DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS



Similar documents
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Intel s Revolutionary 22 nm Transistor Technology

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Analyzing Electrical Effects of RTA-driven Local Anneal Temperature Variation

Introduction to CMOS VLSI Design

Advanced VLSI Design CMOS Processing Technology

ECE 410: VLSI Design Course Introduction

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

IBS - Ion Beam Services

Graduate Student Presentations

Implementation Of High-k/Metal Gates In High-Volume Manufacturing

Nanotechnologies for the Integrated Circuits

Lezioni di Tecnologie e Materiali per l Elettronica

Integrated Circuits & Systems

The MOSFET Transistor

Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1

Comparison study of FinFETs: SOI vs. Bulk Performance, Manufacturing Variability and Cost

CONTENTS. Preface Energy bands of a crystal (intuitive approach)

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005

A Plasma Doping Process for 3D FinFET Source/ Drain Extensions

1.1 Silicon on Insulator a brief Introduction

ISOTROPIC ETCHING OF THE SILICON NITRIDE AFTER FIELD OXIDATION.

Solar Photovoltaic (PV) Cells

J I C S. ournal of ntegrated ircuits and ystems. Volume 5 Number 2 ISSN September

INF4420. Outline. Layout and CMOS processing technology. CMOS Fabrication overview. Design rules. Layout of passive and active componets.

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm

Winbond W2E512/W27E257 EEPROM

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Grad Student Presentation Topics PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory

Fabrication and Manufacturing (Basics) Batch processes

What is optical lithography? The optical system Production process Future and limits of optical lithography References. Optical lithography

What is this course is about? Design of Digital Circuitsit. Digital Integrated Circuits. What is this course is about?

Sheet Resistance = R (L/W) = R N L

EDC Lesson 12: Transistor and FET Characteristics EDCLesson12- ", Raj Kamal, 1

Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography

VLSI Fabrication Process

Supporting information

Damage-free, All-dry Via Etch Resist and Residue Removal Processes

ADVANCED WAFER PROCESSING WITH NEW MATERIALS. ASM International Analyst and Investor Technology Seminar Semicon West July 15, 2015

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

DEVELOPMENTS & TRENDS IN FEOL MATERIALS FOR ADVANCED SEMICONDUCTOR DEVICES Michael Corbett mcorbett@linx-consulting.com Semicon Taiwan2015

Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage

Silicon-On-Glass MEMS. Design. Handbook

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

Substrate maturity and readiness in large volume to support mass adoption of ULP FDSOI platforms. SOI Consortium Conference Tokyo 2016

Electron mobility in MOSFETs with ultrathin RTCVD silicon nitride/oxynitride stacked gate dielectrics

JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 3, JULY

MEMS Processes from CMP

Focused Ion beam nanopatterning: potential application in photovoltaics

Lisboa, July 2, Bioelectronics. Luís Alcácer. 2005, it - instituto de telecomunicações. Todos os direitos reservados.

Design, Development and Evaluation of a High Spatial- Density CMOS Chip for Bidirectional Communication with. Electrogenic Cells

3D NAND Technology Implications to Enterprise Storage Applications

Photolithography. Class: Figure Various ways in which dust particles can interfere with photomask patterns.

Case Study 2: Digital Micromirror Devices (DMD) Optical MEMS

Modeling the Characteristics of a High-k HfO 2 -Ta 2 O 5 Capacitor in Verilog-A

New materials on horizon for advanced logic technology in mobile era

Introduction to VLSI Programming. TU/e course 2IN30. Prof.dr.ir. Kees van Berkel Dr. Johan Lukkien [Dr.ir. Ad Peeters, Philips Nat.

Solid State Electronics and Photonics Electrical and Computer Engineering The Ohio State University

International Journal of Electronics and Computer Science Engineering 1482

Class 18: Memories-DRAMs

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process

Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

AN900 APPLICATION NOTE

Recent developments in high bandwidth optical interconnects. Brian Corbett.

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V

DESIGN CHALLENGES OF TECHNOLOGY SCALING

A 2.4GHz Cascode CMOS Low Noise Amplifier

Semiconductor doping. Si solar Cell

Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring

Unternehmerseminar WS 2009 / 2010

Area 3: Analog and Digital Electronics. D.A. Johns

AC coupled pitch adapters for silicon strip detectors

Fourth generation MOSFET model and its VHDL-AMS implementation

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Thin Is In, But Not Too Thin!

IMPACT OF THE HALO REGION ON FLOATING BODY EFFECTS IN TRIPLE GATE FINFETS

EECS 240 Topic 7: Current Sources

Etching Etch Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between

Title : Analog Circuit for Sound Localization Applications

High-Speed Electronics

J I C S. ournal of ntegrated ircuits and ystems. Volume 8 Number 1 ISSN March

On the Design and Characterization of Femtoampere Current-Mode Circuits

Mass production, R&D Failure analysis. Fault site pin-pointing (EM, OBIRCH, FIB, etc. ) Bottleneck Physical science analysis (SEM, TEM, Auger, etc.

MOS (metal-oxidesemiconductor) 李 2003/12/19

Silicon Drift Detector Product Brochure Update 2013

New Ferroelectric Material for Embedded FRAM LSIs

COMMON-SOURCE JFET AMPLIFIER

Winbond W971GG6JB-25 1 Gbit DDR2 SDRAM 65 nm CMOS DRAM Process

Transcription:

DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS Prof. Dr. João Antonio Martino Professor Titular Departamento de Engenharia de Sistemas Eletrônicos Escola Politécnica da Universidade de São Paulo, Brasil

DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS FAPESP Thematic Project 3 Universities: USP, UNICAMP, FEI Group leaders: Prof. Dr. João Antonio Martino (USP) Prof. Dr. Sebastião G. dos Santos Filho (USP) Prof. Dr. Antonio Carlos Seabra (USP) Prof. Dr. José Alexandre Diniz (UNICAMP) Prof. Dr. Marcelo Antonio Pavanello (FEI)

Keep increase of the number of components. Cost per components decreases! S. Deleonibus, Electronics Device Architectures for the Nano-CMOS Era, Pan Standford Publ., 2009 MOORE S LAW (Gordon Moore Intel) G.E. Moore, Cramming more components onto integrated circuits, Electronics Mag., vol. 38, pp. 114-117, 1965.

Microelectronic Revolution Example Intel 8008 (1972) 200 KHz 3.300 transistors 13 mm 2 30 year X 12.000 Intel Pentium 4 (2002) 2,2 GHz 42.000.000 transistors 146 mm 2 Double each 2 years MOORE S LAW

Microelectronic Laboratory at USP Clean Room Facilities

Microelectronic Laboratory at USP Measurements Rooms Microwave Measurement Systems Optical Measurements Systems Devices Characterization Laboratory

Bulk MOSFET Transistor (Standard) Gate Source Metal Oxide Drain N+ N+ P Circuit Cell = Transistor I DS V DS =Low Bulk I DS V Tn V GS G I DS D V DS Triode Saturation V GS2 V GS1 V GS3 >V GS2 V GS S V DS

Circuit Cell = Transistor Bulk MOSFET Transistor ( Polysilicon Gate ) Source Gate Metal Oxide N+ N+ Drain Gate (G) P Bulk Source (S) Drain (D) Fabricated at Polytechnic School University of São Paulo Master Degree João Antonio Martino (1984)

Polysilicon Gate NMOS Technology Brazil (USP) Dimensions: 3mm x 3mm 4 Resistors 5 Capacitors 8 Transistors nmos 1 Diode 1 Ring Oscilator (31 stages) 2 Inverters 2 Adders (Full and Half) (J.A.Martino Master degree - USP - 1984) Transistor

CMOS Technology - Brazil (USP) Dimensions: 3mm x 3mm 7 Van der Pauw structures e 2 Resistors 3 Kelvin structures 5 Capacitors 20 Transistors nmos 20 Transistors pmos 6 Diodes 1 Ring Oscilator(31 stages) 3 Inverters (J.A.Martino Ph.D - USP - 1988) Transistors

SOI CMOS Technology (0.5 µm) University of Sao Paulo IMEC/Belgium Dimension:10mm x 10mm 221 structures more than 1000 terminals Transistor array from L=10µm to 0.4µm (J.A.Martino - Livre Docência - USP/IMEC-Belgium - 1998)

SOI CMOS Technology Submic. (0.1 µm) - IMEC/Belgium Gate (V GF ) Source (V S ) Drain (V D ) N+ N P+ P P+ N N+ Buried Oxide Substrate Substrate (V GB ) Dimensions: 10mm x 10mm Transistor arrays from L=10µm to 0,08µm

Evolution of MOS Transistors G Gate Gate S D Gate Source Drain Gate Gate Source N+ N+ Source Drain Drain I D P BOX Buried Oxide Bulk 1 Gate Single Gate Bulk - Planar (1966) 1 Gate Single Gate SOI - Planar (IBM - 1998) 2 Gates FinFET Vertical-3D (Intel - 2012)

Double Gate Transistors (FinFET or 3D) Gate Drain I D Source Buried Oxide

Standard MOSFET versus FinFET(3D) Key Features of FinFET devices: SOI substrate; W Fin < 100nm; H Fin < 100nm; ADVANTAGES: Better control of short channel effects High current density (Higher conduction current per unit area of substrate) Quasi-ideal subthreshold slope

DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET (3D) TRANSISTORS FAPESP Thematic Project (2009-2013) 3 Universities: USP, UNICAMP, FEI Goal of this work: Development of new step process First Fabrication of SOI FinFET in Brazil Characterization (Electrical and Physical) Formation of qualified Human resource (Micro/Nanoelectronics)

Step by Step Step 1: Design of the fabrication process of SOI FinFET transistor (USP e UNICAMP). Step 2: Development of new step process (USP and UNICAMP). Step 3: Fabrication of SOI FinFET : (USP and UNICAMP). Step 4: Electrical Characterization of SOI FinFET.: (USP, UNICAMP and FEI) Step 5: Simulation of Numerical 3D SOI FinFET: (USP and FEI) Step 6: Modeling of SOI FinFET: (FEI) Step 7: Electrical Characterization of SOI FinFET as a function of temperature : (USP e FEI) Step 8: Reports: (USP, UNICAMP and FEI)

Special Characterizations (FEI and USP) DUV 193 nm lithography with resist and oxide hard mask trimming H fin =65 nm 1 nm interfacial oxide 2.3 nm HfSiON ALD deposition 5 nm TiN ALD deposition SOI wafer with t oxb =145 nm 100 nm polysilicon Undoped channel *N. Collaert et al., Symp. VLSI Tech., p. 108, 2005. NiSi in all electrodes

Special Characterizations (FEI and USP) Electrical Characterization of SOI FinFET as a function of temperature Digital performance Analog performance Radiation effects Noise analysis Modeling (only FEI) University of Sao Paulo

Special Characterizations (FEI and USP)

FinFET Fabrication with 3 masks First Mask (Active Region Definition): 1. E-beam lithography in a modified SEM (definition source/drain and fin line max space resolution: 30nm); 2. Mask transfer for Si layer by RIE Plasma processing; SiO 2 Si

FinFET Fabrication with 3 masks Mask 1 (Active Region Definition) SiO 2 Si

3. Gate oxidation (4.5nm); FinFET Fabrication with 3 masks Second Mask (Gate Definition): 4. Polycrystalline Silicon Deposition (500nm); 5. Poly-Si Phosphorous Doping; 6. E-beam lithography: Definition of Polycrystalline Silicon; Poly-Si Si SiO 2

FinFET Fabrication with 3 masks Poly-Si Si gate SiO 2 SOI SiO 2 Gate Definition Mask 2

FinFET Fabrication with 3 masks Third Mask (Metal Definition): 7. Ionic Implantation (Source/Drain); 8. Annealing (Doping Activation); 9. Aluminum Deposition; 10. E-beam Lithography: Metal Definition; Si Al Poly-Si SOI SiO 2

First FinFET Transistor (E-beam) Si Al Poly-Si SOI SiO 2 Metal definition Mask 3 Drain Gate Source

Electrical Characterization W FIN = 100nm, H FIN = 100nm, t ox = 4.5nm, t box = 200nm, L = 3.5µm, Gate electrode: Si-Poli I D (A) 1.6µ 1.4µ 1.2µ 1.0µ 800.0n 600.0n 400.0n 200.0n 0.0 V = 0V GB V = -5V GB V = -10V GB V = -15V GB V = -20V GB -1.0-0.5 0.0 0.5 1.0 V GS (V) I D (A) 1µ 100n 10n 1n 100p 10p 1p 100f -1.0-0.5 0.0 0.5 1.0 V GS (V) V = 0V GB V = -5V GB V = -10V GB V = -15V GB V = -20V GB First FinFET Transistor (E-beam)

Electrical Characterization W FIN = 100nm, H FIN = 100nm, t ox = 4.5nm, t box = 200nm, L = 3.5µm, Gate electrode: Si-Poli Drain Source Gate I D (A) 10.0µ V GS = -0,5V V GB =-15V V GS = -0,25V 8.0µ V GS = 0,0V V GS = 0,25V 6.0µ V GS = 0,5V V GS = 0,75V 4.0µ V GS = 1,0V 2.0µ 0.0 0.0 0.2 0.4 0.6 0.8 1.0 V DS (V) First FinFET Transistor (E-beam)

Fin Obtained by FIB Narrowing W with FIB

Focused Ion Beam (FIB) FAPESP PROJECT

Fin Obtained by FIB Lithography + RIE etch Narrowing W FIN with FIB

Fin Obtained by FIB W Fin ~ 100 nm

FinFET Transistor (FIB) Al Al Si Al Buried Oxide Buried Oxide Al TiN SiO 2 Si p Si bulk

First FinFET Transistor (FIB) W FIN = 50nm, H FIN = 300nm, t ox = 10nm, t box = 400nm, L = 15 µm Gate electrode: TiN 1µ I DS (A) 100n 10n 0.0 0.5 1.0 1.5 2.0 V GS (V) V DS = 0.5 V V DS = 1.0 V V DS = 1.5 V V DS = 2.0 V

First FinFET Transistor (FIB) W FIN = 50nm, H FIN = 300nm, t ox = 10nm, t box = 400nm, L = 15 µm Gate electrode: TiN 3.0µ V GS = 2 V I DS (A) 2.0µ 1.0µ 0.0 V GS = 0 V 0 1 2 3 V DS (V)

First FinFET (3D) Transistors Drain Gate Source USP (E-Beam) UNICAMP (FIB)

EXPECTED RESULTS (OBTAINED) Publication of at least 16 journal papers Real: 2009: 4; 2010: 9; 2011: 16; 2012: 14 (total = 43) Publication of at least 64 full paper in a Conference proceedings Real: 2009: 27; 2010: 34; 2011: 34; 2012: 46 (total = 141) Formation of at least 4 Ph.D students. Real: 2009: 1; 2010: 3; 2011: 1; 2012: 2 (total= 7) Formation of at least 8 Master students Real: 2009: 6; 2010: 3; 2011: 3; 2012: 0 (total = 12)

João Antonio Martino (LSI/USP) Sebastião Gomes dos Santos Filho (LSI/USP) José Alexandre Diniz (CCS/UNICAMP) Marcelo Antonio Pavanello (FEI) Antonio Carlos Seabra (LSI/USP) Victor Sonnenberg (LSI/USP) Paula G. D. Agopian (LSI/USP/FEI) Milene Galeti (LSI/USP) Michele Rodrigues (LSI/USP) Ricardo Rangel (LSI/USP) Mariana Pojar (LSI/USP) Pos-Doc Ioshiaki Doi (CCS/UNICAMP) Stanislav Moshkalev (CCS/UNICAMP) Renato Giacomini (FEI) Michelly de Souza (FEI) Pos-Doc Rodrigo Doria (FEI) Pos-Doc

Acknowledgements