Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)



Similar documents
Fluid Mechanics: Static s Kinematics Dynamics Fluid

CE 204 FLUID MECHANICS

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

Fluids and Solids: Fundamentals

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

SURFACE TENSION. Definition

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

The Viscosity of Fluids

Basic Principles in Microfluidics

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Properties of Fluids. In this chapter we discuss a number of fundamental properties of fluids. An CHAPTER 2

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount

The Viscosity of Fluids

Fundamental Concepts in Fluid Mechanics

Lecture 2 PROPERTIES OF FLUID

Lecture 24 - Surface tension, viscous flow, thermodynamics

PUMPS STEAM TURBINES BUILDING & FIRE WASTEWATER SERVICE PUMP CLINIC 22 VISCOSITY

Fluid Mechanic & Fluid Machine

VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries?

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

Properties of Fluids

10.7 Kinetic Molecular Theory Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

PHYSICS FUNDAMENTALS-Viscosity and flow

Notes on Polymer Rheology Outline


Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Unit 1 INTRODUCTION 1.1.Introduction 1.2.Objectives

Viscosity. Desmond Schipper Andrew R. Barron. 1 Introduction

Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.

CHAPTER 2: LIQUID VISCOSITY MEASUREMENT

Practice Problems on the Navier-Stokes Equations

KINETIC MOLECULAR THEORY OF MATTER

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

Journal bearings/sliding bearings

Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester

Natural Convection. Buoyancy force

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

For Water to Move a driving force is needed

HEAT UNIT 1.1 KINETIC THEORY OF GASES Introduction Postulates of Kinetic Theory of Gases

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

HEAVY OIL FLOW MEASUREMENT CHALLENGES

INTRODUCTION TO FLUID MECHANICS

XI / PHYSICS FLUIDS IN MOTION 11/PA

Teil I. Student Laboratory Manuals

Basic Equations, Boundary Conditions and Dimensionless Parameters

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1 The basic equations of fluid dynamics

CHAPTER 7: CAPILLARY PRESSURE

Diffusion and Fluid Flow

Soil Suction. Total Suction

Dimensional Analysis

Rheological Properties of Topical Formulations

EXAMPLE: Water Flow in a Pipe

Chemistry 13: States of Matter

02/21/ :13 AM. Viscosity. The Physics Hypertextbook by Glenn Elert All Rights Reserved -- Fair Use Encouraged.

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Viscous flow in pipe

Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry:

01 The Nature of Fluids

How To Understand Fluid Mechanics

Chapter 8: Flow in Pipes

Solution for Homework #1

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Fundamentals of THERMAL-FLUID SCIENCES

Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter.

CHAPTER 4 FLOW IN CHANNELS

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

Torsion Tests. Subjects of interest

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

du u U 0 U dy y b 0 b

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Flow Properties of Powders and Bulk Solids

Scalars, Vectors and Tensors

C B A T 3 T 2 T What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Solution Derivations for Capa #11

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Physics 181- Summer Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Center of Gravity. We touched on this briefly in chapter 7! x 2

Viscosity (VIS) Topic: Mechanics. Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Asphalt Institute Technical Bulletin. Laboratory Mixing and Compaction Temperatures

Standard Test Methods for Viscosity of Adhesives 1

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

CHAPTER ONE Fluid Fundamentals

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Open channel flow Basic principle

Transcription:

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity) fluid Internal forces at any section within are normal (pressure forces) Practical applications: many flows approximate frictionless flow away from solid boundaries. Do not confuse ideal fluid with a perfect (ideal) gas. Real Fluids Viscosity (1) Tangential or shearing forces always develop where there is motion relative to solid body Thus, fluid friction is created Shear forces oppose motion of one particle past another Friction forces gives rise to a fluid property called viscosity A measure of a fluid's resistance to angular deformation, e.g., Motor oil: high viscosity, feels sticky Gasoline: low viscosity, flows faster Friction forces result from cohesion and momentum interchange between molecules. 3 4 Viscosity (2) Liquids Viscosity (3) Viscosity Gases Mechanisms of viscous action: Liquids: cohesion forces (diminish with temperature) Gases: molecular interchange between moving layers 5 Temperature Variation with temperature: Liquids: viscosity decreases as temperature increases Gases: viscosity increases as temperature increases See Figures A.1 & A.2, Appendix A, for absolute and kinematic viscosities of fluids 6 Molecular interchange in gases: Molecular interchange shear/friction between layers As T increases, so does molecular activity increasing viscosity in gases as T increases

Viscosity (4) Viscosity (5) - Moving & stationary parallel plates faster layer shear stress, τ slower layer Rapidly-moving molecule into slowly-moving layer speeds up the layer. Slow-moving molecule into faster-moving layer slows down the layer moving plate Y dy y u U du velocity profile stationary plate F,U Fluid particles adhere to walls: no-slip condition Velocities: zero at (1), U at (2) velocity profile For small U, Y, and no net flow linear velocity profile Experiments show that F ~ A U/Y 7 8 Viscosity (6) Newton's equation Viscosity (7) - Moving parallel plate with net flow From previous slide: F ~ A U/Y τ = F/A = shear stress between layers Newton's equation of viscosity (for the linear velocity profile) Y y U u velocity profile Slope, du/dy F,U = F A = U V = du dy μ = coefficient of viscosity, absolute viscosity, dynamic viscosity, or simply viscosity Velocity profile when small bulk flow present: Combination of linear + parabolic profile Non-linear profile adds zero velocities at the walls Shows maximum velocity at center line 9 10 Viscosity (8) Newton's equation For non-linear profile, use the slope of the velocity profile at position y, i.e., du/dy, to calculate the shear stress between layers = du dy μ = coefficient of viscosity, absolute viscosity, dynamic viscosity, or simply viscosity 1 - For solids, shear stress depends on magnitude of angular deformation (τ ~ angular deformation) 2 For many fluids shear stress is proportional to the time rate of angular deformation (τ ~ du/dy) 11 12

Viscosity (9) τ - vs.- (du/dy) behavior τ Elastic solid Ideal plastic Non-Newtonian fluid Viscosity (10) Different materials Newtonian fluid: μ is constant Air, water are Newtonian fluids Ideal fluid has μ = 0 τ 0 Newtonian fluid Ideal plastic: requires a threshold stress τ 0 before it flows 13 1 μ du/dy ideal fluid 14 Non-Newtonian fluids: μ varies with velocity gradient (du/dy) Paints, printer's ink, gels, emulsions are Non- Newtonian fluids. Viscosity (11) Journal bearing See Figure 2.6, p. 32, for sketch of journal bearing Lubricating fluid fills small annular space between a shaft and its surrounding support For coaxial cylinders with constant angular velocity (ω), resisting torque = driving torque Because radii at inner and outer walls are different shear stresses at the walls must be different Shear stresses vary continuously and velocity profile in gap must be curve For very small gaps, velocity is linear τ = μ U/Y 15 16 Viscosity (11) Units of viscosity In B.G. Units In S.I. Units [ ]= [ ] 2 lb/ ft lb sec = = [du/dy] fps/ ft ft 2 [ ]= [ ] [du/dy] = N /m2 = Ns s 1 m 2 The poise (P): Metric unit of viscosity Named after Jean Louis Poiseuille (1799-1869) The poise: 1 P = 0.10 N s/m 2 The centipoise: 1 cp = 0.01 P = 1 mn s/m 2 For water at 68.4 o F (20.22 o C), μ = 1 cp Viscosity (12) Kinematic viscosity Ratio of absolute viscosity to density Appears in many problems in fluids Called kinematic viscosity because it involves no force (dynamic) dimensions B.G. Units = ft2 /sec, S.I. Units = m 2 /s The stoke (St) Metric unit of kinematic viscosity Named after Sir George Stokes (1819-1903) The centistoke: 1 cst = 0.01 St = 10-6 m 2 /s = 17 18

Viscosity (13) Kinematic vs. dynamic μ for most fluids is virtually independent of pressure for the range of interest to engineers Viscosity (14) - Examples ν for gases varies strongly with pressure because of changes in density ( ρ ) To determine ν at non-standard pressures, look up the pressure-independent value of μ and calculate ν = μ/ρ. See Sample Problems 2.8 and 2.9 in pages 34 and 35 To calculate ρ use the perfect gas law. 20 19 Surface Tension (1) Surface tension (2) Molecular attraction forces in liquids: Cohesion: enables liquid to resist tensile stress Adhesion: enables liquid to adhere to another body Liquid-fluid interfaces: Liquid-gas interface: free surface Liquid-liquid (immiscible) interface At these interfaces, out-of-balance attraction forces forms imaginary surface film that exerts a tension force in the surface surface tension Computed as a force per unit length 22 Surface tension of various liquids Cover a wide range Decrease slightly with increasing temperature Values of surface tension for water between freezing and boiling points 0.00518 to 0.00404 lb/ft or 0.0756 to 0.0589 N/m See Table A.1, Appendix A Surface tension for other liquids See Table A.4, Appendix A 21 Surface tension (3) 23 Surface tension is responsible for the curved shapes of liquid drops and liquid sheets as in this example 24 Herring-bone jets

Surface Tension (4) - Capillarity 25 Low-gravity balloon bursting 26 Property of exerting forces on fluids by fine tubes and porous media, due to both cohesion and adhesion Cohesion < adhesion, liquid wets solid, rises at point of contact Cohesion > adhesion, liquid surface depresses at point of contact Meniscus: curved liquid surface that develops in a tube See Figure 2.7, p. 38 Surface Tension (5) - Meniscus Mercury non wetting liquid Water wetting liquid Surface Tension (6) - Capillary Rise σ r θ meniscus h 27 In next slide: σ = surface tension, θ = wetting angle, γ = specific weight of liquid, r = radius of tube, h = capillary rise 28 Equilibrium of surface tension force and gravitational pull on the water cylinder of height h produces: 2πrσ cos θ = πr 2 hγ h=2σ cos θ / (γr) Surface Tension (7) Expression in previous slide calculates the approximate capillary rise in a small tube The meniscus lifts a small amount of liquid near the tube walls, as r increases this amount may become significant Thus, the equation developed overestimates the amount of capillary rise or depression, particularly for large r. For a clean tube, θ = 0 o for water, θ = 140 o for mercury For r > ¼ in (6 mm), capillarity is negligible 30 Surface Tension (8) - Applications Its effects are negligible in most engineering situations. Important in problems involving capillary rise, e.g., soil water zone, water supply to plants When small tubes are used for measuring properties, e.g., pressure, account must be made for capillarity Surface tension important in: Small models in hydraulic model studies Break up of liquid jets Formation of drops and bubbles 29

31 Vapor Pressure of Liquids (1) Liquids tend to evaporate or vaporize by projecting molecules across the free surface If enclosed space above free surface, partial pressure exerted by molecules increases Saturation pressure (vapor pressure) reached when same number of molecules enter as leave the free surface Molecular activity increases with increasing T and decreasing p, so does the saturation pressure 32 Vapor Pressure of Liquids (2) At any given T, if p < saturation pressure rapid rate of evaporation (boiling) Thus, saturation pressure is also known as boiling pressure for a given temperature In flowing fluids, cavitation occurs when the fluid undergoes rapid vaporization and recondensation while passing through regions of low absolute pressure [see Section 5.10] Saturation vapor pressure data available in Table 2.3, p. 40, and Table A.4, Appendix A.4. For water, in Table A.1. Cavitation in propellers Cavitation damage in Karun Dam, Iran 33 34 Data on fluid properties Appendix A Figure A.1 μ vs. T for various fluids Figure A.2 ν vs. T for various fluids Table A.1 Physical properties of water at standard conditions (γ, ρ, μ, ν, σ, p v, p v /γ, E v ) Table A.2 Physical properties of air at standard conditions (γ, ρ, μ, ν) Table A.3 The ICAO standard atmosphere Table A.4 Physical properties of common liquids Table A.5 Physical properties of common gases 35