ISOTROPIC ETCHING OF THE SILICON NITRIDE AFTER FIELD OXIDATION.
|
|
|
- Jerome Mosley
- 10 years ago
- Views:
Transcription
1 ISOTROPIC ETCHING OF THE SILICON NITRIDE AFTER FIELD OXIDATION. A.J. BALLONI - Fundação Centro Tecnológico para Informática/ Instituto de Microeletrônica Laboratório de Litografia C.P Campinas/S.P. ABSTRACT. The goal is to present an isotropic Si3N4 dry etch process developed to get a very high selectivity towards thermal oxide. The dry process was developed in the Matrix Downstream Isotropic Etcher. As test wafers, Si wafer covered with 1000 A of thermal oxide and 1500 A Si3N4, and Si wafers covered with A of thermal oxide were used. The average etch rate and uniformity are 1450 A/min and 1.5 and 75 A/min 12.0 for silicon nitride and thermal oxide, respectively. A third Si test wafer, half wafer with 1500 A Si3N4 and half with 5500 A field oxide was also used in order to get an optimum time for the breakthrough step. As methodology, the RSM was used and a selectivity (Si3N4/SiO2) higher than 20 was obtained. Key words: isotropic128?isotropic silicon nitride129?silicon nitride field oxidation130?field oxidation plasma etchin This work has been realised at the IMEC, vzw-kapeldreef, 75/B Leuven BELGIUM as part of a 9 months research program (focused on metal, polysilicon, silicon nitride resist strip dry etching steps as well all concerned methodology: Design of Experiments and Response Surface Methods) required to the development of a Double Level Metal (DLM) process at CTI/IM-BRAZIL. This work was supported by RHAE,/CNPq and IM/CTI. I - INTRODUCTION. Silicon nitride films are amorphous insulating materials that find three main applications in VLSI fabrication: 1) as final passivation and mechanical protective layers for integrated circuits, especially for parts encapsulated in plastic packages; 2) as mask for the selective oxidation of silicon (as presented in this work); and 3) as a gate dielectric material in NMOS devices [0 1 ]. Silicon nitride (Si3N4) is suitable as masking layer for selective oxidation (LOCOS - LOCal Oxidation of Silicon/field oxide), since it is a good barrier material against oxygen diffusion [02] The experimental set-up utilised a was Matrix Downstream Isotropic Etcher, and a very high selectivity Si3N4/SiO2, using an NF3/He plasma, was got. In this system, the wafer is submitted to the afterglow of NF3/02 plasma [03]. The etch process followed by monitoring a suitable end point trace with OMA (Optical Multichannel Analyser), showed that the best emission lines was NO-emission (etch product) at 379nm [03]. Other regions of the optical spectrum were also investigated. Finally, as methodology, the simulator Project and Experiment & Response Surface Methods (RSM) [04] was used and Si3N4:SiO2 selectivity higher than 20:1 was got.
2 II - HIGH SELECTIVITY NITRIDE. Using the Matrix 303 Downstream Isotropic Etcher and, as methodology, the Simulator Project and Experiment - Response Surface Methods (RSM) [04], a process to etch silicon nitride with very high selectivity to the thermal oxide was developed. Three different 5 (five) inch silicon test wafers were used to carry out the experiment : 1. One Si wafer covered with 1000A of Thermal Oxide and over it 1500A silicon nitride, 2. other with 10000A of thermal oxide. With these two the bulk etch (PROC1) with high selectivity was developed. 3. The third Si wafer: half wafer with 1500A of Si3N4 and half with 5500 A of field oxide, was used to develop the breakthrough step. Note that in this wafer the half Si3N4 was exposed to the field oxide growth, therefore there is a thin alloy SiO2/Si3N4 (SixNy) in it. The best process (PROC1.: P=800, NF3/55, 02/45, P=45W and T=50C) was found with RSM simulation. Before applying the process PROC1. we must use a stabilisation time and breakthrough etch [04]. The results, presented in figures 1 and 2 show a very good fit of the experimental results. Further the chuck temperature was decreased to 20 C to improve the selectivity, c.f. figure 3. PROC1.: BULK ETCH. The process PROC1. was developed with electrode and chamber temperature T=50 C. The figure 2 shows the main trends obtained with the RSM simulation. The results are presented for both T=20 C and T=50 C. T = 20 C (electrode and chamber): average Si3N4 etch rate = 1400 A/min average Si3N4 uniformity = 2.3 average SiO2 etch rate = 53 A/min average SiO2 uniformity = 15.5 average Si3N4/SiO2 selectivity = 26. T = 50 C (electrode and chamber): average Si3N4 etch rate = 1460 A/min average Si3N4 uniformity = 1.5 average SiO2 etch rate = 75 A/min average SiO2 uniformity = 12 average Si3N4/SiO2 selectivity = 20. III - CONCLUSION. Selectivity Si3N4/SiO2 higher than 20 was obtained. Working at pressures higher than 850, the process window changes completely, losing its high selectivity, therefore, the results presented in figure 2 shows a process window very well defined. Finally, the main typical process trends got with step 3 are:.increasing the pressure increases the selectivity, c.f. figure 1 and figure 2..increasing the NF3 flow increases the Si3N4 etch rate, cf. figure 1..Increasing the 02 flow decreases the SiO2 etch rate. The Si3N4 etch rate remain constant, figure 2..Increasing the power increases the etch rate, but decreases the selectivity [03]..Increasing the electrode temperature decreases the selectivity, cf. figure 3.
3 REFERENCES. [01] - S. Wolf and R.N. Tauber, "Silicon Processing for V-LSI ERA", V. 1, Lattice Press, pag 191 and 556 (1987) and, - Daniel L. Flamm, "Introduction to Plasma chemistry", Lattice Press, pag.165 (1987). [02] - P.W. Bohn et all, "A multiresponse Factorial Study of reactor parameters in PECVD growth of amorphous Silicon Nitride" J. Electrochem. Soc. 132,1981(1985). [03] - IX Brazilian Microelectronic Congress - SBu /R.J. -RJ, pag.258 august (1994) [04] - Richard Booth and Luc Dupas "DOE - design of experiments and RSM - Response Surface Methods", Internal publication, IMEC, June (1992).
4
5
6 NF3 - [20, 60] sccm Uniformidade do Si3N4 - [1, 35] lâminas O2 - [30, 70] sccm uniformidade do SiO2 - [7, 40] P - [30, 70] Watts Seletividade SiO2/Si3N4 - [8, 13] p - [650, 850] NF3 - [30, 70] sccm Uniformidade do Si3N4 - [2, 20] lâminas O2 - [40, 50] sccm uniformidade do SiO2 - [6, 40] P - [30, 70] Watts Seletividade SiO2/Si3N4 - [10, 14] p - [650, 850] NF3 - [45, 65] sccm Uniformidade do Si3N4 - [1.4, 2] lâminas O2-40 sccm uniformidade do SiO2 - [8, 11] sem janela de P - 40 Watts Seletividade SiO2/Si3N4 - [14, 18] processo p - [650, 850] NF3 - [35, 55] sccm Uniformidade do Si3N4 - [1, 2] lâminas O2-40 sccm uniformidade do SiO2 - [7, 9] sem janela de P - 40 Watts Seletividade SiO2/Si3N4 - [15, 19] processo p - [550, 650] NF3-55 sccm Uniformidade do Si3N4 - [1, 1.7] lâminas O2 - [30, 50] sccm uniformidade do SiO2 - [7, 15] com janela de P - 40 Watts Seletividade SiO2/Si3N4 - [15, 20] processo p - [650, 850] NF3-55 sccm Uniformidade do Si3N4 - [1, 10] lâminas O2 - [30, 40] sccm uniformidade do SiO2 - [9, 11]
7 sem janela de P - 40 Watts Seletividade SiO2/Si3N4 - [14, 17] processo p - [750, 850]
ACTIVATION ENERGY: AN ELEMENTARY STUDY IN THE MATRIX ISOTROPIC ETCHER.
SiO2 ACTIVATION ENERGY: AN ELEMENTARY STUDY IN THE MATRIX ISOTROPIC ETCHER. 1 A.J. BALLONI Fundação Centro Tecnológico para Informática Instituto de Microeletrônica Laboratório de Manufatura de Circuitos
Introduction to VLSI Fabrication Technologies. Emanuele Baravelli
Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron
Implementation Of High-k/Metal Gates In High-Volume Manufacturing
White Paper Implementation Of High-k/Metal Gates In High-Volume Manufacturing INTRODUCTION There have been significant breakthroughs in IC technology in the past decade. The upper interconnect layers of
Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.
CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity
Results Overview Wafer Edge Film Removal using Laser
Results Overview Wafer Edge Film Removal using Laser LEC- 300: Laser Edge Cleaning Process Apex Beam Top Beam Exhaust Flow Top Beam Scanning Top & Top Bevel Apex Beam Scanning Top Bevel, Apex, & Bo+om
Solar Photovoltaic (PV) Cells
Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation
Damage-free, All-dry Via Etch Resist and Residue Removal Processes
Damage-free, All-dry Via Etch Resist and Residue Removal Processes Nirmal Chaudhary Siemens Components East Fishkill, 1580 Route 52, Bldg. 630-1, Hopewell Junction, NY 12533 Tel: (914)892-9053, Fax: (914)892-9068
Study of Surface Reaction and Gas Phase Chemistries in High Density C 4 F 8 /O 2 /Ar and C 4 F 8 /O 2 /Ar/CH 2 F 2 Plasma for Contact Hole Etching
TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS Vol. 16, No. 2, pp. 90-94, April 25, 2015 Regular Paper pissn: 1229-7607 eissn: 2092-7592 DOI: http://dx.doi.org/10.4313/teem.2015.16.2.90 OAK Central:
Graduate Student Presentations
Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly
Photolithography. Class: Figure 12.1. Various ways in which dust particles can interfere with photomask patterns.
Photolithography Figure 12.1. Various ways in which dust particles can interfere with photomask patterns. 19/11/2003 Ettore Vittone- Fisica dei Semiconduttori - Lectio XIII 16 Figure 12.2. Particle-size
DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS
DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS Prof. Dr. João Antonio Martino Professor Titular Departamento de Engenharia de Sistemas Eletrônicos Escola Politécnica da Universidade
Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma
Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma Songlin Xu a and Li Diao Mattson Technology, Inc., Fremont, California 94538 Received 17 September 2007; accepted 21 February 2008; published
Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process
Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process Lynne Michaelson, Krystal Munoz, Jonathan C. Wang, Y.A. Xi*, Tom Tyson, Anthony Gallegos Technic Inc.,
Grad Student Presentation Topics PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory
Grad Student Presentation Topics 1. Baranowski, Lauryn L. AFM nano-oxidation lithography 2. Braid, Jennifer L. Extreme UV lithography 3. Garlick, Jonathan P. 4. Lochner, Robert E. 5. Martinez, Aaron D.
Winbond W2E512/W27E257 EEPROM
Construction Analysis Winbond W2E512/W27E257 EEPROM Report Number: SCA 9703-533 Global Semiconductor Industry the Serving Since 1964 15022 N. 75th Street Scottsdale, AZ 85260-2476 Phone: 602-998-9780 Fax:
F ormation of Very Low Resistance Contact for Silicon Photovoltaic Cells. Baomin Xu, Scott Limb, Alexandra Rodkin, Eric Shrader, and Sean Gamer
F ormation of Very Low Resistance Contact for Silicon Photovoltaic Cells Baomin Xu, Scott Limb, Alexandra Rodkin, Eric Shrader, and Sean Gamer Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto,
High power picosecond lasers enable higher efficiency solar cells.
White Paper High power picosecond lasers enable higher efficiency solar cells. The combination of high peak power and short wavelength of the latest industrial grade Talisker laser enables higher efficiency
VLSI Fabrication Process
VLSI Fabrication Process Om prakash 5 th sem ASCT, Bhopal [email protected] Manisha Kumari 5 th sem ASCT, Bhopal [email protected] Abstract VLSI stands for "Very Large Scale Integration". This
CRYSTAL DEFECTS: Point defects
CRYSTAL DEFECTS: Point defects Figure 10.15. Point defects. (a) Substitutional impurity. (b) Interstitial impurity. (c) Lattice vacancy. (d) Frenkeltype defect. 9 10/11/004 Ettore Vittone- Fisica dei Semiconduttori
Electron Beam and Sputter Deposition Choosing Process Parameters
Electron Beam and Sputter Deposition Choosing Process Parameters General Introduction The choice of process parameters for any process is determined not only by the physics and/or chemistry of the process,
Etching Etch Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between
Etching Etch Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between 2 materials Other layers below one being etch Masking
Lezioni di Tecnologie e Materiali per l Elettronica
Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta [email protected] microlab.unipv.it Outline Passive components Resistors Capacitors Inductors Printed circuits technologies
Processing Procedures for CYCLOTENE 4000 Series Photo BCB Resins DS2100 Puddle Develop Process
Revised: March 2009 Processing Procedures for CYCLOTENE 4000 Series Photo BCB Resins DS2100 Puddle Develop Process 1. Introduction The CYCLOTENE 4000 Series advanced electronic resins are I-line-, G-line-,
AN900 APPLICATION NOTE
AN900 APPLICATION NOTE INTRODUCTION TO SEMICONDUCTOR TECHNOLOGY INTRODUCTION by Microcontroller Division Applications An integrated circuit is a small but sophisticated device implementing several electronic
Dry Etching and Reactive Ion Etching (RIE)
Dry Etching and Reactive Ion Etching (RIE) MEMS 5611 Feb 19 th 2013 Shengkui Gao Contents refer slides from UC Berkeley, Georgia Tech., KU, etc. (see reference) 1 Contents Etching and its terminologies
Deposition of Silicon Oxide, Silicon Nitride and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology
General Plasma, Inc. 546 East 25th Street Tucson, Arizona 85713 tel. 520-882-5100 fax. 520-882-5165 and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology M.
Advanced VLSI Design CMOS Processing Technology
Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies
Concepts and principles of optical lithography
1/56 2/56 Concepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB, CSIC) [email protected] 10 cm mà blia 1 cm Gra de sorra Xip 1 mm 100
This paper describes Digital Equipment Corporation Semiconductor Division s
WHITEPAPER By Edd Hanson and Heather Benson-Woodward of Digital Semiconductor Michael Bonner of Advanced Energy Industries, Inc. This paper describes Digital Equipment Corporation Semiconductor Division
III. Wet and Dry Etching
III. Wet and Dry Etching Method Environment and Equipment Advantage Disadvantage Directionality Wet Chemical Solutions Atmosphere, Bath 1) Low cost, easy to implement 2) High etching rate 3) Good selectivity
MEMS Processes from CMP
MEMS Processes from CMP MUMPS from MEMSCAP Bulk Micromachining 1 / 19 MEMSCAP MUMPS processes PolyMUMPS SOIMUMPS MetalMUMPS 2 / 19 MEMSCAP Standard Processes PolyMUMPs 8 lithography levels, 7 physical
Semiconductor doping. Si solar Cell
Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion
Module 7 Wet and Dry Etching. Class Notes
Module 7 Wet and Dry Etching Class Notes 1. Introduction Etching techniques are commonly used in the fabrication processes of semiconductor devices to remove selected layers for the purposes of pattern
Supporting Online Material for
www.sciencemag.org/cgi/content/full/1162193/dc1 Supporting Online Material for Polymer Pen Lithography Fengwei Huo, Zijian Zheng, Gengfeng Zheng, Louise R. Giam, Hua Zhang, Chad A. Mirkin* *To whom correspondence
Optical Properties of Sputtered Tantalum Nitride Films Determined by Spectroscopic Ellipsometry
Optical Properties of Sputtered Tantalum Nitride Films Determined by Spectroscopic Ellipsometry Thomas Waechtler a, Bernd Gruska b, Sven Zimmermann a, Stefan E. Schulz a, Thomas Gessner a a Chemnitz University
Good Boards = Results
Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.
AC coupled pitch adapters for silicon strip detectors
AC coupled pitch adapters for silicon strip detectors J. Härkönen1), E. Tuovinen1), P. Luukka1), T. Mäenpää1), E. Tuovinen1), E. Tuominen1), Y. Gotra2), L. Spiegel2) Helsinki Institute of Physics, Finland
1. PECVD in ORGANOSILICON FED PLASMAS
F. FRACASSI Department of Chemistry, University of Bari (Italy) Plasma Solution srl SURFACE MODIFICATION OF POLYMERS AND METALS WITH LOW TEMPERATURE PLASMA OUTLINE METAL TREATMENTS 1 low pressure PECVD
Study on Wet Etching of AAO Template
Study on Wet Etching of AAO Template Guofeng Hu, Haiming Zhang, Wenwen Di & Tingting Zhao School of Science, Tianjin Polytechnic University, Tianjin 300160, China E-mail: [email protected] Abstract The
Chemical dry etching of silicon nitride and silicon dioxide using CF 4 /O 2 /N 2 gas mixtures
Chemical dry etching of silicon nitride and silicon dioxide using CF 4 /O 2 /N 2 gas mixtures B. E. E. Kastenmeier, a) P. J. Matsuo, J. J. Beulens, and G. S. Oehrlein b) Department of Physics, The University
THE USE OF OZONATED HF SOLUTIONS FOR POLYSILICON STRIPPING
THE USE OF OZONATED HF SOLUTIONS FOR POLYSILICON STRIPPING Gim S. Chen, Ismail Kashkoush, and Rich E. Novak AKrion LLC 633 Hedgewood Drive, #15 Allentown, PA 1816, USA ABSTRACT Ozone-based HF chemistry
Education of Solar Cells at Budapest University of Technology and Economics
Education of Solar Cells at Budapest University of Technology and Economics Veronika Timár-Horváth, Dr. János Mizsei, Balázs Plesz OUTLINE: Education of Solar Cells at TU Budapest Description of curricula
Arizona Institute for Renewable Energy & the Solar Power Laboratories
Arizona Institute for Renewable Energy & the Solar Power Laboratories International Photovoltaic Reliability Workshop July 29-31, Tempe AZ Christiana Honsberg, Stephen Goodnick, Stuart Bowden Arizona State
Coating Technology: Evaporation Vs Sputtering
Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information
Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / LCMS Grenoble)
Microstockage d énergie Les dernières avancées S. Martin (CEA-LITEN / LCMS Grenoble) 1 Outline What is a microbattery? Microbatteries developped at CEA Description Performances Integration and Demonstrations
Photomask SBU: 65nm Dry Etch has Arrived! Michael D. Archuletta Dr. Chris Constantine Dr. Dave Johnson
Photomask SBU: 65nm Dry Etch has Arrived! Michael D. Archuletta Dr. Chris Constantine Dr. Dave Johnson What s New in Lithography? Wafer dimensions are still accelerating downward towards ever smaller features
TK6103 MEMS key expertise, key projects, key customers, highlights. 28.1.2011 Jyrki Kiihamäki VTT Technical Research Centre of Finland
TK6103 MEMS key expertise, key projects, key customers, highlights 28.1.2011 Jyrki Kiihamäki VTT Technical Research Centre of Finland 2 Sales speech (to be used while standing in elevator) We turn MEMS
JePPIX Course Processing Wet and dry etching processes. Huub Ambrosius
JePPIX Course Processing Wet and dry etching processes Huub Ambrosius Material removal: etching processes Etching is done either in dry or wet methods: Wet etching uses liquid etchants with wafers immersed
Spectroscopic Ellipsometry:
Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can
Sputtered AlN Thin Films on Si and Electrodes for MEMS Resonators: Relationship Between Surface Quality Microstructure and Film Properties
Sputtered AlN Thin Films on and Electrodes for MEMS Resonators: Relationship Between Surface Quality Microstructure and Film Properties S. Mishin, D. R. Marx and B. Sylvia, Advanced Modular Sputtering,
Chapter 11 PVD and Metallization
Chapter 11 PVD and Metallization 2006/5/23 1 Metallization Processes that deposit metal thin film on wafer surface. 2006/5/23 2 1 Metallization Definition Applications PVD vs. CVD Methods Vacuum Metals
High performance. Architectural glazings utilise thin. low-emissivity coating. Coating technology
Coating technology High performance low-emissivity coating Growing concern with energy efficiency has sparked the development of double low-emissivity coatings in architectural glass. BOC Coating has designed
A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators
A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr Peter Hockley and Professor Mike Thwaites, Plasma Quest Limited
Analyzing Electrical Effects of RTA-driven Local Anneal Temperature Variation
1 Analyzing Electrical Effects of RTA-driven Local Anneal Temperature Variation Vivek Joshi, Kanak Agarwal*, Dennis Sylvester, David Blaauw Electrical Engineering & Computer Science University of Michigan,
Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program
Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program Heather Schriner, Brady Davies, Jeffry Sniegowski, M. Steven Rodgers, James Allen, Charlene Shepard Sandia National Laboratories
Contamination. Cleanroom. Cleanroom for micro and nano fabrication. Particle Contamination and Yield in Semiconductors.
Fe Particles Metallic contaminants Organic contaminants Surface roughness Au Particles SiO 2 or other thin films Contamination Na Cu Photoresist Interconnect Metal N, P Damages: Oxide breakdown, metal
Supercapacitors. Advantages Power density Recycle ability Environmentally friendly Safe Light weight
Supercapacitors Supercapacitors also called ultracapacitors and electric double layer capacitors (EDLC) are capacitors with capacitance values greater than any other capacitor type available today. Capacitance
Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1
Chapter 1 Introduction to The Semiconductor Industry 1 The Semiconductor Industry INFRASTRUCTURE Industry Standards (SIA, SEMI, NIST, etc.) Production Tools Utilities Materials & Chemicals Metrology Tools
Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive. Wolfgang Hentsch, Dr. Reinhard Fendler. FHR Anlagenbau GmbH
Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive Sputtertechnologien Wolfgang Hentsch, Dr. Reinhard Fendler FHR Anlagenbau GmbH Germany Contents: 1. FHR Anlagenbau GmbH in Brief
INTRODUCTION TO ION IMPLANTATION Dr. Lynn Fuller, Dr. Renan Turkman Dr Robert Pearson
Ion Implantation ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING INTRODUCTION TO ION IMPLANTATION Dr. Lynn Fuller, Dr. Renan Turkman Dr Robert Pearson Webpage: http://people.rit.edu/lffeee
FLEXIBLE CIRCUITS MANUFACTURING
IPC-DVD-37 FLEXIBLE CIRCUITS MANUFACTURING Below is a copy of the narration for DVD-37. The contents of this script were developed by a review group of industry experts and were based on the best available
High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons
High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons D.Monaghan, V. Bellido-Gonzalez, M. Audronis. B. Daniel Gencoa, Physics Rd, Liverpool, L24 9HP, UK. www.gencoa.com,
JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 3, JULY 2006. 39
JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 3, JULY 2006. 39 Self-Assembled Polystyrene Micro-Spheres Applied for Photonic Crystals and Templates Fabrication Daniel S. Raimundo 1, Francisco J.
Rapid Prototyping and Development of Microfluidic and BioMEMS Devices
Rapid Prototyping and Development of Microfluidic and BioMEMS Devices J. Sasserath and D. Fries Intelligent Micro Patterning System Solutions, LLC St. Petersburg, Florida (T) 727-522-0334 (F) 727-522-3896
Process Diagnostics of Industrial Plasma Systems
Process Diagnostics of Industrial Plasma Systems A thesis for the degree of PHILOSOPHIAE DOCTOR Presented to Dublin City University By Niall Mac Gearailt B.Eng. Faculty of Engineering and Computing Dublin
Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar
Light management for photovoltaics Ando Kuypers, TNO Program manager Solar Global energy consumption: 500 ExaJoule/Year Solar irradiation on earth sphere: 5.000.000 ExaJoule/year 2 Capturing 0,01% covers
For Touch Panel and LCD Sputtering/PECVD/ Wet Processing
production Systems For Touch Panel and LCD Sputtering/PECVD/ Wet Processing Pilot and Production Systems Process Solutions with over 20 Years of Know-how Process Technology at a Glance for Touch Panel,
Effect of Dissolved CO 2 in De-ionized Water in Reducing Wafer Damage During Megasonic Cleaning in MegPie. Arizona 85721, USA. Arizona 85721, USA
Effect of Dissolved CO 2 in De-ionized Water in Reducing Wafer Damage During Megasonic Cleaning in MegPie S. Kumari a, M. Keswani a, S. Singh b, M. Beck c, E. Liebscher c, L. Q. Toan d and S. Raghavan
WŝŽŶĞĞƌŝŶŐ > ĞdžƉĞƌŝĞŶĐĞ ƐŝŶĐĞ ϭϵϳϰ WŝĐŽƐƵŶ ^he > Ρ ZͲƐĞƌŝĞƐ > ƐLJƐƚĞŵƐ ƌŝěőŝŷő ƚśğ ŐĂƉ ďğƚǁğğŷ ƌğɛğăƌđś ĂŶĚ ƉƌŽĚƵĐƟŽŶ d, &hdhz K& d,/e &/>D /^, Z
The ALD Powerhouse Picosun Defining the future of ALD Picosun s history and background date back to the very beginning of the field of atomic layer deposition. ALD was invented in Finland in 1974 by Dr.
2015-2016 Facility Rates & Expense Caps
NANOFAB FEES / SERVICES Entry Fee $20.00/Day $32.10/Day Nanofab Training Fee $25.00/Hour $40.13/Hour Nanofab Process Development/Labor $50.00/Hour $80.25/Hour Model Shop $25.00/Month $40.13/Month Wafer
Volumes. Goal: Drive optical to high volumes and low costs
First Electrically Pumped Hybrid Silicon Laser Sept 18 th 2006 The information in this presentation is under embargo until 9/18/06 10:00 AM PST 1 Agenda Dr. Mario Paniccia Director, Photonics Technology
How To Implant Anneal Ion Beam
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Ion Implant Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute of Technology
ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication
ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,
Quantum Computing for Beginners: Building Qubits
Quantum Computing for Beginners: Building Qubits Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham 28/03/2007 Overview of this presentation What is a Qubit?
Plasma Etching ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. Plasma Etching. Dr. Lynn Fuller. http://people.rit.
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Plasma Etching Dr. Lynn Fuller http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041
Lecture 11. Etching Techniques Reading: Chapter 11. ECE 6450 - Dr. Alan Doolittle
Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity
Observation of Long Transients in the Electrical Characterization of Thin Film BST Capacitors
Integrated Ferroelectrics, 53: 503 511, 2003 Copyright C Taylor & Francis Inc. ISSN: 1058-4587 print/ 1607-8489 online DOI: 10.1080/10584580390258651 Observation of Long Transients in the Electrical Characterization
Reactive Sputtering Using a Dual-Anode Magnetron System
Reactive Sputtering Using a Dual-Anode Magnetron System A. Belkind and Z. Zhao, Stevens Institute of Technology, Hoboken, NJ; and D. Carter, G. McDonough, G. Roche, and R. Scholl, Advanced Energy Industries,
IBS - Ion Beam Services
IBS - Ion Beam Services Profile Technologies Devices & sensor fabricat ion Participation to R&D programs Researched partnership Présentation activité composant 1 Profile : Products and services Product
Aluminum-Silicon Contact Formation Through Narrow Dielectric Openings
Elías Urrejola Davanzo Aluminum-Silicon Contact Formation Through Narrow Dielectric Openings Application To Industrial High Efficiency Rear Passivated Solar Cells Aluminum-Silicon Contact Formation Through
Remote plasma etching of silicon nitride and silicon dioxide using NF 3 /O 2 gas mixtures
Remote plasma etching of silicon nitride and silicon dioxide using NF 3 /O 2 gas mixtures B. E. E. Kastenmeier, a) P. J. Matsuo, and G. S. Oehrlein b) Department of Physics, The University at Albany, State
Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography
Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography Wen-Di Li*, Wei Wu** and R. Stanley Williams Hewlett-Packard Labs *Current address: University
Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition
Applied Surface Science 186 2002) 453±457 Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition Lianne M. Doeswijk a,*, Hugo H.C. de Moor b, Horst Rogalla a, Dave
Modeling, Simulation and Calibration of Silicon Wet Etching
Modeling, Simulation and Calibration of Silicon Wet Etching Paper Andrzej Kociubiński, Mariusz Duk, Tomasz Bieniek, and Paweł Janus Abstract The methods of parameter optimization in Etch3D TM simulator
Sheet Resistance = R (L/W) = R N ------------------ L
Sheet Resistance Rewrite the resistance equation to separate (L / W), the length-to-width ratio... which is the number of squares N from R, the sheet resistance = (σ n t) - R L = -----------------------
J H Liao 1, Jianshe Tang 2,b, Ching Hwa Weng 2, Wei Lu 2, Han Wen Chen 2, John TC Lee 2
Solid State Phenomena Vol. 134 (2008) pp 359-362 Online available since 2007/Nov/20 at www.scientific.net (2008) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.134.359 Metal Hard
The New PVD HI3-Technology: Latest Developments and Potential for Coining Dies.
The New PVD HI3-Technology: Latest Developments and Potential for Coining Dies. Technical Forum - World Money Fair 2015, Berlin 29 th January 2015, Oerlikon The New Segment Surface Solutions Segment Manmade
OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS
OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS Vojtěch SVATOŠ 1, Jana DRBOHLAVOVÁ 1, Marian MÁRIK 1, Jan PEKÁREK 1, Jana CHOMOCKÁ 1,
Case Study 2: Digital Micromirror Devices (DMD) Optical MEMS
Case Study : Digital Micromirror Devices (DMD) Chapter of Senturia A MEMS-based projection display, Van Kessel, P.F.; Hornbeck, L.J.; Meier, R.E.; Douglass, M.R., Proc. IEEE, Vol. 86 pp.1687-174 1998 http://www.dlp.com/
DI-water technology for photoresist removal. shifts from 200- to 300-mm wafers, the use of ozonated deionized water (DIO 3
Using an ozonated- DI-water technology for photoresist removal Jae-Inh Song, Richard Novak, Ismail Kashkoush, and Pieter Boelen, Akrion As the semiconductor industry shifts from 200- to 300-mm wafers,
Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring
Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring Vivek Subramanian Department of Electrical Engineering and Computer Sciences University of California, Berkeley RD83089901
From sand to circuits How Intel makes integrated circuit chips. Sand with Intel Core 2 Duo processor.
www.intel.com Learn more about Intel history at www.intel.com/museum Copyright 2008 Intel Corporation. All rights reserved. Intel, Intel logo, Celeron, Intel386, Intel486, i386, i486, Intel Core, Intel
Chapter 2 The Study on Polycrystalline Pentacene Thin Film Transistors
Chapter 2 The Study on Polycrystalline Pentacene Thin Film Transistors 2.1 Introduction Recent focus and attention on organic thin film transistors (TFTs) resulted in dramatic performance improvements
Effect of UV-wavelength on Hardening Process of PECVD Glasses
Effect of UV-wavelength on Hardening Process of Porogen-containing and Porogen-free Ultra-low-k PECVD Glasses A.M. Urbanowicz*, K. Vanstreels, P. Verdonck, E. Van Besien, Ch. Trompoukis, D. Shamiryan,
Silicon Wafer Solar Cells
Silicon Wafer Solar Cells Armin Aberle Solar Energy Research Institute of Singapore (SERIS) National University of Singapore (NUS) April 2009 1 1. PV Some background Photovoltaics (PV): Direct conversion
Distance Learning Courses on Campus
Distance Learning Courses on Campus Session 3630 M. E. Parten, M. C. Baker Department of Electrical Engineering Texas Tech University Lubbock, Texas 79409-3102 Abstract This paper describes the development
