# v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

Size: px
Start display at page:

Download "v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review"

Transcription

1 L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review A mechanical wave is a disturbance that travels through a medium solids, liquids or gases it is a vibration that propagates The disturbance moves because of the elastic nature of the material As the disturbance moves, the parts of the material (segment of string, air molecules) execute harmonic motion (move up and down or back and forth) transverse wave longitudinal wave transverse & longitudinal waves Harmonic waves the string motion in vertical but the wave moves in the horizontal (perpendicular) direction transverse wave the coils of the slinky move along the same direction (horizontal) as the wave longitudinal wave λ each segment of the string undergoes simple harmonic motion as the wave passes by Look at a snapshot of the string at some time distance between successive peaks is called the WAVELEGTH λ (lambda), it is measured in meters or cm λ The golden rule for waves The golden rule is the relationship between the speed (v) of the wave, the wavelength (λ) and the period (T) or frequency ( f ). (recall that T = 1 / f, f = 1/T ) it follows from speed = distance / time the wave travels one wavelength in one period, so wave speed v = λ / T, but since f = 1 / T, we have v = λ f this is the Golden Rule for waves Example: wave on a string 2 cm 2 cm 2 cm A wave moves on a string at a speed of 4 cm/s A snapshot of the motion shows that the wavelength,λ is 2 cm, what is the frequency, ƒ? v = λ ƒ, so ƒ = v λ = (4 cm/s ) / (2 cm) = 2 Hz T = 1 / f = 1 / (2 Hz) = 0.5 s

2 SOUD WAVES Sound and Music the diaphragm of The speaker moves in and out P atm S longitudinal pressure disturbances in a gas the air molecules jiggle back and forth in the same direction as the wave Sound waves cannot propagate in a vacuum DEMO Sound pressure waves in a solid, liquid or gas The speed of sound v s Air at 20 C: 343 m/s = 767 mph 1/5 mile/sec Water at 20 C: 1500 m/s copper: 5000 m/s Depends on density and temperature 5 second rule for thunder and lightening Why do I sound funny when I breath helium? Sound travels twice as fast in helium, because Helium is lighter than air Remember the golden rule v s = λ ƒ The wavelength of the sound waves you make with your voice is fixed by the size of your mouth and throat cavity. Since λ is fixed and v s is higher in He, the frequencies of your sounds is twice as high in helium! Tuning forks make sound waves The vibration of the fork causes the air near it to vibrate The length of the fork determines the frequency longer fork lower f shorter fork higher f It produces a pure pitch single frequency Stringed instruments Vibration modes of a string Three types Plucked: guitar, bass, harp, harpsichord Bowed: violin, viola, cello, bass Struck: piano All use strings that are fixed at both ends Use different diameter strings (mass per unit length is different) The string tension is adjustable - tuning A A L A L Fundamental mode Wavelength = 2 L Frequency = f o First harmonic mode Wavelength = L Frequency = 2 f o = nodes, A = antinodes

3 Standing waves Vibration frequencies At the ODE positions, the string does not move At the ATIODES the string moves up and down harmonically Only certain wavelengths can fit into the distance L The frequency is determined by the velocity and mode number (wavelength) In general, f = v / λ, where v is the propagation speed of the string The propagation speed depends on the diameter and tension Modes Fundamental: f o = v / 2L First harmonic: f 1 = v / L = 2 f o The effective length can be changed by the musician fingering the strings Bowed instruments In violins, violas, cellos and basses, a bow made of horse hair is used to excite the strings into vibration Each of these instruments are successively bigger (longer and heavier strings). The shorter strings make the high frequencies and the long strings make the low frequencies Bowing excites many vibration modes simultaneously mixture of tones (richness) Organ pipes The air pressure inside the pipe can vibrate, in some places it is high and in other places low Depending on the length of the pipe, various resonant modes are excited, just like blowing across a pop bottle The long pipes make the low notes, the short pipes make the high notes St. Vincent s Episcopal Church in Bedford, TX Gravissima 8.2 Hz 4400 Hz Beats wave interference Waves show a special property called interference When two waves are combined together, the waves can add or subtract We call this constructive and destructive interference When a wave is launched on a string it can reflect back from the far end. The reflected wave can combine with the original wave to make a standing wave

4 Constructive interference Launch 2 up-going pulses on string Destructive interference Launch 1 up-going and 1 down-going pulses on string Combining 2 waves of the same frequency Waves add to double amplitude waves add to give zero amplitude Red + Blue Combining 2 waves of slightly different frequencies Room Acoustics Destructive interference accounts for bad room acoustics Sound that bounces off a wall can interfere destructively (cancel out) sound from the speakers resulting in dead spots Beats Red + Blue Wave interference can be used to eliminate noise anti-noise technology Take one wave, turn it upside down (invert its phase) then add it to the original wave The Doppler Effect If a source of sound is moving toward you, you hear a higher frequency than when it is at rest If a source of sound is moving away from you, you hear a lower frequency than when it is at rest You can hear this effect with sirens on fire engines of train whistles A similar effect occurs with light waves and radar waves oise elimination headphones

5 Doppler effect Radar guns The Doppler effect works for all kinds of waves, including light waves and radar When radar waves bounce off a moving object (echo) the frequency of the reflected radar changes by an amount that depends on how fast the object is moving. The detector senses the frequency shift and translates this into a speed.

### 1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

### Sound and stringed instruments

Sound and stringed instruments Lecture 14: Sound and strings Reminders/Updates: HW 6 due Monday, 10pm. Exam 2, a week today! 1 Sound so far: Sound is a pressure or density fluctuation carried (usually)

### AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

### The Physics of Guitar Strings

The Physics of Guitar Strings R. R. McNeil 1. Introduction The guitar makes a wonderful device to demonstrate the physics of waves on a stretched string. This is because almost every student has seen a

### Waves and Sound. AP Physics B

Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of

### Waves-Wave Characteristics

1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

### Chapter 17: Change of Phase

Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

### PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction Name Constants and Conversion Factors Speed of sound in Air œ \$%!7Î= "'!*7/>/

### Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

### Chapter 21 Study Questions Name: Class:

Chapter 21 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a fire engine is traveling toward you, the Doppler

### Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

### The Sonometer The Resonant String and Timbre Change after plucking

The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes

### physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

### Standing Waves on a String

1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

### Waves Sound and Light

Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

### Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

### Resonance in a Closed End Pipe

Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the

### Giant Slinky: Quantitative Exhibit Activity

Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the

Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

### UNIT 1: mechanical waves / sound

1. waves/intro 2. wave on a string 3. sound waves UNIT 1: mechanical waves / sound Chapter 16 in Cutnell, Johnson: Physics, 8th Edition Properties of waves, example of waves (sound. Light, seismic), Reflection,

### Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

### Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related?

Wave Properties Student Worksheet Answer the following questions during or after your study of Wave Properties. 1. A person standing 385 m from a cliff claps her hands loudly, only to hear the sound return

### Mathematical Harmonies Mark Petersen

1 Mathematical Harmonies Mark Petersen What is music? When you hear a flutist, a signal is sent from her fingers to your ears. As the flute is played, it vibrates. The vibrations travel through the air

### Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t))

Experiment 1: SOUND Introduction Sound is classified under the topic of mechanical waves. A mechanical wave is a term which refers to a displacement of elements in a medium from their equilibrium state,

### Engineering with Sound Lesson Plan

Type of lesson: Challenge Teaching Plan: Engineering with Sound Lesson Plan Goal The goal of this lesson is to introduce the students to sound and its properties and have them apply what they learn to

### Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

### Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then

### Solution Derivations for Capa #13

Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review of Chapter 25 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The time needed for a wave to make one complete cycle is its b. velocity.

### A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position.

A string is clamped at both ends and then plucked so that it vibrates in a standing wave between two extreme positions a and c. (Let upward motion correspond to positive velocities.) When the

### Practice Test SHM with Answers

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### 16.2 Periodic Waves Example:

16.2 Periodic Waves Example: A wave traveling in the positive x direction has a frequency of 25.0 Hz, as in the figure. Find the (a) amplitude, (b) wavelength, (c) period, and (d) speed of the wave. 1

### 18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

### PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

### www.ptg.org Visit the Piano Learning Center of the Piano Technicians Guild at www.ptg.org for more fun ways to learn about the piano.

Piano Science Connect Music and Science Age: Elementary, Middle School The piano is one of the most interesting musical instruments you can learn to play. www.ptg.org It is also one of the most versatile

### PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

### The Physics of Music - Physics 15 University of California, Irvine. Instructor: David Kirkby dkirkby@uci.edu. Lecture 14.

Miscellaneous Office hours this week are Wed 9-10am, 3-4pm. Lecture 14 Percussion Instruments Keyboard Instruments Office hours next week are Wed 2-4pm. There is a typo in 2(b) of Problem Set #6. The length

### Experiment 5. Lasers and laser mode structure

Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

Goals: Lecture 29 Chapter 20 Work with a ew iportant characteristics o sound waves. (e.g., Doppler eect) Chapter 21 Recognize standing waves are the superposition o two traveling waves o sae requency Study

### Teaching Fourier Analysis and Wave Physics with the Bass Guitar

Teaching Fourier Analysis and Wave Physics with the Bass Guitar Michael Courtney Department of Chemistry and Physics, Western Carolina University Norm Althausen Lorain County Community College This article

### Acoustics. Lecture 2: EE E6820: Speech & Audio Processing & Recognition. Spherical waves & room acoustics. Oscillations & musical acoustics

EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics

### Lecture 2: Acoustics

EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics 1 The wave equation Dan Ellis & Mike Mandel Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/ dpwe/e6820

### Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of

### Doppler Effect Plug-in in Music Production and Engineering

, pp.287-292 http://dx.doi.org/10.14257/ijmue.2014.9.8.26 Doppler Effect Plug-in in Music Production and Engineering Yoemun Yun Department of Applied Music, Chungwoon University San 29, Namjang-ri, Hongseong,

### Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)

L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### LAB #11: RESONANCE IN AIR COLUMNS

OBJECTIVES: LAB #11: RESONANCE IN AIR COLUMNS To determine the speed of sound in air by using the resonances of air columns. EQUIPMENT: Equipment Needed Qty Equipment Needed Qty Resonance Tube Apparatus

### Physics 101 Hour Exam 3 December 1, 2014

Physics 101 Hour Exam 3 December 1, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be shared. Please keep

### Exercises on Oscillations and Waves

Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium

### Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors

### Acoustics: the study of sound waves

Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,

I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### The Physics of Music: Brass Instruments. James Bernhard

The Physics of Music: Brass Instruments James Bernhard As a first approximation, brass instruments can be modeled as closed cylindrical pipes, where closed means closed at one end, open at the other Here

### SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

Fine Tuning By Alan Carruth Copyright 2000. All Rights Reserved. I've been working toward a rational understanding of guitar acoustics for nearly as long as I've been making guitars (more than twenty years

### Chapter 15, example problems:

Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

### Exam 4 Review Questions PHY 2425 - Exam 4

Exam 4 Review Questions PHY 2425 - Exam 4 Section: 12 2 Topic: The Center of Gravity Type: Conceptual 8. After a shell explodes at the top of its trajectory, the center of gravity of the fragments has

### Building a Guitar to Showcase High School Mathematics and Physics

Building a Guitar to Showcase High School Mathematics and Physics College of Engineering and Science Presented at the ASEE 8 t h Annual Workshop on K-12 Engineering Education Vancouver, Canada June 25,

### Musical Analysis and Synthesis in Matlab

3. James Stewart, Calculus (5th ed.), Brooks/Cole, 2003. 4. TI-83 Graphing Calculator Guidebook, Texas Instruments,1995. Musical Analysis and Synthesis in Matlab Mark R. Petersen (mark.petersen@colorado.edu),

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

### Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic

### Bass Guitar Investigation. Physics 498, Physics of Music Sean G. Ely Randall Fassbinder

Bass Guitar Investigation Physics 498, Physics of Music Sean G. Ely Randall Fassbinder May 14, 2009 Table of Contents 1. INTRODUCTION...1 2. EXPERIMENTAL SETUP AND PROCEDURE...1 2.1 PICKUP LOCATION...1

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### A-level PHYSICS (7408/1)

SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions

### Waveforms and the Speed of Sound

Laboratory 3 Seth M. Foreman February 24, 2015 Waveforms and the Speed of Sound 1 Objectives The objectives of this excercise are: to measure the speed of sound in air to record and analyze waveforms of

### Acoustics for Musicians

Unit 1: Acoustics for Musicians Unit code: QCF Level 3: Credit value: 10 Guided learning hours: 60 Aim and purpose J/600/6878 BTEC National The aim of this unit is to establish knowledge of acoustic principles

### All around us we see things that wiggle and jiggle. Even

VIBRATIONS AND WAVES Objectives Describe the period of a pendulum. (25.1) Describe the characteristics and properties of waves. (25.2) Describe wave motion. (25.3) Describe how to calculate the speed of

### Responsibility of all areas which could be addressed in this learning journey: Sciences experiences and outcomes:

1 Through this learning journey, learners will be given the opportunity to explore the nature of sound, waves and wave characteristics using a variety of ICT. The learning journey offers opportunities

### Physics 1230: Light and Color

Physics 1230: Light and Color Instructor: Joseph Maclennan TOPIC 3 - Resonance and the Generation of Light http://www.colorado.edu/physics/phys1230 How do we generate light? How do we detect light? Concept

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

### After a wave passes through a medium, how does the position of that medium compare to its original position?

Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

### LeadingEdge Systematic Approach. Room Acoustic Principles - Paper One. The Standing Wave Problem

LeadingEdge Systematic Approach Room Acoustic Principles - Paper One The Standing Wave Problem Sound quality problems caused by poor room acoustics. We all recognise that room acoustics can cause sound

### Waves and Light Extra Study Questions

Waves and Light Extra Study Questions Short Answer 1. Determine the frequency for each of the following. (a) A bouncing spring completes 10 vibrations in 7.6 s. (b) An atom vibrates 2.5 10 10 times in

### Sound absorption and acoustic surface impedance

Sound absorption and acoustic surface impedance CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Sound absorption and acoustic surface impedance

### Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power

Parameters used to completely characterize a sound wave Describing Sound Waves Chapter 3 Period Frequency Amplitude Power Intensity Speed Wave Length Period Defined as the time it take one wave vibrate

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device

### Hunting Bats. Diagnostic Ultrasound. Ultrasound Real-time modality

Diagnostik Ultrasound Basic physics, image reconstruction and signal processing Per Åke Olofsson Dpt of Biomedical Engineering, Malmö University Hospital, Sweden Ultrasound Real-time modality 17-WEEK FETAL

### Basic Acoustics and Acoustic Filters

Basic CHAPTER Acoustics and Acoustic Filters 1 3 Basic Acoustics and Acoustic Filters 1.1 The sensation of sound Several types of events in the world produce the sensation of sound. Examples include doors

### The Tuning CD Using Drones to Improve Intonation By Tom Ball

The Tuning CD Using Drones to Improve Intonation By Tom Ball A drone is a sustained tone on a fixed pitch. Practicing while a drone is sounding can help musicians improve intonation through pitch matching,

### APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

### Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

### How Waves Helped Win the War: Radar and Sonar in WWII

The Science and Technology of WWII How Waves Helped Win the War: Radar and sonar in WWII Objectives: 1. Students will learn some basic historical facts about the role of radar in the Battle of Britain

### The Physics of Sound

The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw

### Acousto-optic modulator

1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

### How does a microwave oven work?

last lecture Electromagnetic waves oscillating electric and magnetic fields c = c = 3x10 8 m/s or 186,282 miles/sec Radios using the tank circuit to emit and receive electromagnetic waves of a specific

### Sound and music. Key concepts of sound and music

Sound and music Introduction Why do we see lightning before we hear the thunder? How do we amplify sound and how do we reduce it? How is it we can hear at all? Sound is all around us every day and it is

### v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

### 226 Chapter 15: OSCILLATIONS

Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

### both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

### Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

### 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

### A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

### Periodic wave in spatial domain - length scale is wavelength Given symbol l y

1.4 Periodic Waves Often have situations where wave repeats at regular intervals Electromagnetic wave in optical fibre Sound from a guitar string. These regularly repeating waves are known as periodic

### Physics of Music: Making Waves in a Science Classroom. Rosalind Echols University City High School

Physics of Music: Making Waves in a Science Classroom Rosalind Echols University City High School Table of Contents Overview Rationale Objectives Strategies Lesson Plans References Annotated Teacher Resources

### From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly