Nanotechnologies for the Integrated Circuits
|
|
|
- Milton Stafford
- 10 years ago
- Views:
Transcription
1 Nanotechnologies for the Integrated Circuits September 23, 2015 Dr. Bertrand Cambou Professor of Practice NAU, Cybersecurity School of Informatics, Computing, and Cyber-Systems
2 Agenda The Market Silicon processing: the starting point Processor technology MEMS & Sensors Dynamic Random Access Memory Mass memory: Flash Important Research: new class of memories Nanotechnologies for Cybersecurity: PUFs
3 Semiconductor market: moderate growth
4 Semiconductor market: moderate growth
5 Silicon the perfect element 1- Abundant and cheap (28% earth composition by mass) 2- Mid column on periodic table; Oxidation state +/-4 3- Face Centered Cubic Crystal (Diamond) 4- Un-doped: Insulant MΩ s 5- Quantum Physics: Band gap 6- N/P-type doping (P, As, B) >>>Transistor 7- Strong Oxide SiO2 >>>MOS
6 Silicon the perfect element 1- Abundant and cheap (28% earth composition by mass) 2- Mid column on periodic table; Oxidation state +/-4 3- Face Centered Cubic Crystal (Diamond) 4- Un-doped: Insulant MΩ s 5- Quantum Physics: Band gap 6- N/P-type doping (P, As, B) >>>Transistor 7- Strong Oxide SiO2 >>>MOS Band gap analysis: Metal / Oxide / Silicon Conduction: Electrons - Band Gap: No conduction Metal Silicon Conduction: Holes +
7 CMOS Physics: Basics
8 CMOS Physics: Basics
9 Processing equipment & Materials Lithography: EUV Material: Bulk, Epitaxial deposition, SOI Doping: Ion Implantation Etching: Plasma Deposition: Plasma, MOCVD, Sputtering, Planarization: CMP Interconnect: W, CU, Ti, Co, Al, Ta. Dielectrics: Low k, High k, EUV: $200M
10 Processor Technology Moore and More
11 Processor Technology Cache memory Cache: SRAM Cell 70% of the footprint of a microprocessor is Cache
12 Processor Technology Trade off
13 Intense Research to shrink the CMOS
14 Analog devices MEMS Sensors Power devices: 1,000 V; 1,000 A RF devices: 1-100GHz MEMS (Micro-Electro-Mechanical-Systems) Gyroscope Accelerometer Sensors: Magnetic Sensors Electro-chemical Bio & Medical Sensors Opto-electronic Gyroscope Magnetic Sensor Chemical Sensor
15 DRAM Technology: a brutal business
16 DRAM: Nanotechnology + 3D 3D packaging 16 DRAMs + Logic
17 NAND Technology: Mass Memory solution
18 NAND : 3D stacks - 3bit/cell
19 SanDisk/Toshiba views: Emerging NV-Memories Emerging ReRAM
20 SanDisk/Toshiba views: ReRAM positioning
21 BREAKING NEWS FROM INTEL/MICRON July 27, 2015 Intel, Micron Launch "Bulk-Switching" ReRAM Peter ClarkeEETimes 7/28/2015 Intel Corp. and Micron Technology Inc. have launched a new class of non-volatile memory that they have called 3D Xpoint and which the companies said would be available as samples later this year for special customers. This is the introduction of the first new category of memory since the introduction of NAND flash in 1989! If the memory lives up to its promise of being up to 1000 times faster than NAND flash and 8 to 10 times denser than DRAM and therefore lower cost it could bring a major transformation in the electronics industry and to computer architectures for data centers and with possible application in solid-state drives. Durcan and Rob Crooke, general manager of the non-volatile memory group at Intel, revealed the memories on a 300mm wafer saying that while manufacturing would be done jointly the two companies would take 3D XPoint memories to market in 2016 developing products based on the technology separately. The prepared infographics suggest a resistive RAM with an in-built select diode allowing for a dense device structure. This would give it similarities to ReRAMs being developed by Crossbar Inc. (Santa Clara, Calif.). L-to-R. Rob Crooke, senior vice president at Intel and Mark Durcan, CEO of Micron Technology. 3D XPoint shown in diagramatic form with twoterminal select device stacked above two-terminal memory cell. So far one-bit per cell. Source: Intel. 300mm wafer bearing 3D XPoint 128Gbit memory ICs.
22 Various Resistive RAM candidates
23 Conductive Filament with dual states + ANODE ANODE ANODE S0LID ELECTROLYTE TiO2 Pt Pt FILAMENT CATHODE Pt - CATHODE CATHODE
24 Usage of Nanotechnology for Cyber-Security: Generation of PUF Integrated Circuits
25 Physically Unclonable Functions: Digital Fingerprint Terminal 3- Yes or No? PUF 2- PUF Response Server PUF component leveraging Nanotechnologies Exploit microscopic variations of nano-devices: generate digital fingerprint PUF Challenge: Initial print (or DNA ) of the component PUF Response: Print after activation Authentication: Secret identification of the hardware
26 PUF designed with Resistive RAM Memory based PUF Physical natural parameters subject to manufacturing variations can determine how to generate streams of 0s and 1s. This can create digital signatures exploitable as part of a PUF. Security with PUFs Challenges: generated with memories - stored in a server. Responses: generated by the same memory when activated. CRPs matching are checked by the server.
27 Experimental data: ReRAM samples Cu/TaOx/Pt resistive crossbar arrays have been fabricated on thermally oxidized Si wafers. The cross-section is shown (a), microscopic top-view of the array(b). Cu/TaO x /Pt switches rely on the formation/rupture of Conductive Filaments (CF) between the Cu and Pt electrodes. CF is being formed at Vset (c). When the voltage applied is swept positively, the current stays close to zero until V set is reached, at which a Cu CF is formed connecting the Cu and Pt electrodes, and the cell switches from a high resistive state, HRS (R off 100 MΩ) to a low state, LRS (R on 1,000 Ω); R off /R on With negative voltage is applied to LRS, CF ruptures at V reset and the cell switches to HRS state. The rupture is triggered by the current I reset = V reset /R on. For a set operation to logic state 1, the maximum voltage must be slightly larger than V set on each cell. The operation for writing a logic '0' requires a reset voltage slightly larger in magnitude than V reset on each cell.
28 PUF Challenge-Response generation from Vset Fig shows the cum. V set probability distribution within ReRAM arrays. Mean is µ=2.1 V and standard deviation is σ std =0.545 V. During Challenge generation: 0 [below µ ασ] X [µ ασ, µ+ασ] 1 [above µ+ασ] During Response generation: 0 [below threshold (ex: 2.1V)] 1 [above threshold (ex: 2.1V)] PUF Challenge-Response-Pair Matching CRP errors occur when a 0 (tested during Challenge generation <μ-ασ) is measured above 2.1V, or a 1 (tested during Challenge generation >μ+ασ) is measured below 2.1V. During authentication CRPs are tested, comparing the Responses generated by the memory against the Challenges that are provided by the server.
29 PUF CRP error rate To study the CRPs error rate, V set distribution was characterized for several individual ReRAM cells. The variation is plotted below: The statistical analysis based of these experimental data is presented below: The error rate during authentication of a PUF stream of N bits is calculated with Poisson equation. If P(n) is the probability to have n failures over N bits, p is the probability to have one CRP mismatch due to errors: P(n) = λ n /n! e -λ λ= pn The design point α=1.0 with a threshold of 1.9 volt has a CRPs error rate p=8ppm. Assuming N=128: P(0)= 99.2%; P(1)= 0.794%; P(2)= 30ppm; P(3) 0 With N=128, the probability that at least 126 CRPs are matching during authentication is almost certain
30 QUESTIONS?
Implementation Of High-k/Metal Gates In High-Volume Manufacturing
White Paper Implementation Of High-k/Metal Gates In High-Volume Manufacturing INTRODUCTION There have been significant breakthroughs in IC technology in the past decade. The upper interconnect layers of
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron
Solar Photovoltaic (PV) Cells
Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation
Intel s Revolutionary 22 nm Transistor Technology
Intel s Revolutionary 22 nm Transistor Technology Mark Bohr Intel Senior Fellow Kaizad Mistry 22 nm Program Manager May, 2011 1 Key Messages Intel is introducing revolutionary Tri-Gate transistors on its
2014 EMERGING NON- VOLATILE MEMORY & STORAGE TECHNOLOGIES AND MANUFACTURING REPORT
2014 EMERGING NON- VOLATILE MEMORY & STORAGE TECHNOLOGIES AND MANUFACTURING REPORT COUGHLIN ASSOCIATES SAN JOSE, CALIFORNIA April 2014 2014 Emerging NV Memory & Storage Technologies and Manufacturing Report
Advanced VLSI Design CMOS Processing Technology
Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies
CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)
CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.
DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS
DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS Prof. Dr. João Antonio Martino Professor Titular Departamento de Engenharia de Sistemas Eletrônicos Escola Politécnica da Universidade
Grad Student Presentation Topics PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory
Grad Student Presentation Topics 1. Baranowski, Lauryn L. AFM nano-oxidation lithography 2. Braid, Jennifer L. Extreme UV lithography 3. Garlick, Jonathan P. 4. Lochner, Robert E. 5. Martinez, Aaron D.
Crossbar Resistive Memory:
White Paper Crossbar Resistive Memory: The Future Technology for NAND Flash By Hagop Nazarian, Vice President of Engineering and Co-Founder Abstract NAND Flash technology has been serving the storage memory
DEVELOPMENTS & TRENDS IN FEOL MATERIALS FOR ADVANCED SEMICONDUCTOR DEVICES Michael Corbett [email protected] Semicon Taiwan2015
DEVELOPMENTS & TRENDS IN FEOL MATERIALS FOR ADVANCED SEMICONDUCTOR DEVICES Michael Corbett [email protected] Semicon Taiwan2015 LINX BACKGROUND Linx Consulting 1. We help our clients to succeed
CS257 Introduction to Nanocomputing
CS257 Introduction to Nanocomputing Overview of Crossbar-Based Computing John E Savage Overview Intro to NW growth methods Chemical vapor deposition and fluidic assembly Nano imprinting Nano stamping Four
From physics to products
From physics to products From MRAM to MLU and beyond memory Magnetic Random Access Memory Magnetic Logic Unit Lucien Lombard Crocus-Technology Overview 1 - The semiconductor industry 2 - Crocus-Technology
Ultra-High Density Phase-Change Storage and Memory
Ultra-High Density Phase-Change Storage and Memory by Egill Skúlason Heated AFM Probe used to Change the Phase Presentation for Oral Examination 30 th of May 2006 Modern Physics, DTU Phase-Change Material
Introduction to VLSI Fabrication Technologies. Emanuele Baravelli
Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation
Riding silicon trends into our future
Riding silicon trends into our future VLSI Design and Embedded Systems Conference, Bangalore, Jan 05 2015 Sunit Rikhi Vice President, Technology & Manufacturing Group General Manager, Intel Custom Foundry
Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1
Chapter 1 Introduction to The Semiconductor Industry 1 The Semiconductor Industry INFRASTRUCTURE Industry Standards (SIA, SEMI, NIST, etc.) Production Tools Utilities Materials & Chemicals Metrology Tools
Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4
Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium
Evaluating Embedded Non-Volatile Memory for 65nm and Beyond
Evaluating Embedded Non-Volatile Memory for 65nm and Beyond Wlodek Kurjanowicz DesignCon 2008 Sidense Corp 2008 Agenda Introduction: Why Embedded NVM? Embedded Memory Landscape Antifuse Memory evolution
New Ferroelectric Material for Embedded FRAM LSIs
New Ferroelectric Material for Embedded FRAM LSIs V Kenji Maruyama V Masao Kondo V Sushil K. Singh V Hiroshi Ishiwara (Manuscript received April 5, 2007) The strong growth of information network infrastructures
MOS (metal-oxidesemiconductor) 李 2003/12/19
MOS (metal-oxidesemiconductor) 李 2003/12/19 Outline Structure Ideal MOS The surface depletion region Ideal MOS curves The SiO 2 -Si MOS diode (real case) Structure A basic MOS consisting of three layers.
Graduate Student Presentations
Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly
Lezioni di Tecnologie e Materiali per l Elettronica
Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta [email protected] microlab.unipv.it Outline Passive components Resistors Capacitors Inductors Printed circuits technologies
Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Christian Schindelhauer
Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Institut für Informatik Wintersemester 2007/08 Solid State Disks Motivation 2 10 5 1980 1985 1990 1995 2000 2005 2010 PRODUCTION
1.1 Silicon on Insulator a brief Introduction
Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial
Silicon-On-Glass MEMS. Design. Handbook
Silicon-On-Glass MEMS Design Handbook A Process Module for a Multi-User Service Program A Michigan Nanofabrication Facility process at the University of Michigan March 2007 TABLE OF CONTENTS Chapter 1...
Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.
Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how
This paper describes Digital Equipment Corporation Semiconductor Division s
WHITEPAPER By Edd Hanson and Heather Benson-Woodward of Digital Semiconductor Michael Bonner of Advanced Energy Industries, Inc. This paper describes Digital Equipment Corporation Semiconductor Division
How To Increase Areal Density For A Year
R. Fontana¹, G. Decad¹, S. Hetzler² ¹IBM Systems Technology Group, ²IBM Research Division 20 September 2012 Technology Roadmap Comparisons for TAPE, HDD, and NAND Flash: Implications for Data Storage Applications
Price/performance Modern Memory Hierarchy
Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion
Nanocomputer & Architecture
Nanocomputer & Architecture Yingjie Wei Western Michigan University Department of Computer Science CS 603 - Dr. Elise dedonckor Febrary 4 th, 2004 Nanocomputer Architecture Contents Overview of Nanotechnology
Slide Set 8. for ENCM 369 Winter 2015 Lecture Section 01. Steve Norman, PhD, PEng
Slide Set 8 for ENCM 369 Winter 2015 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2015 ENCM 369 W15 Section
Semiconductor Memories
Semiconductor Memories Semiconductor memories array capable of storing large quantities of digital information are essential to all digital systems Maximum realizable data storage capacity of a single
Fabrication and Manufacturing (Basics) Batch processes
Fabrication and Manufacturing (Basics) Batch processes Fabrication time independent of design complexity Standard process Customization by masks Each mask defines geometry on one layer Lower-level masks
How To Scale At 14 Nanomnemester
14 nm Process Technology: Opening New Horizons Mark Bohr Intel Senior Fellow Logic Technology Development SPCS010 Agenda Introduction 2 nd Generation Tri-gate Transistor Logic Area Scaling Cost per Transistor
Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring
Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring Vivek Subramanian Department of Electrical Engineering and Computer Sciences University of California, Berkeley RD83089901
Chapter 9 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 9 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2 Outline Introduction
Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections
Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections
How NAND Flash Threatens DRAM
How NAND Flash Threatens DRAM Jim Handy OBJECTIVE ANALYSIS Outline Why even think about DRAM vs. NAND? The memory/storage hierarchy What benchmarks tell us What about 3D XPoint memory? The system of the
Focused Ion beam nanopatterning: potential application in photovoltaics
Focused Ion beam nanopatterning: potential application in photovoltaics Research Infrastructure: Location: FIB-Focused Ion Beam ENEA Portici (Italy) Date March, 26 2013 Speakers: Vera La Ferrara, ENEA
Memory Basics. SRAM/DRAM Basics
Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for
NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ
What is NAND Flash? What is the major difference between NAND Flash and other Memory? Structural differences between NAND Flash and NOR Flash What does NAND Flash controller do? How to send command to
Unternehmerseminar WS 2009 / 2010
Unternehmerseminar WS 2009 / 2010 Fachbereich: Maschinenbau und Mechatronik Autor / Thema / Titel: Key Enabling Technology Business Planning Process: Product Roadmaps 1 Table of Contents About AIXTRON
What is this course is about? Design of Digital Circuitsit. Digital Integrated Circuits. What is this course is about?
What is this course is about? Design of Digital Circuitsit Design of digital microelectronic circuits.» CMOS devices and manufacturing technology.» Digital gates. Propagation delay, noise margins, and
MEMS devices application based testing
MEMS devices application based testing CEEES Seminar 18-10-2012 RDM Campus Rotterdam NL by Kees Revenberg MASER Engineering Enschede NL Outline Introduction MEMS classification Sensing & Actuating Manufacturing
With respect to the way of data access we can classify memories as:
Memory Classification With respect to the way of data access we can classify memories as: - random access memories (RAM), - sequentially accessible memory (SAM), - direct access memory (DAM), - contents
ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication
ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,
Changing the World: The Flash Memory Revolution. Eli Harari Chairman & CEO SanDisk Corporation
Changing the World: The Flash Memory Revolution Eli Harari Chairman & CEO SanDisk Corporation Forward Looking Statement During our meeting today we will be making forward-looking statements. Any statement
Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie
Recent developments in high bandwidth optical interconnects Brian Corbett Outline Introduction to photonics for interconnections Polymeric waveguides and the Firefly project Silicon on insulator (SOI)
3D Stacked Memory: Patent Landscape Analysis
Table of Contents Executive Summary..1 Introduction...2 Filing Trend..7 Taxonomy.... 8 Top Assignees.... 11 Geographical Heat Map..13 LexScore TM.... 14 Patent Strength....16 Licensing Heat Map...17 Appendix:
STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm
STMicroelectronics Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI SOI Processes 130nm, 65nm SiGe 130nm CMP Process Portfolio from ST Moore s Law 130nm CMOS : HCMOS9GP More than Moore
Investor Presentation Q3 2015
Investor Presentation Q3 2015 Veeco Instruments 1 Investor Presentation Veeco at a Glance > Leading deposition and etch solutions provider; Veeco enables high-tech electronic device manufacturing > Founded
Computer Systems Structure Main Memory Organization
Computer Systems Structure Main Memory Organization Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Storage/Memory
Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST
Flash Memories João Pela (52270), João Santos (55295) IST December 22, 2008 João Pela (52270), João Santos (55295) (IST) Flash Memories December 22, 2008 1 / 41 Layout 1 Introduction 2 How they work 3
Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories
Handout 17 by Dr Sheikh Sharif Iqbal Memory Unit and Read Only Memories Objective: - To discuss different types of memories used in 80x86 systems for storing digital information. - To learn the electronic
Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.
CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity
1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.
.Introduction If the automobile had followed the same development cycle as the computer, a Rolls- Royce would today cost $00, get one million miles to the gallon and explode once a year Most of slides
CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global
CSCA0102 IT & Business Applications Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global Chapter 2 Data Storage Concepts System Unit The system unit
Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)
Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review
Implications of Storage Class Memories (SCM) on Software Architectures
Implications of Storage Class Memories (SCM) on Software Architectures C. Mohan, IBM Almaden Research Center, San Jose [email protected] http://www.almaden.ibm.com/u/mohan Suparna Bhattacharya, IBM
VLSI Fabrication Process
VLSI Fabrication Process Om prakash 5 th sem ASCT, Bhopal [email protected] Manisha Kumari 5 th sem ASCT, Bhopal [email protected] Abstract VLSI stands for "Very Large Scale Integration". This
Yaffs NAND Flash Failure Mitigation
Yaffs NAND Flash Failure Mitigation Charles Manning 2012-03-07 NAND flash is one of very few types of electronic device which are knowingly shipped with errors and are expected to generate further errors
DESIGN CHALLENGES OF TECHNOLOGY SCALING
DESIGN CHALLENGES OF TECHNOLOGY SCALING IS PROCESS TECHNOLOGY MEETING THE GOALS PREDICTED BY SCALING THEORY? AN ANALYSIS OF MICROPROCESSOR PERFORMANCE, TRANSISTOR DENSITY, AND POWER TRENDS THROUGH SUCCESSIVE
MEMS Processes from CMP
MEMS Processes from CMP MUMPS from MEMSCAP Bulk Micromachining 1 / 19 MEMSCAP MUMPS processes PolyMUMPS SOIMUMPS MetalMUMPS 2 / 19 MEMSCAP Standard Processes PolyMUMPs 8 lithography levels, 7 physical
Solid State Drives Data Reliability and Lifetime. Abstract
Solid State Drives Data Reliability and Lifetime White Paper Alan R. Olson & Denis J. Langlois April 7, 2008 Abstract The explosion of flash memory technology has dramatically increased storage capacity
Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1
Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite
ECE 410: VLSI Design Course Introduction
ECE 410: VLSI Design Course Introduction Professor Andrew Mason Michigan State University Spring 2008 ECE 410, Prof. A. Mason Lecture Notes Page i.1 Age of electronics microcontrollers, DSPs, and other
Solar Energy Discovery Lab
Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy
5.111 Principles of Chemical Science
MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 26.1 5.111 Lecture
III. Reaction Kinetics
III. Reaction Kinetics Lecture 13: Butler-Volmer equation Notes by ChangHoon Lim (and MZB) 1. Interfacial Equilibrium At lecture 11, the reaction rate R for the general Faradaic half-cell reaction was
NVM memory: A Critical Design Consideration for IoT Applications
NVM memory: A Critical Design Consideration for IoT Applications Jim Lipman Sidense Corp. Introduction The Internet of Things (IoT), sometimes called the Internet of Everything (IoE), refers to an evolving
Name Electrochemical Cells Practice Exam Date:
Name Electrochemical Cells Practice Exam Date: 1. Which energy change occurs in an operating voltaic cell? 1) chemical to electrical 2) electrical to chemical 3) chemical to nuclear 4) nuclear to chemical
Secondary Ion Mass Spectrometry
Secondary Ion Mass Spectrometry A PRACTICAL HANDBOOK FOR DEPTH PROFILING AND BULK IMPURITY ANALYSIS R. G. Wilson Hughes Research Laboratories Malibu, California F. A. Stevie AT&T Bell Laboratories Allentown,
1. Memory technology & Hierarchy
1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency
Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle
Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.
Chapter 11 PVD and Metallization
Chapter 11 PVD and Metallization 2006/5/23 1 Metallization Processes that deposit metal thin film on wafer surface. 2006/5/23 2 1 Metallization Definition Applications PVD vs. CVD Methods Vacuum Metals
Thin Is In, But Not Too Thin!
Thin Is In, But Not Too Thin! K.V. Ravi Crystal Solar, Inc. Abstract The trade-off between thick (~170 microns) silicon-based PV and thin (a few microns) film non-silicon and amorphous silicon PV is addressed
Dry Film Photoresist & Material Solutions for 3D/TSV
Dry Film Photoresist & Material Solutions for 3D/TSV Agenda Digital Consumer Market Trends Components and Devices 3D Integration Approaches Examples of TSV Applications Image Sensor and Memory Via Last
State-of-Art (SoA) System-on-Chip (SoC) Design HPC SoC Workshop
Photos placed in horizontal position with even amount of white space between photos and header State-of-Art (SoA) System-on-Chip (SoC) Design HPC SoC Workshop Michael Holmes Manager, Mixed Signal ASIC/SoC
The Evolving NAND Flash Business Model for SSD. Steffen Hellmold VP BD, SandForce
The Evolving NAND Flash Business Model for SSD Steffen Hellmold VP BD, SandForce Flash Forward: Flash Flash Memory Memory Storage Storage Solutions Solutions Solid State Storage - Vision Solid State Storage
Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / LCMS Grenoble)
Microstockage d énergie Les dernières avancées S. Martin (CEA-LITEN / LCMS Grenoble) 1 Outline What is a microbattery? Microbatteries developped at CEA Description Performances Integration and Demonstrations
Case Study 2: Digital Micromirror Devices (DMD) Optical MEMS
Case Study : Digital Micromirror Devices (DMD) Chapter of Senturia A MEMS-based projection display, Van Kessel, P.F.; Hornbeck, L.J.; Meier, R.E.; Douglass, M.R., Proc. IEEE, Vol. 86 pp.1687-174 1998 http://www.dlp.com/
Non-Volatile Memory. Non-Volatile Memory & its use in Enterprise Applications. Contents
Non-Volatile Memory Non-Volatile Memory & its use in Enterprise Applications Author: Adrian Proctor, Viking Technology [email: [email protected]] This paper reviews different memory technologies,
Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access?
ECE337 / CS341, Fall 2005 Introduction to Computer Architecture and Organization Instructor: Victor Manuel Murray Herrera Date assigned: 09/19/05, 05:00 PM Due back: 09/30/05, 8:00 AM Homework # 2 Solutions
The future of nano-computing
The future of nano-computing George Bourianoff Intel Corporation Presented to International Engineering Consortium and Electrical and Computer Engineering Department Heads Jan. 27, 2003 San Jose, Ca 2/5/2003
PUF Physical Unclonable Functions
Physical Unclonable Functions Protecting next-generation Smart Card ICs with SRAM-based s The use of Smart Card ICs has become more widespread, having expanded from historical banking and telecommunication
How To Write On A Flash Memory Flash Memory (Mlc) On A Solid State Drive (Samsung)
Using MLC NAND in Datacenters (a.k.a. Using Client SSD Technology in Datacenters) Tony Roug, Intel Principal Engineer SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA.
A Plasma Doping Process for 3D FinFET Source/ Drain Extensions
A Plasma Doping Process for 3D FinFET Source/ Drain Extensions JTG 2014 Cuiyang Wang*, Shan Tang, Harold Persing, Bingxi Wood, Helen Maynard, Siamak Salimian, and Adam Brand [email protected] Varian
Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.
Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van
Figure 1. Diode circuit model
Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The
AN1837. Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas.
Order this document by /D Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas Introduction Today s microcontroller applications are more sophisticated
Storage Class Memory and the data center of the future
IBM Almaden Research Center Storage Class Memory and the data center of the future Rich Freitas HPC System performance trends System performance requirement has historically double every 18 mo and this
Picosun World Forum, Espoo 9.6.2009. 35 years of ALD. Tuomo Suntola, Picosun Oy. Tuomo Suntola, Picosun Oy
35 years of ALD Conventional methods for compound film deposition Heat treatment Final crystallization Nucleation Vacuum evaporation Sputtering CVD Buildup of thin film in source controlled deposition
Flash & DRAM Si Scaling Challenges, Emerging Non-Volatile Memory Technology Enablement - Implications to Enterprise Storage and Server Compute systems
Flash & DRAM Si Scaling Challenges, Emerging Non-Volatile Memory Technology Enablement - Implications to Enterprise Storage and Server Compute systems Jung H. Yoon, Hillery C. Hunter, Gary A. Tressler
Introduction to Semiconductor Manufacturing Technology. Chapter 1, Introduction. Hong Xiao, Ph. D. [email protected]
Introduction to Semiconductor Manufacturing Technology Chapter 1, Introduction Hong Xiao, Ph. D. [email protected] Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objective After taking this
The Central Processing Unit:
The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Objectives Identify the components of the central processing unit and how they work together and interact with memory Describe how
Chapter 7-1. Definition of ALD
Chapter 7-1 Atomic Layer Deposition (ALD) Definition of ALD Brief history of ALD ALD process and equipments ALD applications 1 Definition of ALD ALD is a method of applying thin films to various substrates
