit 3: States of Matter Practice Exam

Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

### Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

### Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi

Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi Module No. #03 Lecture - 08 So, last time we were talking about

### 7.2.2 Changing State. 43 minutes. 56 marks. Page 1 of 17

7.2.2 Changing State 43 minutes 56 marks Page 1 of 17 Q1. Air is a gas at room temperature. The chemical formulae below show some of the substances in the air. Ar CO 2 H 2 O N 2 Ne O 2 (a) Put these formulae

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### The Second Law of Thermodynamics

The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

### Pressure drop in pipes...

Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

### Diffusion and Fluid Flow

Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

### AS CHALLENGE PAPER 2014

AS CHALLENGE PAPER 2014 Name School Total Mark/50 Friday 14 th March Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

### Kinetic Molecular Theory

Kinetic Molecular Theory Particle volume - The volume of an individual gas particle is small compaired to that of its container. Therefore, gas particles are considered to have mass, but no volume. There

### Sample Exercise 10.1 Converting Pressure Units

Sample Exercise 10.1 Converting Pressure Units (a) Convert 0.357 atm to torr. (b) Convert 6.6 10 2 torr to atmospheres. (c) Convert 147.2 kpa to torr. Solution Analyze In each case we are given the pressure